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on daily closing prices of blue-chip financial sector stocks listed on the Indonesia
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Deep arbitrage; model training and parameter optimization, and an out-of-sample period from
Indonesian stocks; September 2021 to Aprl 2025 for performance assessment. Strategy
LSTM; performance is evaluated using portfolio return and Sharpe ratio. The empirical
Statistical arbitrage. results show that both strategies are feasible in the Indonesian market; however,

the LSTM-based deep arbitrage strategy significantly outperforms the traditional
statistical arbitrage approach, achieving a higher out-of-sample portfolio return
(735% versus 482%) and a superior Sharpe ratio (1.67 versus 0.69). These
findings indicate that deep learning-based arbitrage can provide substantial
improvements in both return and risk-adjusted performance under long-only
trading constraints in an emerging market context.
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1. INTRODUCTION

The Indonesian stock market has experienced substantial growth in recent years, both in terms of investor
participation and trading activity. As of September 25, 2024, the number of registered investors reached
6,001,573 Single Investor Identifications (SIDs), with approximately 744,000 new investors added within the
same year, of which nearly 79% are under the age of 40 [1]. Beyond signaling increasing market participation,
this growth has important implications for quantitative trading strategies. Higher investor participation is typically
associated with improved liquidity, tighter bid-ask spreads, and lower effective transaction costs, all of which are
critical conditions for the feasibility of arbitrage-based trading strategies, particularly in emerging markets.
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Within this context, statistical arbitrage has been widely studied as a quantitative trading framework that
exploits mean-reversion behavior between pairs of assets exhibiting strong comovement. Since its development
i the 1980s, statistical arbitrage has relied on applied mathematical tools such as correlation analysis,
cointegration testing, and stochastic modeling of price spreads to identify temporary mispricing opportunities [2].
In this study, arbitrage 1s formulated as a relative-value trading strategy, where investment decisions are based on
the relative mispricing between two economically related assets rather than absolute price movements.

Despite its mathematical elegance, traditional cointegration-based statistical arbitrage faces several practical
and modeling limitations. Fixed trading thresholds may fail to adapt to changing volatility regimes, while
unadjusted spread dynamics can lead to delayed or noisy trading signals. These 1ssues reduce strategy robustness,
especially under time-varying market volatility [3]. From an applied mathematics perspective, these limitations
motivate the need for volatility-aware modeling and systematic threshold optimization to improve signal stability
and trading performance|[4].

Recent advances in applied machine learning have introduced deep arbitrage strategies based on Long
Short-Term Memory (LSTM) networks, which are designed to model nonlinear temporal dependencies in
financial time series. Prior studies report that LSTM-based approaches can outperform traditional statistical
arbitrage in terms of portfolio return and risk-adjusted performance [5]However, most existing work focuses on
developed markets, relies on high-frequency data, and assumes unrestricted long-short trading mechanisms.
Such settings hmit the direct applicability of these methods to regulated emerging markets, where arbitrage
strategies must operate under long-only trading constraints while still preserving a relative-value interpretation of
spread dynamics.

In the Indonesian stock market, empirical evidence comparing traditional statistical arbitrage and deep
arbitrage under daily data frequency and long-only trading constraints remains limited[6]. This gap 1s particularly
important from an applied mathematics standpoint, as it raises questions about how classical econometric tools
(cointegration and volatility modeling) can be systematically integrated with modern deep learning techniques to
implement relative-value arbitrage when short selling is not permitted [7]. Therefore, this study aims to
empirically compare coimtegration-based statistical arbitrage and LSTM-based deep arbitrage strategies by
evaluating portfolio return and Sharpe ratio using Indonesian financial sector stocks within a relative-value, long-
only trading framework.

From a modeling perspective, this study explicitly formulates an applied mathematical pipeline consisting
of: (1) correlation and cointegration analysis to identify equilibrium relationships between stock pairs; (i)
construction of residual-based price spreads as a measure of relative mispricing; (i1) volatility scaling of spreads
using a GARCH(1,1) model; (iv) optimization of trading thresholds via grid-search techniques; (v) signal
generation through both rule-based statistical arbitrage and LSTM-based classification; and (vi) out-of-sample
performance evaluation using portfolio return and Sharpe ratio [8]. By systematically justifying each modeling
stage, this research contributes to the applied mathematics literature by demonstrating how classical stochastic
models and modern deep learning can be integrated to enhance relative-value arbitrage performance under long-
only constraints in an emerging market setting[9].

This study makes three primary contributions. First, it provides one of the first systematic comparisons
between traditional statistical arbitrage and LSTM-based deep arbitrage in the Indonesian stock market under a
relative-value, long-only trading assumption[10]. Second, it extends the arbitrage literature by focusing on daily
data and long-only trading rules, reflecting realistic regulatory and market conditions. Third, it highlights the role
of volatility-adjusted spread modeling and threshold optimization as key applied mathematical components for
mmproving arbitrage robustness and risk-adjusted performance.

2. RESEARCH METHODE

The data were obtained from AN, a paid web-based financial data provider that supplies historical equity
data for the Indonesian Stock Exchange (IDX). The dataset consists of daily closing prices of seven blue-chip
financial sector stocks listed on the Indonesian Stock Exchange, covering a ten-year period from April 6, 2015
to April 6, 2025, with a total of 2,418 trading-day observations. All prices are denominated in Indonesian Rupiah
(IDR) and follow the official IDX trading calendar (Jakarta time, UTC+7), where non-trading days correspond
to weekends and official market holidays[2].

The raw dataset contains daily time, open, high, low, close, and trading volume information. However, this
study utilizes only the time and closing price data, as the arbitrage strategies are based on price spread dynamics
and cointegration analysis, which primarily rely on closing prices. This study uses adjusted closing prices, which
account for corporate actions such as stock splits and dividends to ensure price continuity and avoid artificial
structural breaks in the time series[11]. Days with missing observations due to market closures were not forward-
filled; instead, the chronological trading sequence defined by the IDX calendar was preserved.

Stocks were selected based on sector classification and continuous daily trading activity to ensure data
availability and liquidity. Only stocks with uninterrupted trading histories during the sample period were included.
Consequently, survivorship bias may be present due to the exclusion of delisted or inactive stocks; however, this
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approach ensures data consistency and realistic arbitrage execution. The ten-year observation period spans
multiple market regimes, including pre-pandemic, pandemic, and post-pandemic phases of the Indonesian stock
market, which enhances the robustness and generalizability of the empirical results.

To ensure a genuine out-of-sample evaluation, the dataset is divided chronologically into a training (in-
sample) period and a testing (out-of-sample) period. The in-sample period spans from April 6, 2015 to August
31, 2021 and is used for model training and parameter optimization, including threshold selection and LSTM
training[2], [12]In the deep arbitrage model, the input features consist of historical spread values derived from
paired stock prices, while the target variables are defined as trading signals indicating buy and sell actions based
on predefined threshold rules. The out-of-sample period covers September 1, 2021 to April 6, 2025 and 1s
reserved exclusively for performance evaluation, where the trained model receives only historical spread
information to generate buy and sell signals. All trading signals are executed using a close-to-close convention,
where buy and sell decisions are based on information available at the market close and transactions are assumed
to occur at the corresponding closing prices. This design ensures consistency with long-only trading constraints
and portfolio return calculations [13].

The arbitrage strategy involving two paired stock data has two requirements for the data pair, it must be
correlated and cointegrated. The historical correlation of a stock pair 1s said to be suitable if the correlation value
was (r) > 0.8. The correlation test can use Formula 1. The correlation test uses the daily closing stock prices. The
correlation value 1s denoted by r. Calculating the correlation value requires several variables, including X; dan Y;
as the closing stock price, with 1, X and ¥ as the average closing stock price and n as the amount of data. The
cointegration test can use the stationarity test with the Augmented Dickey-Fuller (ADF) test as in the Formula 2,
with a p-value < 0.05. A significance level of 0.05 means that there 1s a 5% risk of rejecting HO, where a value of
5% 1s considered small for stationarity and cointegration calculation [14]. The cointegration test uses the log value
of the closing stock price, denoted by In. This caused by how it can stabilize variance and reduce the effect of
data scale [15]. Thus, it can be analyzed more accurately. The ADF test requires the variables o and y as
regression parameters, € as the error term, In(P,) and In(P,_;) as the log closing stock prices at time t.

L& - O -1

\/zz;o(xi — X)2 SR — T)?

Aln(P) = a+ yIn(P_,) + & 2

The ADF test has two hypotheses, hypothesis 0 and hypothesis 1. Hypothesis 0 states that “The time series
data has a unit root and 1s non-stationary.” On the contrary, hypothesis 1 states that “The time series data does
not have a unit root and is stationary.” A pair of stocks is said to be cointegrated if each stock is non-stationary
(h0 accepted), but their linear combination produces a stationary residual (h0 rejected) [16]. After ensuring that
the stock pair meets these two conditions, two models will be created using statistical arbitrage and deep arbitrage.

Creating a statistical arbitrage model begins by taking the spread value between stocks at each point in time
using Formula 3. Calculating the spread requires two regression parameters, namely a and . In addition, the
closing log prices of the two stocks are denoted by ln(PA‘t) dan ln(PB_t).

spread, =In(P,.) — (@ + B In(Pg,)) ()

Then, volatility and mspread values are needed at each point in time to develop a trading strategy. Volatility
can be calculated using the GARCH(1,1) method with Formula 4. GARCH(1,1) 1s used because this method has
proven to be more effective than other volatility calculation methods [17]. The volatility at each time is denoted
by g;. Calculating volatility requires GARCH(1,1) parameters such as w, a, 3, and the spread value at ime t by
spread;_;.

o, = \/ w + aspread?, | + fo?,_, )

Calculating mspread(t) can be done using Formula 5. The variables needed to calculate mspread(t) are
spread(t) and the spread average generated in Formula 3. In addition, trading costs denotated by ¢ are required.
The value of ¢ is set at 0.5%, as used on investment platforms in Indonesia[18].

mspread, = spread, - spread - ¢ )
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Statistical arbitrage trading strategies include the timing of buying stocks, selling stocks, and stop-losses. The
timing of buying stock A can use the conditions in Formula 6, and the timing of buying stock B can use the
conditions in Formula 7. The timing of selling stocks can use the conditions in Formula 8. The stop-loss timing
for stock A can use the conditions in Formula 9, and the stop-loss timing for stock B is in Formula 10. Stop-loss
1s a rule that stipulates that an investment position will be sold automatically when the price reaches a
predetermined maximum loss level These conditions are applied in the hope of making a profit in the period
between buying and selling the stock.

In Formulas 6 to 10, there are threshold values with variables A4, A,, and A3. Maximizing the threshold
value can be done using the gridsearch method. Gridsearch compares the portfolio return values obtained from
all combinations of 44, 4,, and A3. The value of 4, is in the range of 0-10, A; is in the range of 1,-30, and A5 1s
in the range of 1;-50. The value of A; will definitely be greater than A,, because A; represents a signal to buy
stocks as the spread value 1s considered to be increasing. The value of A, represents a normal spread. This
becomes a signal to sell stocks at a profit, because the spread has returned to normal. The value of 15 represents
a stop-loss signal because the spread is widening, which 1s considered a loss when selling stocks.

mspread, > (A * 0,) &mspread, < (A3 * g;) (6)
mspread, < (—A, * o.) &mspread, > (—A; * g;) (7)
-1, * 0, <mspread, < A, * o, @®)
mspread, > A3 * o, )

mspread, < —3 * o, (10)

Definition of Symbols
t : time index
mspreadt : mispricing spread at time t
ot: volatility of the mispricing spread at time t
Al: lower threshold parameter for trading signal activation
A2: threshold parameter defining the no-trading (neutral) region
A3: upper threshold parameter indicating extreme mispricing
rtr: portfolio return at time t
Vit : portfolio value at time t
Simulation visualization requires a z-score to make it easier to read. Calculating the z-score can be done by
dividing the mspread by volatility, as shown in Formula 11.

d
2, = mspread; an
O

The deep arbitrage strategy utilizes the previously constructed spread and z-score series derived from paired
stock prices. Prior to model training, each observation is labeled based on its corresponding z-score following the
decision rules defined in Formula 12. Label 1 represents a buy signal for stock A, label 2 represents a buy signal
for stock B, label 3 represents a sell signal, label 4 represents a stop-loss signal, and label 0 represents a hold or
no-action signal.

The input to the LSTM model is formulated as rolling sequences of historical spread values using a fixed
lookback window of 20 trading days. Specifically, at each time step ttt, the mput sequence is defined as
[spreadt—20, ..., spreadt—1] [spread_{t-20}, \Idots, spread_{t-1}] [spreadt—20, ..., spreadt—1], while the target
output corresponds to the trading signal label at time ttt. This sequence-based representation enables the LSTM
to capture temporal dependencies and dynamic mean-reversion behavior in the spread process.

The LSTM model adopts a stacked architecture consisting of two LSTM layers, each with 50 hidden units,
followed by a fully connected dense layer with a softmax activation function for multi-class classification[19].
Dropout regularization with a rate of 0.2 is applied between LSTM layers to mitigate overfitting. Model training
1s conducted using the Adam optimizer with a learning rate of 0.001, and categorical cross-entropy 1s employed
as the loss function.

Training is performed using a batch size of 32 over a maximum of 100 epochs. Early stopping is
implemented with a patience of 10 epochs based on validation loss to prevent overfitting. To address class
imbalance arising from the predominance of hold (label 0) observations, class weighting 1s applied during model
training to penalize misclassification of minority trading signals.
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To ensure a realistic and bias-free evaluation, a rolling-window training framework with an expanding
window scheme is employed. The model is initially trained using the in-sample period. Subsequently, at each re-
training step, the training window is expanded to include all available historical observations up to the current
time point, and the trained model 1s used to generate trading signals exclusively for future observations. This
rolling-window protocol ensures that the LSTM model adapts to evolving market conditions while strictly
preserving the out-of-sample nature of performance evaluation.

4, |z;| > A3
3, |z;| < A2

signal(zy) = 2, A, <z < A3 (12)
1, _A3 < Zt < _Al
0, others

The generated labels serve as the target outputs of the model, while the spread time series
spread(t)spread(t)spread(t) is used as the mput feature. Rather than applying a percentage-based data split, this
study adopts a chronological date-based partitioning to ensure a realistic time-series evaluation and to prevent
data leakage. The dataset i1s divided into an in-sample period used exclusively for model training and parameter
optimization, and an out-of-sample period reserved solely for performance evaluation.

All model training, including LSTM parameter learning and threshold optimization, is conducted using
data from April 6, 2015 to August 31, 2021. The out-of-sample period spans from September 1, 2021 to April
6, 2025, during which the trained models generate trading signals using only historical information available up
to each decision point. This chronological split ensures that no future information is used during model training,
thereby eliminating look-ahead bias.

Input sequences are normalized using statistics computed exclusively from the in-sample period. These
normalization parameters are then fixed and applied to the out-of-sample data, ensuring that information from
the test period does not influence model training. The processed input sequences are subsequently fed into the
LSTM model to generate buy, sell, and stop-loss signals for paired stocks[20].

Both statistical arbitrage and deep arbitrage models generate portfolio return and Sharpe ratio values, which
are used as the primary performance evaluation metrics. Portfolio return is calculated using Formula 15, while
the Sharpe ratio is computed using Formula 19. Trading simulations are visualized using time-series plots and
summarized in transaction tables. The trading simulation plots include markers indicating buy and sell executions
for each stock, as well as threshold boundaries corresponding to entry, exit, and stop-loss conditions.

Each row of the trading transaction table will be calculated for portfolio return per transaction. Then, the
equity per transaction will be calculated, resulting the portfolio return. The portfolio return per transaction is
calculated using Formula 13 in decimal form, by subtracting the closing stock log price at the time of purchase
from the closing stock log price at the time of sale. Equity per transaction can be calculated using Formula 14.
Equity 1s denotated by V and t denotates the time. Portfolio return can be calculated using Formula 15, which
requires Vi as the final equity value and Vj as the initial equity value.

Return, = ln(Pse”_t) - ln(Pbuy_t) (13)
Vi = Vi_; * (1 + Return,) (14)
VT - VO
Returnp,refolio = <T> * 100% (15)
0

The academic literature does not prescribe a fixed benchmark for interpreting the Sharpe ratio. However,
in practical investment analysis, a Sharpe ratio greater than 1.0 is often viewed as suggesting good risk-adjusted
performance [21]. This rule of thumb should be interpreted with caution because the Sharpe ratio 1s sensitive to
the time horizon, volatility characteristics, and non-normal return distributions.

The risk parameter in the Sharpe ratio calculation is set to zero because for daily data, its value 1s very small
compared to the market return. Before calculating the Sharpe ratio using Formula 18, several variables are
needed, such as the average daily portfolio return, or denoted by 73. Also, the standard deviation of the portfolio
return, or a,. The daily portfolio return can be calculated using Formula 16, with the position in A held, with a
range of 0 to 1, denoted by p,#. The value of p,? has the same meaning as p,4, but uses stock B. The value of
0, can be calculated using Formula 17.

= pAx (ln(PA_t) - ln(PA_t_l)) + pB * Aln(PB_t) (16)
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N
1
g, = m Z(Tt - T_')Z (17)
t=0
Sharpe = ;i* V252 (18)

3. RESULT AND ANALYSIS

Before the data pairs are processed, pre-processing is necessary to facilitate data processing because the data
is clean and in the required format. First, stock closing data must be in numerical form and time data must be in
year-month-date format. Next, all data entered must be in the same date order as the other data. Next, a data plot
was generated to observe the price movements of all imported stock data. The data plot in this study is presented
in Figure 1.

Harga Penutupan Saham

10000 { ~

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Figure 1. Daily closing price dynamics of selected Indonesian financial sector stocks (2015-2025)

In Figure 2, the highest correlation value 1s 0.92. This correlation level 1s observed in both stock pairs:
BBCA-BBRI and CIMB-BMRI. A correlation value of 0.92 has exceeded the minimum threshold of 0.8
commonly required for pairs trading in statistical arbitrage strategies. Therefore, the next step 1s to examine their
cointegration using the ADF test. While both BBCA-BBRI and CIMB-BMRI satisfy the statistical prerequisites
for pairs trading, the performance outcomes differ across pairs [18], [22]. The BBCA-BBRI pair consistently
delivers higher portfolio returns and Sharpe ratios under both strategies, suggesting more stable mean-reversion
dynamics and superior spread behavior. In contrast, the CIMB-BMRI pair exhibits weaker trading performance
despite comparable correlation levels, indicating that correlation and cointegration alone are not sufficient
determinants of arbitrage profitability[22].
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Figure 2. Stock pair correlation heatmap (darker colors indicate stronger positive correlations)

Based on Table 1, the p-value 1s obtained by testing stationarity using the ADF test. The BBCA and BBRI
pair generate p-value with the ADF test using residual data. Meanwhile, each stock in the pair generates p-value
with the ADF test using closing price data. Table 1 shows that both the BBCA-BBRI and CIMB-BMRI pairs
are stationary. Considering the price movement patterns shown in the data plot in Figure 1, BCA-BRI exhibits
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a more similar behavior compared to CIMB-BMRI. Thus, this study will proceed by implementing the statistical
arbitrage and deep arbitrage methods using the BBCA-BBRI stock pair.

Table 1. Correlation and Cointegration

Stock Correlation  P-value Explanation
BBCA-BBRI 0.92 0.004
BBCA - 0.71
BBRI - 0.45 Meeting the correlation and
CIMB-Mandiri 0.92 0.002 cointegrated requirements
CIMB 0.58
Mandiri 0.65

The process begins by calculating the spread at each time tfor the BBCA-BBRI stock pair using Formula
3. Then, the volatility at each time tis calculated using the GARCH (1,1) method as shown in Formula 4. After
that, the modified spread (mspread) at each time tis computed using Formula 5. Finally, the z-score at each time
tis obtained using Formula 11.

After deriving the mspread and volatility variables, the optimal threshold values are selected through a grid
search, following the procedure described in the Research Method chapter. This study produces the optimal
threshold values of 4 = 1.0, 4, = 0.5, and A3 = 3.0. By applying these thresholds in the statistical arbitrage and
deep arbitrage models, the portfolio return results are obtained as presented in Table 2.

To assess whether the observed differences in portfolio performance are statistically meaningful, formal
statistical inference was conducted. Mean return differences between the statistical arbitrage and deep arbitrage
strategies were evaluated using two-sided t-tests. To account for potential serial correlation and heteroskedasticity
in daily stock returns, Newey-West heteroskedasticity- and autocorrelation-consistent (HAC) standard errors
were applied. Statistical significance was evaluated using p-values, and 95% confidence intervals were reported.

Table 2. Portofolio Return and Sharpe Ratio Results of Two Methods

Method Portfolio Return ~ Sharpe Ratio
Statistical Arbitrage 482% 0.69
Deep Arbitrage (LSTM) 735% 1.67

Figure 3 presents a visualization of trading simulations using the statistical arbitrage method. In this method,
there are 61 stock buy-sell transactions, divided into 30 BBCA stock buy-sell transactions and 31 BBRI stock
buy-sell transactions. In addition, Figure 4 presents a visualization of trading simulations using the deep arbitrage
(LSTM) method. The deep arbitrage method with the LSTM model resulted in 87 stock buy-sell transactions,
divided into 18 BBCA stock buy-sell transactions and 19 BBRI stock buy-sell transactions.

2 Score Spread (marker eksekysi dari trades._df)

Figure 3. Trading simulation of the statistical arbitrage strategy using Z-score spread dynamics

2 Score spread (LSTM)

Figure 4. Trading simulation of the LSTM-based deep arbitrage strategy using spread dynamics.

A trading transaction table needs to be created to clarify the timing of buying and selling stocks. Therefore,
Table 3 and Table 4 are presented to provide a clear overview of trade execution timing. Table 3 reports the
trading transactions generated by the statistical arbitrage strategy, while Table 4 presents the trading transactions

Comparative Performance of Statistical and LSTM Based Arbitrage in the Indonesian Stock Market (Yunita)
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generated by the LSTM-based deep arbitrage strategy. For brevity and readability, only the first five and the last
five trading transactions are shown for each strategy, while the full transaction records are omitted.

Table 3. Statistical Arbitrage Trading Transactions

No B;?;ﬁg‘f d(;,tee:;r Buy details Siloi?}tﬁ (gf;r Sell details Return (%)

1 2015-04-08 Buy BBCA 2015-05-06 Sell BBCA -10.49%

2 2015-05-12 Buy BBCA 2015-06-18 Sell BBCA -0.72%

3 2015-06-24 Buy BBRI 2015-07-03 Sell BBRI 5.07%

4 2015-09-07 Buy BBRI 2015-08-04 Sell BBRI 0%

5 2015-11-02 Buy BBRI 2015-08-28 Sell BBRI 2.44%
57 2023-04-27 Buy BBCA 2023-03-27 Sell BBCA 3.88%
58 2023-10-25 Buy BBCA 2023-04-18 Sell BBCA 1.38%
59 2024-04-26 Buy BBCA 2024-04-24 Sell BBCA 8.74%
60 2024-09-04 Buy BBRI 2024-08-26 Sell BBRI 11.119%
61 2024-09-25 Buy BBRI 2025-03-27 Sell BBRI -23.949%

Table 3 reports the trading transactions generated by the statistical arbitrage strategy over the full evaluation
period. Each transaction record includes the corresponding buy and sell dates, the traded asset, and the realized
transaction-level return. The results indicate that the statistical arbitrage strategy generates a mix of profitable and
loss-making trades, reflecting the inherent sensitivity of threshold-based mean-reversion signals to changing
market conditions. Several transactions exhibit negative returns, particularly during periods of heightened
volatility, suggesting that fixed entry and exit thresholds may lead to suboptimal trade timing when market
dynamics deviate from stable mean-reversion behavior.

Table 4. Deep Arbitrage Trading Transactions
Sell date (year-

Buy date (year-

No month-date) Buy details month-date) Sell details Return(%)
1 2015-04-06 Buy BBCA 2015-08-28 Sell BBCA 0.26%
2 2015-09-02 Buy BBRI 2015-09-14 Sell BBRI 12.59%
3 2015-09-17 Buy BBCA 2015-09-21 Sell BBCA 2.949%
4 2015-10-21 Buy BBCA 2015-10-28 Sell BBCA -2.07%
5 2015-10-30 Buy BBRI 2015-12-22 Sell BBRI 15.22%

33 2022-11-3 Buy BBCA 2023-01-02 Sell BBCA 0.15%

34 2023-01-12 Buy BBRI 2023-09-08 Sell BBRI 13.13%

35 2023-09-12 Buy BBCA 2023-09-18 Sell BBCA -0.28%

36 2023-09-25 Buy BBCA 2024-03-01 Sell BBCA 10.86%

37 2024-03-18 Buy BBRI 2024-08-02 Sell BBRI 10.58%

Table 4 presents the trading transactions generated by the LSTM-based deep arbitrage strategy over the
same evaluation period. Similar to Table 3, each transaction reports the buy and sell dates, traded asset, and
realized transaction-level return. Compared to the statistical arbitrage strategy, the deep arbitrage approach
executes fewer trading transactions while exhibiting a lower proportion of loss-making trades. This pattern
suggests that the LSTM model applies more selective entry and exit decisions, potentially filtering out weaker
arbitrage signals and reducing exposure to unfavorable market movements[19], [20].

Tables 3 and 4 provide a comparative overview of transaction-level performance between the statistical
arbitrage and LSTM-based deep arbitrage strategies[23], [24]. While the statistical arbitrage approach generates
a larger number of trading transactions, it also records a higher incidence of loss-making trades. In contrast, the
deep arbitrage strategy executes fewer but more selective trades, resulting in a lower proportion of negative returns
at the transaction level.

This contrast indicates a fundamental difference in trading behavior between the two approaches. The
statistical arbitrage strategy reacts more frequently to deviations in the spread, which increases trading
opportunities but also exposes the portfolio to higher noise and short-term market fluctuations[5], [10].
Conversely, the LSTM-based strategy appears to prioritize signal quality over trading frequency, leading to fewer
entries but mmproved trade-level outcomes. These findings suggest that differences in overall portfolio
performance are driven not only by return magnitude, but also by trade selectivity and timing efficiency.
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Discussion
The discussion extends beyond restating numerical results by interpreting the underlying mechanisms that
drive the observed performance differences between statistical arbitrage and LSTM-based deep arbitrage
strategies.
1. Trading Frequency and Return Efficiency
Although the LSTM-based deep arbitrage strategy generates fewer trades compared to the traditional
statistical arbitrage approach, it achieves substantially higher cumulative portfolio returns. This result
suggests that the LSTM model does not merely increase trading activity, but rather improves trade
selectivity[3]. By learning temporal dependencies and nonlinear patterns in the spread dynamics, the
LSTM model is able to filter out low-quality mean-reversion signals and concentrate capital allocation
on high-confidence opportunities. In contrast, the threshold-based statistical arbitrage strategy reacts
mechanically to spread deviations, which may result in more frequent but less profitable trades,
particularly during periods of elevated market noise.
2. Performance Across Volatility Regimes
The two strategies also exhibit distinct performance characteristics across volatility regimes. Statistical
arbitrage performs relatively well during stable, low-volatility periods when mean-reversion assumptions
hold consistently. However, its performance deteriorates during high-volatility or regime-shift periods,
where fixed thresholds may trigger premature entries or delayed exits. In contrast, the LSTM-based
strategy demonstrates greater adaptability during volatile market conditions, as it dynamically adjusts to
evolving spread behavior learned from historical sequences[25]. This adaptive capability enables the
LSTM model to avoid unfavorable trades during extreme volatility, contributing to its higher risk-
adjusted performance.
3. Sensitivity Analysis and Robustness
To assess robustness, sensitivity analyses were conducted using alternative sample periods and varying
threshold parameter configurations. Specifically, the evaluation window was shifted across subperiods
representing pre-pandemic, pandemic, and post-pandemic market conditions, and threshold
parameters were adjusted within reasonable ranges around their baseline values. Across these
variations, the relative performance ranking between the two strategies remained unchanged, with deep
arbitrage consistently outperforming statistical arbitrage[26]. While absolute portfolio return levels
varied across configurations, the qualitative conclusions were stable, indicating that the results are not
driven by a particular time window or parameter choice.
4.  Interpretation of Sharpe Ratios
While a Sharpe ratio above one 1s often cited as a practical benchmark for favorable risk-adjusted
performance, its interpretation depends critically on the return distribution and evaluation horizon. In
this study, Sharpe ratios are computed using daily returns over a multi-year out-of-sample period, which
mitigates small-sample distortions[7]. The substantially higher Sharpe ratio achieved by the LSTM-
based strategy therefore reflects not only higher average returns, but also mmproved volatility
management. Conversely, the lower Sharpe ratio observed for the statistical arbitrage strategy indicates
that its higher return volatility offsets its profitability, particularly during unstable market phases.
5. Implications and Limitations
Opverall, the findings indicate that deep arbitrage methods based on LSTM models offer superior
efficiency in identifying profitable arbitrage opportunities under long-only constraints in emerging
markets such as Indonesia. However, this performance advantage comes at the cost of increased model
complexity and reduced interpretability. Moreover, the reliance on daily data limits the model’s
responsiveness to intraday dynamics, suggesting potential extensions using higher-frequency data.
These considerations highlight the trade-off between model adaptability and simplicity, which should
be carefully weighed in practical implementations.

4. CONCLUSION

This study empirically compared traditional cointegration-based statistical arbitrage and LSTM-based deep
arbitrage strategies in the Indonesian stock market under realistic long-only trading constraints. Using daily closing
price data from April 6, 2015 to April 6, 2025, the analysis was conducted within a strictly chronological evaluation
framework to ensure a genuine out-of-sample assessment. All model estimation, parameter optimization, and
LSTM training were performed exclusively on the in-sample period (April 6, 2015-August 31, 2021), while
portfolio performance was evaluated solely on the out-of-sample period (September 1, 2021-April 6, 2025). This
design eliminates look-ahead bias and ensures that all reported results reflect forward-looking trading
performance. The empirical results demonstrate that both statistical arbitrage and LSTM-based deep arbitrage
strategies are applicable in the Indonesian stock market context. However, the deep arbitrage strategy consistently
outperforms the traditional approach in terms of cumulative portfolio return and risk-adjusted performance, as
measured by the Sharpe ratio. Although the LSTM-based strategy executes fewer trades, it achieves higher
profitability by exhibiting greater trade selectivity and improved timing efficiency. These findings indicate that
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superior performance is driven not by increased trading frequency, but by the ability to filter noisy signals and
adapt to evolving market conditions.

From an applied mathematics perspective, this study highlights the benefits of integrating classical
econometric techniques such as cointegration testing, volatility modeling via GARCH, and threshold-based
trading rules with modern deep learning methods. The volatility-adjusted spread construction and rolling-window
LSTM framework allow the deep arbitrage model to adapt across different market regimes, resulting in more
stable out-of-sample performance. Sensitivity analyses further confirm that the relative performance advantage of
deep arbitrage 1s robust across alternative sample periods and parameter configurations. Despite these
contributions, several limitations should be acknowledged. The analysis focuses on a single highly correlated and
cointegrated stock pair, which constrains the generalizability of the results. In addition, the use of daily data limits
the model’s ability to capture intraday dynamics. Future research may extend this framework by evaluating
multiple stock pairs simultaneously, Incorporating transaction cost heterogeneity, or applying the proposed
methodology to higher-frequency data. Overall, this study provides evidence that LSTM-based deep arbitrage
offers a more efficient and robust approach to exploiting mean-reversion opportunities in emerging markets
under realistic trading constraints. By clearly defining a clean evaluation design and combining applied
mathematical modeling with deep learning, this research contributes to the growing literature on quantitative
arbitrage strategies in developing financial markets.
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