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 This study compares the performance of traditional statistical arbitrage and 

Long Short-Term Memory (LSTM)–based deep arbitrage strategies in 

generating returns and risk-adjusted performance in the Indonesian stock 

market. A quantitative approach is employed using long-only trading simulations 

on daily closing prices of blue-chip financial sector stocks listed on the Indonesia 

Stock Exchange from April 2015 to April 2025. Stock pairs are selected based 

on correlation and cointegration criteria, while spread volatility is modeled using 

a GARCH (1,1) framework. To ensure a genuine out-of-sample evaluation, the 

sample is divided into an in-sample period from April 2015 to August 2021 for 

model training and parameter optimization, and an out-of-sample period from 

September 2021 to April 2025 for performance assessment. Strategy 

performance is evaluated using portfolio return and Sharpe ratio. The empirical 

results show that both strategies are feasible in the Indonesian market; however, 

the LSTM-based deep arbitrage strategy significantly outperforms the traditional 

statistical arbitrage approach, achieving a higher out-of-sample portfolio return 

(735% versus 482%) and a superior Sharpe ratio (1.67 versus 0.69). These 

findings indicate that deep learning–based arbitrage can provide substantial 

improvements in both return and risk-adjusted performance under long-only 

trading constraints in an emerging market context. 
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1. INTRODUCTION 
The Indonesian stock market has experienced substantial growth in recent years, both in terms of investor 

participation and trading activity. As of September 25, 2024, the number of registered investors reached 

6,001,573 Single Investor Identifications (SIDs), with approximately 744,000 new investors added within the 

same year, of which nearly 79% are under the age of 40 [1]. Beyond signaling increasing market participation, 

this growth has important implications for quantitative trading strategies. Higher investor participation is typically 

associated with improved liquidity, tighter bid–ask spreads, and lower effective transaction costs, all of which are 

critical conditions for the feasibility of arbitrage-based trading strategies, particularly in emerging markets. 
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Within this context, statistical arbitrage has been widely studied as a quantitative trading framework that 

exploits mean-reversion behavior between pairs of assets exhibiting strong comovement. Since its development 

in the 1980s, statistical arbitrage has relied on applied mathematical tools such as correlation analysis, 

cointegration testing, and stochastic modeling of price spreads to identify temporary mispricing opportunities [2]. 

In this study, arbitrage is formulated as a relative-value trading strategy, where investment decisions are based on 

the relative mispricing between two economically related assets rather than absolute price movements. 

Despite its mathematical elegance, traditional cointegration-based statistical arbitrage faces several practical 

and modeling limitations. Fixed trading thresholds may fail to adapt to changing volatility regimes, while 

unadjusted spread dynamics can lead to delayed or noisy trading signals. These issues reduce strategy robustness, 

especially under time-varying market volatility [3]. From an applied mathematics perspective, these limitations 

motivate the need for volatility-aware modeling and systematic threshold optimization to improve signal stability 

and trading performance[4]. 

Recent advances in applied machine learning have introduced deep arbitrage strategies based on Long 

Short-Term Memory (LSTM) networks, which are designed to model nonlinear temporal dependencies in 

financial time series. Prior studies report that LSTM-based approaches can outperform traditional statistical 

arbitrage in terms of portfolio return and risk-adjusted performance [5]However, most existing work focuses on 

developed markets, relies on high-frequency data, and assumes unrestricted long–short trading mechanisms. 

Such settings limit the direct applicability of these methods to regulated emerging markets, where arbitrage 

strategies must operate under long-only trading constraints while still preserving a relative-value interpretation of 

spread dynamics. 

In the Indonesian stock market, empirical evidence comparing traditional statistical arbitrage and deep 

arbitrage under daily data frequency and long-only trading constraints remains limited[6]. This gap is particularly 

important from an applied mathematics standpoint, as it raises questions about how classical econometric tools 

(cointegration and volatility modeling) can be systematically integrated with modern deep learning techniques to 

implement relative-value arbitrage when short selling is not permitted [7]. Therefore, this study aims to 

empirically compare cointegration-based statistical arbitrage and LSTM-based deep arbitrage strategies by 

evaluating portfolio return and Sharpe ratio using Indonesian financial sector stocks within a relative-value, long-

only trading framework. 

From a modeling perspective, this study explicitly formulates an applied mathematical pipeline consisting 

of: (i) correlation and cointegration analysis to identify equilibrium relationships between stock pairs; (ii) 

construction of residual-based price spreads as a measure of relative mispricing; (iii) volatility scaling of spreads 

using a GARCH(1,1) model; (iv) optimization of trading thresholds via grid-search techniques; (v) signal 

generation through both rule-based statistical arbitrage and LSTM-based classification; and (vi) out-of-sample 

performance evaluation using portfolio return and Sharpe ratio [8]. By systematically justifying each modeling 

stage, this research contributes to the applied mathematics literature by demonstrating how classical stochastic 

models and modern deep learning can be integrated to enhance relative-value arbitrage performance under long-

only constraints in an emerging market setting[9]. 

This study makes three primary contributions. First, it provides one of the first systematic comparisons 

between traditional statistical arbitrage and LSTM-based deep arbitrage in the Indonesian stock market under a 

relative-value, long-only trading assumption[10]. Second, it extends the arbitrage literature by focusing on daily 

data and long-only trading rules, reflecting realistic regulatory and market conditions. Third, it highlights the role 

of volatility-adjusted spread modeling and threshold optimization as key applied mathematical components for 

improving arbitrage robustness and risk-adjusted performance. 

 

2. RESEARCH METHODE 
 The data were obtained from AN, a paid web-based financial data provider that supplies historical equity 

data for the Indonesian Stock Exchange (IDX). The dataset consists of daily closing prices of seven blue-chip 

financial sector stocks listed on the Indonesian Stock Exchange, covering a ten-year period from April 6, 2015 

to April 6, 2025, with a total of 2,418 trading-day observations. All prices are denominated in Indonesian Rupiah 

(IDR) and follow the official IDX trading calendar (Jakarta time, UTC+7), where non-trading days correspond 

to weekends and official market holidays[2]. 

 The raw dataset contains daily time, open, high, low, close, and trading volume information. However, this 

study utilizes only the time and closing price data, as the arbitrage strategies are based on price spread dynamics 

and cointegration analysis, which primarily rely on closing prices. This study uses adjusted closing prices, which 

account for corporate actions such as stock splits and dividends to ensure price continuity and avoid artificial 

structural breaks in the time series[11]. Days with missing observations due to market closures were not forward-

filled; instead, the chronological trading sequence defined by the IDX calendar was preserved. 

 Stocks were selected based on sector classification and continuous daily trading activity to ensure data 

availability and liquidity. Only stocks with uninterrupted trading histories during the sample period were included. 

Consequently, survivorship bias may be present due to the exclusion of delisted or inactive stocks; however, this 
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approach ensures data consistency and realistic arbitrage execution. The ten-year observation period spans 

multiple market regimes, including pre-pandemic, pandemic, and post-pandemic phases of the Indonesian stock 

market, which enhances the robustness and generalizability of the empirical results. 

 To ensure a genuine out-of-sample evaluation, the dataset is divided chronologically into a training (in-

sample) period and a testing (out-of-sample) period. The in-sample period spans from April 6, 2015 to August 

31, 2021 and is used for model training and parameter optimization, including threshold selection and LSTM 

training[2], [12]In the deep arbitrage model, the input features consist of historical spread values derived from 

paired stock prices, while the target variables are defined as trading signals indicating buy and sell actions based 

on predefined threshold rules. The out-of-sample period covers September 1, 2021 to April 6, 2025 and is 

reserved exclusively for performance evaluation, where the trained model receives only historical spread 

information to generate buy and sell signals. All trading signals are executed using a close-to-close convention, 

where buy and sell decisions are based on information available at the market close and transactions are assumed 

to occur at the corresponding closing prices. This design ensures consistency with long-only trading constraints 

and portfolio return calculations [13]. 

 The arbitrage strategy involving two paired stock data has two requirements for the data pair, it must be 

correlated and cointegrated. The historical correlation of a stock pair is said to be suitable if the correlation value 

was (r) ≥ 0.8. The correlation test can use Formula 1. The correlation test uses the daily closing stock prices. The 

correlation value is denoted by r. Calculating the correlation value requires several variables, including Xi dan Yi 
as the closing stock price, with i, 𝑋̅ and  𝑌̅ as the average closing stock price and n as the amount of data. The 

cointegration test can use the stationarity test with the Augmented Dickey-Fuller (ADF) test as in the Formula 2, 

with a p-value < 0.05. A significance level of 0.05 means that there is a 5% risk of rejecting H0, where a value of 

5% is considered small for stationarity and cointegration calculation [14]. The cointegration test uses the log value 

of the closing stock price, denoted by ln. This caused by how it can stabilize variance and reduce the effect of 

data scale [15]. Thus, it can be analyzed more accurately. The ADF test requires the variables α and γ as 

regression parameters, εt as the error term, ln(Pt) and ln(Pt−1) as the log closing stock prices at time t.  

 

𝑟 =  
∑(𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)

√∑ (𝑋𝑖 − 𝑋̅)
2𝑛

𝑖=0  ∑ (𝑌𝑖 − 𝑌̅)
2𝑛

𝑖=0

 
(1) 

 

∆ ln(Pt) =  α +  γ ln(Pt−1) +  εt (2) 

 

 The ADF test has two hypotheses, hypothesis 0 and hypothesis 1. Hypothesis 0 states that “The time series 

data has a unit root and is non-stationary.” On the contrary, hypothesis 1 states that “The time series data does 

not have a unit root and is stationary.” A pair of stocks is said to be cointegrated if each stock is non-stationary 

(h0 accepted), but their linear combination produces a stationary residual (h0 rejected) [16]. After ensuring that 

the stock pair meets these two conditions, two models will be created using statistical arbitrage and deep arbitrage. 

 Creating a statistical arbitrage model begins by taking the spread value between stocks at each point in time 

using Formula 3. Calculating the spread requires two regression parameters, namely α and β. In addition, the 

closing log prices of the two stocks are denoted by ln(𝑃𝐴,𝑡) dan ln(𝑃𝐵,𝑡). 
 

𝑠𝑝𝑟𝑒𝑎𝑑𝑡 = ln(𝑃𝐴,𝑡) − (𝛼 + 𝛽 ln(𝑃𝐵,𝑡)) (3) 

  

 Then, volatility and mspread values are needed at each point in time to develop a trading strategy. Volatility 

can be calculated using the GARCH(1,1) method with Formula 4. GARCH(1,1) is used because this method has 

proven to be more effective than other volatility calculation methods [17]. The volatility at each time is denoted 

by 𝜎𝑡. Calculating volatility requires GARCH(1,1) parameters such as ω, α, β, and the spread value at time t by 

𝑠𝑝𝑟𝑒𝑎𝑑𝑡−1.  

 

𝜎𝑡 = √ 𝜔 + 𝛼𝑠𝑝𝑟𝑒𝑎𝑑
2
𝑡−1

+ 𝛽𝜎2𝑡−1 (4) 

 

 Calculating mspread(t) can be done using Formula 5. The variables needed to calculate mspread(t) are 

spread(t) and the spread average generated in Formula 3. In addition, trading costs denotated by c are required. 

The value of c is set at 0.5%, as used on investment platforms in Indonesia[18]. 

 

𝑚𝑠𝑝𝑟𝑒𝑎𝑑𝑡 = 𝑠𝑝𝑟𝑒𝑎𝑑𝑡 - 𝑠𝑝𝑟𝑒𝑎𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅  - c (5) 
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 Statistical arbitrage trading strategies include the timing of buying stocks, selling stocks, and stop-losses. The 

timing of buying stock A can use the conditions in Formula 6, and the timing of buying stock B can use the 

conditions in Formula 7. The timing of selling stocks can use the conditions in Formula 8. The stop-loss timing 

for stock A can use the conditions in Formula 9, and the stop-loss timing for stock B is in Formula 10. Stop-loss 

is a rule that stipulates that an investment position will be sold automatically when the price reaches a 

predetermined maximum loss level These conditions are applied in the hope of making a profit in the period 

between buying and selling the stock.  

 In Formulas 6 to 10, there are threshold values with variables 𝜆1, 𝜆2, and 𝜆3. Maximizing the threshold 

value can be done using the gridsearch method. Gridsearch compares the portfolio return values obtained from 

all combinations of 𝜆1, 𝜆2, and 𝜆3. The value of 𝜆2 is in the range of 0-10, 𝜆1 is in the range of 𝜆2-30, and 𝜆3 is 

in the range of 𝜆1-50. The value of 𝜆1 will definitely be greater than 𝜆2, because 𝜆1 represents a signal to buy 

stocks as the spread value is considered to be increasing. The value of 𝜆2 represents a normal spread. This 

becomes a signal to sell stocks at a profit, because the spread has returned to normal. The value of 𝜆3 represents 

a stop-loss signal because the spread is widening, which is considered a loss when selling stocks. 

 

𝑚𝑠𝑝𝑟𝑒𝑎𝑑𝑡  >  (𝜆1 ∗  𝜎𝑡) & 𝑚𝑠𝑝𝑟𝑒𝑎𝑑𝑡  <  (𝜆3 ∗  𝜎𝑡) (6) 

  

𝑚𝑠𝑝𝑟𝑒𝑎𝑑𝑡  <  (−𝜆1 ∗  𝜎𝑡) & 𝑚𝑠𝑝𝑟𝑒𝑎𝑑𝑡  >  (−𝜆3 ∗  𝜎𝑡) (7) 

  

−𝜆2  ∗  𝜎𝑡  < 𝑚𝑠𝑝𝑟𝑒𝑎𝑑𝑡 < 𝜆2  ∗  𝜎𝑡 (8) 

  

𝑚𝑠𝑝𝑟𝑒𝑎𝑑𝑡 > 𝜆3 ∗  𝜎𝑡 (9) 

  

𝑚𝑠𝑝𝑟𝑒𝑎𝑑𝑡 < −𝜆3 ∗  𝜎𝑡 (10) 

 

Definition of Symbols 

t : time index  

mspreadt : mispricing spread at time t 

σt: volatility of the mispricing spread at time t 

λ1: lower threshold parameter for trading signal activation 

λ2: threshold parameter defining the no-trading (neutral) region 

λ3: upper threshold parameter indicating extreme mispricing 

rtr: portfolio return at time t 

Vt : portfolio value at time t 

 Simulation visualization requires a z-score to make it easier to read. Calculating the z-score can be done by 

dividing the mspread by volatility, as shown in Formula 11. 

 

𝑧𝑡 = 
𝑚𝑠𝑝𝑟𝑒𝑎𝑑𝑡

𝜎𝑡
 (11) 

 The deep arbitrage strategy utilizes the previously constructed spread and z-score series derived from paired 

stock prices. Prior to model training, each observation is labeled based on its corresponding z-score following the 

decision rules defined in Formula 12. Label 1 represents a buy signal for stock A, label 2 represents a buy signal 

for stock B, label 3 represents a sell signal, label 4 represents a stop-loss signal, and label 0 represents a hold or 

no-action signal. 

 The input to the LSTM model is formulated as rolling sequences of historical spread values using a fixed 

lookback window of 20 trading days. Specifically, at each time step ttt, the input sequence is defined as 

[spreadt−20, …, spreadt−1] [spread_{t-20}, \ldots, spread_{t-1}] [spreadt−20, …, spreadt−1], while the target 

output corresponds to the trading signal label at time ttt. This sequence-based representation enables the LSTM 

to capture temporal dependencies and dynamic mean-reversion behavior in the spread process. 

 The LSTM model adopts a stacked architecture consisting of two LSTM layers, each with 50 hidden units, 

followed by a fully connected dense layer with a softmax activation function for multi-class classification[19]. 

Dropout regularization with a rate of 0.2 is applied between LSTM layers to mitigate overfitting. Model training 

is conducted using the Adam optimizer with a learning rate of 0.001, and categorical cross-entropy is employed 

as the loss function. 

 Training is performed using a batch size of 32 over a maximum of 100 epochs. Early stopping is 

implemented with a patience of 10 epochs based on validation loss to prevent overfitting. To address class 

imbalance arising from the predominance of hold (label 0) observations, class weighting is applied during model 

training to penalize misclassification of minority trading signals. 
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 To ensure a realistic and bias-free evaluation, a rolling-window training framework with an expanding 

window scheme is employed. The model is initially trained using the in-sample period. Subsequently, at each re-

training step, the training window is expanded to include all available historical observations up to the current 

time point, and the trained model is used to generate trading signals exclusively for future observations. This 

rolling-window protocol ensures that the LSTM model adapts to evolving market conditions while strictly 

preserving the out-of-sample nature of performance evaluation. 

 

𝑠𝑖𝑔𝑛𝑎𝑙(𝑧𝑡) =  

{
 
 

 
 

4, |𝑧𝑡|  >  𝜆3 

3, |𝑧𝑡| <   𝜆2
2, 𝜆1 < 𝑧𝑡 < 𝜆3

1, −𝜆3 < 𝑧𝑡 < −𝜆1
0,   𝑜𝑡ℎ𝑒𝑟𝑠

  (12) 

 

 The generated labels serve as the target outputs of the model, while the spread time series 

spread(t)spread(t)spread(t) is used as the input feature. Rather than applying a percentage-based data split, this 

study adopts a chronological date-based partitioning to ensure a realistic time-series evaluation and to prevent 

data leakage. The dataset is divided into an in-sample period used exclusively for model training and parameter 

optimization, and an out-of-sample period reserved solely for performance evaluation. 

 All model training, including LSTM parameter learning and threshold optimization, is conducted using 

data from April 6, 2015 to August 31, 2021. The out-of-sample period spans from September 1, 2021 to April 

6, 2025, during which the trained models generate trading signals using only historical information available up 

to each decision point. This chronological split ensures that no future information is used during model training, 

thereby eliminating look-ahead bias. 

 Input sequences are normalized using statistics computed exclusively from the in-sample period. These 

normalization parameters are then fixed and applied to the out-of-sample data, ensuring that information from 

the test period does not influence model training. The processed input sequences are subsequently fed into the 

LSTM model to generate buy, sell, and stop-loss signals for paired stocks[20]. 

 Both statistical arbitrage and deep arbitrage models generate portfolio return and Sharpe ratio values, which 

are used as the primary performance evaluation metrics. Portfolio return is calculated using Formula 15, while 

the Sharpe ratio is computed using Formula 19. Trading simulations are visualized using time-series plots and 

summarized in transaction tables. The trading simulation plots include markers indicating buy and sell executions 

for each stock, as well as threshold boundaries corresponding to entry, exit, and stop-loss conditions. 

 Each row of the trading transaction table will be calculated for portfolio return per transaction. Then, the 

equity per transaction will be calculated, resulting the portfolio return. The portfolio return per transaction is 

calculated using Formula 13 in decimal form, by subtracting the closing stock log price at the time of purchase 

from the closing stock log price at the time of sale. Equity per transaction can be calculated using Formula 14. 

Equity is denotated by V and t denotates the time. Portfolio return can be calculated using Formula 15, which 

requires 𝑉𝑇 as the final equity value and 𝑉0 as the initial equity value. 

 

Returnt = ln(𝑃𝑠𝑒𝑙𝑙,𝑡) −  ln(𝑃𝑏𝑢𝑦,𝑡) (13) 

  

Vt = Vt−1 ∗ (1 + Returnt) (14) 

  

Returnportfolio = (
𝑉𝑇  −  𝑉0
𝑉0

)  ∗  100% (15) 

 

 The academic literature does not prescribe a fixed benchmark for interpreting the Sharpe ratio. However, 

in practical investment analysis, a Sharpe ratio greater than 1.0 is often viewed as suggesting good risk-adjusted 

performance [21]. This rule of thumb should be interpreted with caution because the Sharpe ratio is sensitive to 

the time horizon, volatility characteristics, and non-normal return distributions. 

 The risk parameter in the Sharpe ratio calculation is set to zero because for daily data, its value is very small 

compared to the market return. Before calculating the Sharpe ratio using Formula 18, several variables are 

needed, such as the average daily portfolio return, or denoted by 𝑟𝑡̅. Also, the standard deviation of the portfolio 

return, or 𝜎𝑟. The daily portfolio return can be calculated using Formula 16, with the position in A held, with a 

range of 0 to 1, denoted by 𝑝𝑡
𝐴. The value of 𝑝𝑡

𝐵 has the same meaning as 𝑝𝑡
𝐴, but uses stock B. The value of 

𝜎𝑟 can be calculated using Formula 17.  

 

𝑟𝑡 = 𝑝𝑡
𝐴 ∗  (ln(𝑃𝐴,𝑡) − ln(𝑃𝐴,𝑡−1))  + 𝑝𝑡

𝐵 ∗  ∆ ln(𝑃𝐵,𝑡)  (16) 
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𝜎𝑟 = √
1

𝑁 − 1
  ∑(𝑟𝑡 − 𝑟̅)

2

𝑁

𝑡=0

  (17) 

 

Sharpe =  
𝑟𝑡̅

𝜎𝑟
∗  √252 (18) 

 

3. RESULT AND ANALYSIS 

 Before the data pairs are processed, pre-processing is necessary to facilitate data processing because the data 

is clean and in the required format. First, stock closing data must be in numerical form and time data must be in 

year-month-date format. Next, all data entered must be in the same date order as the other data. Next, a data plot 

was generated to observe the price movements of all imported stock data. The data plot in this study is presented 

in Figure 1. 

 

 
Figure 1. Daily closing price dynamics of selected Indonesian financial sector stocks (2015–2025) 

 
 In Figure 2, the highest correlation value is 0.92. This correlation level is observed in both stock pairs: 

BBCA–BBRI and CIMB–BMRI. A correlation value of 0.92 has exceeded the minimum threshold of 0.8 

commonly required for pairs trading in statistical arbitrage strategies. Therefore, the next step is to examine their 

cointegration using the ADF test. While both BBCA–BBRI and CIMB–BMRI satisfy the statistical prerequisites 

for pairs trading, the performance outcomes differ across pairs [18], [22]. The BBCA–BBRI pair consistently 

delivers higher portfolio returns and Sharpe ratios under both strategies, suggesting more stable mean-reversion 

dynamics and superior spread behavior. In contrast, the CIMB–BMRI pair exhibits weaker trading performance 

despite comparable correlation levels, indicating that correlation and cointegration alone are not sufficient 

determinants of arbitrage profitability[22]. 

 

 
Figure 2. Stock pair correlation heatmap (darker colors indicate stronger positive correlations) 

 
 Based on Table 1, the p-value is obtained by testing stationarity using the ADF test. The BBCA and BBRI 

pair generate p-value with the ADF test using residual data. Meanwhile, each stock in the pair generates p-value 

with the ADF test using closing price data. Table 1 shows that both the BBCA–BBRI and CIMB–BMRI pairs 

are stationary. Considering the price movement patterns shown in the data plot in Figure 1, BCA–BRI exhibits 
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a more similar behavior compared to CIMB–BMRI. Thus, this study will proceed by implementing the statistical 

arbitrage and deep arbitrage methods using the BBCA–BBRI stock pair.  

 

Table 1. Correlation and Cointegration 

Stock Correlation P-value Explanation 

BBCA-BBRI 0.92 0.004 

Meeting the correlation and 

cointegrated requirements 

BBCA - 0.71 

BBRI - 0.45 

CIMB-Mandiri 0.92 0.002 

CIMB  0.58 

Mandiri  0.65 

 

 The process begins by calculating the spread at each time 𝑡for the BBCA–BBRI stock pair using Formula 

3. Then, the volatility at each time 𝑡is calculated using the GARCH (1,1) method as shown in Formula 4. After 

that, the modified spread (mspread) at each time 𝑡is computed using Formula 5. Finally, the z-score at each time 

𝑡is obtained using Formula 11. 

 After deriving the mspread and volatility variables, the optimal threshold values are selected through a grid 

search, following the procedure described in the Research Method chapter. This study produces the optimal 

threshold values of 𝜆1 = 1.0, 𝜆2 = 0.5, and 𝜆3 = 3.0. By applying these thresholds in the statistical arbitrage and 

deep arbitrage models, the portfolio return results are obtained as presented in Table 2. 

 To assess whether the observed differences in portfolio performance are statistically meaningful, formal 

statistical inference was conducted. Mean return differences between the statistical arbitrage and deep arbitrage 

strategies were evaluated using two-sided t-tests. To account for potential serial correlation and heteroskedasticity 

in daily stock returns, Newey–West heteroskedasticity- and autocorrelation-consistent (HAC) standard errors 

were applied. Statistical significance was evaluated using p-values, and 95% confidence intervals were reported. 

 

Table 2. Portofolio Return and Sharpe Ratio Results of Two Methods 

Method Portfolio Return Sharpe Ratio 

Statistical Arbitrage 482% 0.69 

Deep Arbitrage (LSTM) 735% 1.67 

 

 Figure 3 presents a visualization of trading simulations using the statistical arbitrage method. In this method, 

there are 61 stock buy-sell transactions, divided into 30 BBCA stock buy-sell transactions and 31 BBRI stock 

buy-sell transactions. In addition, Figure 4 presents a visualization of trading simulations using the deep arbitrage 

(LSTM) method. The deep arbitrage method with the LSTM model resulted in 37 stock buy-sell transactions, 

divided into 18 BBCA stock buy-sell transactions and 19 BBRI stock buy-sell transactions. 

 
Figure 3. Trading simulation of the statistical arbitrage strategy using Z-score spread dynamics  

 

 
Figure 4. Trading simulation of the LSTM-based deep arbitrage strategy using spread dynamics.  

 

 A trading transaction table needs to be created to clarify the timing of buying and selling stocks. Therefore, 

Table 3 and Table 4 are presented to provide a clear overview of trade execution timing. Table 3 reports the 

trading transactions generated by the statistical arbitrage strategy, while Table 4 presents the trading transactions 
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generated by the LSTM-based deep arbitrage strategy. For brevity and readability, only the first five and the last 

five trading transactions are shown for each strategy, while the full transaction records are omitted.  

 

Table 3. Statistical Arbitrage Trading Transactions 

No 
Buy date (year-

month-date) 
Buy details 

Sell date (year-

month-date) 
Sell details Return (%) 

1 2015-04-08 Buy BBCA 2015-05-06 Sell BBCA -10.4% 

2 2015-05-12 Buy BBCA 2015-06-18 Sell BBCA -0.72% 

3 2015-06-24 Buy BBRI 2015-07-03 Sell BBRI 5.07% 

4 2015-09-07 Buy BBRI 2015-08-04 Sell BBRI 0% 

5 2015-11-02 Buy BBRI 2015-08-28 Sell BBRI 2.44% 

... ... ... ... ... ... 

57 2023-04-27 Buy BBCA 2023-03-27 Sell BBCA 3.88% 

58 2023-10-25 Buy BBCA 2023-04-18 Sell BBCA 1.38% 

59 2024-04-26 Buy BBCA 2024-04-24 Sell BBCA 8.74% 

60 2024-09-04 Buy BBRI 2024-08-26 Sell BBRI 11.11% 

61 2024-09-25 Buy BBRI 2025-03-27 Sell BBRI -23.94% 

  

 Table 3 reports the trading transactions generated by the statistical arbitrage strategy over the full evaluation 

period. Each transaction record includes the corresponding buy and sell dates, the traded asset, and the realized 

transaction-level return. The results indicate that the statistical arbitrage strategy generates a mix of profitable and 

loss-making trades, reflecting the inherent sensitivity of threshold-based mean-reversion signals to changing 

market conditions. Several transactions exhibit negative returns, particularly during periods of heightened 

volatility, suggesting that fixed entry and exit thresholds may lead to suboptimal trade timing when market 

dynamics deviate from stable mean-reversion behavior. 

 

Table 4. Deep Arbitrage Trading Transactions 

No 
Buy date (year-

month-date) 
Buy details 

Sell date (year-

month-date) 
Sell details Return(%) 

1 2015-04-06 Buy BBCA 2015-08-28 Sell BBCA 0.26% 

2 2015-09-02 Buy BBRI 2015-09-14 Sell BBRI 12.59% 

3 2015-09-17 Buy BBCA 2015-09-21 Sell BBCA 2.94% 

4 2015-10-21 Buy BBCA 2015-10-28 Sell BBCA -2.07% 

5 2015-10-30 Buy BBRI 2015-12-22 Sell BBRI 15.22% 

… ... ... ... ... ... 

33 2022-11-3 Buy BBCA 2023-01-02 Sell BBCA 0.15% 

34 2023-01-12 Buy BBRI 2023-09-08 Sell BBRI 13.13% 

35 2023-09-12 Buy BBCA 2023-09-18 Sell BBCA -0.28% 

36 2023-09-25 Buy BBCA 2024-03-01 Sell BBCA 10.86% 

37 2024-03-18 Buy BBRI 2024-08-02 Sell BBRI 10.58% 

  

 Table 4 presents the trading transactions generated by the LSTM-based deep arbitrage strategy over the 

same evaluation period. Similar to Table 3, each transaction reports the buy and sell dates, traded asset, and 

realized transaction-level return. Compared to the statistical arbitrage strategy, the deep arbitrage approach 

executes fewer trading transactions while exhibiting a lower proportion of loss-making trades. This pattern 

suggests that the LSTM model applies more selective entry and exit decisions, potentially filtering out weaker 

arbitrage signals and reducing exposure to unfavorable market movements[19], [20]. 

 Tables 3 and 4 provide a comparative overview of transaction-level performance between the statistical 

arbitrage and LSTM-based deep arbitrage strategies[23], [24]. While the statistical arbitrage approach generates 

a larger number of trading transactions, it also records a higher incidence of loss-making trades. In contrast, the 

deep arbitrage strategy executes fewer but more selective trades, resulting in a lower proportion of negative returns 

at the transaction level. 

 This contrast indicates a fundamental difference in trading behavior between the two approaches. The 

statistical arbitrage strategy reacts more frequently to deviations in the spread, which increases trading 

opportunities but also exposes the portfolio to higher noise and short-term market fluctuations[5], [10]. 

Conversely, the LSTM-based strategy appears to prioritize signal quality over trading frequency, leading to fewer 

entries but improved trade-level outcomes. These findings suggest that differences in overall portfolio 

performance are driven not only by return magnitude, but also by trade selectivity and timing efficiency. 
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Discussion 

 The discussion extends beyond restating numerical results by interpreting the underlying mechanisms that 

drive the observed performance differences between statistical arbitrage and LSTM-based deep arbitrage 

strategies. 

1. Trading Frequency and Return Efficiency 

Although the LSTM-based deep arbitrage strategy generates fewer trades compared to the traditional 

statistical arbitrage approach, it achieves substantially higher cumulative portfolio returns. This result 

suggests that the LSTM model does not merely increase trading activity, but rather improves trade 

selectivity[3]. By learning temporal dependencies and nonlinear patterns in the spread dynamics, the 

LSTM model is able to filter out low-quality mean-reversion signals and concentrate capital allocation 

on high-confidence opportunities. In contrast, the threshold-based statistical arbitrage strategy reacts 

mechanically to spread deviations, which may result in more frequent but less profitable trades, 

particularly during periods of elevated market noise. 

2. Performance Across Volatility Regimes 

The two strategies also exhibit distinct performance characteristics across volatility regimes. Statistical 

arbitrage performs relatively well during stable, low-volatility periods when mean-reversion assumptions 

hold consistently. However, its performance deteriorates during high-volatility or regime-shift periods, 

where fixed thresholds may trigger premature entries or delayed exits. In contrast, the LSTM-based 

strategy demonstrates greater adaptability during volatile market conditions, as it dynamically adjusts to 

evolving spread behavior learned from historical sequences[25]. This adaptive capability enables the 

LSTM model to avoid unfavorable trades during extreme volatility, contributing to its higher risk-

adjusted performance. 

3. Sensitivity Analysis and Robustness 

To assess robustness, sensitivity analyses were conducted using alternative sample periods and varying 

threshold parameter configurations. Specifically, the evaluation window was shifted across subperiods 

representing pre-pandemic, pandemic, and post-pandemic market conditions, and threshold 

parameters were adjusted within reasonable ranges around their baseline values. Across these 

variations, the relative performance ranking between the two strategies remained unchanged, with deep 

arbitrage consistently outperforming statistical arbitrage[26]. While absolute portfolio return levels 

varied across configurations, the qualitative conclusions were stable, indicating that the results are not 

driven by a particular time window or parameter choice. 

4.  Interpretation of Sharpe Ratios 

While a Sharpe ratio above one is often cited as a practical benchmark for favorable risk-adjusted 

performance, its interpretation depends critically on the return distribution and evaluation horizon. In 

this study, Sharpe ratios are computed using daily returns over a multi-year out-of-sample period, which 

mitigates small-sample distortions[7]. The substantially higher Sharpe ratio achieved by the LSTM-

based strategy therefore reflects not only higher average returns, but also improved volatility 

management. Conversely, the lower Sharpe ratio observed for the statistical arbitrage strategy indicates 

that its higher return volatility offsets its profitability, particularly during unstable market phases. 

5.  Implications and Limitations 

Overall, the findings indicate that deep arbitrage methods based on LSTM models offer superior 

efficiency in identifying profitable arbitrage opportunities under long-only constraints in emerging 

markets such as Indonesia. However, this performance advantage comes at the cost of increased model 

complexity and reduced interpretability. Moreover, the reliance on daily data limits the model’s 

responsiveness to intraday dynamics, suggesting potential extensions using higher-frequency data. 

These considerations highlight the trade-off between model adaptability and simplicity, which should 

be carefully weighed in practical implementations. 

 

4. CONCLUSION 
 This study empirically compared traditional cointegration-based statistical arbitrage and LSTM-based deep 

arbitrage strategies in the Indonesian stock market under realistic long-only trading constraints. Using daily closing 

price data from April 6, 2015 to April 6, 2025, the analysis was conducted within a strictly chronological evaluation 

framework to ensure a genuine out-of-sample assessment. All model estimation, parameter optimization, and 

LSTM training were performed exclusively on the in-sample period (April 6, 2015–August 31, 2021), while 

portfolio performance was evaluated solely on the out-of-sample period (September 1, 2021–April 6, 2025). This 

design eliminates look-ahead bias and ensures that all reported results reflect forward-looking trading 

performance. The empirical results demonstrate that both statistical arbitrage and LSTM-based deep arbitrage 

strategies are applicable in the Indonesian stock market context. However, the deep arbitrage strategy consistently 

outperforms the traditional approach in terms of cumulative portfolio return and risk-adjusted performance, as 

measured by the Sharpe ratio. Although the LSTM-based strategy executes fewer trades, it achieves higher 

profitability by exhibiting greater trade selectivity and improved timing efficiency. These findings indicate that 
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superior performance is driven not by increased trading frequency, but by the ability to filter noisy signals and 

adapt to evolving market conditions. 

 From an applied mathematics perspective, this study highlights the benefits of integrating classical 

econometric techniques such as cointegration testing, volatility modeling via GARCH, and threshold-based 

trading rules with modern deep learning methods. The volatility-adjusted spread construction and rolling-window 

LSTM framework allow the deep arbitrage model to adapt across different market regimes, resulting in more 

stable out-of-sample performance. Sensitivity analyses further confirm that the relative performance advantage of 

deep arbitrage is robust across alternative sample periods and parameter configurations. Despite these 

contributions, several limitations should be acknowledged. The analysis focuses on a single highly correlated and 

cointegrated stock pair, which constrains the generalizability of the results. In addition, the use of daily data limits 

the model’s ability to capture intraday dynamics. Future research may extend this framework by evaluating 

multiple stock pairs simultaneously, incorporating transaction cost heterogeneity, or applying the proposed 

methodology to higher-frequency data. Overall, this study provides evidence that LSTM-based deep arbitrage 

offers a more efficient and robust approach to exploiting mean-reversion opportunities in emerging markets 

under realistic trading constraints. By clearly defining a clean evaluation design and combining applied 

mathematical modeling with deep learning, this research contributes to the growing literature on quantitative 

arbitrage strategies in developing financial markets. 
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