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1. INTRODUCTION

Increased focus on artificial intelligence has increased the introduction and use of deep learning in various
fields, including agriculture and food [1][2]. In precision agriculture, image-based vision supports monitoring and
decision-making in cultivation processes, making management more efficient [3]. In the post-harvest stage, CNN
1s widely used for quality inspection and fruit grading based on external characteristics such as color, shape, size,
ripeness level, and surface defects, making assessment results more consistent than manual inspections [4][5].

Citrus fruits such as lime (Citrus aurantifolia) and lemon (Citrus limon) are important commodities that are
widely used as beverage ingredients, culinary spices, as well as a source of vitamin C, phenolic compounds, and
other bioactive components that act as antioxidants, both in the flesh and peel of the fruit [6]. However, the
practice of quality assessment at the level of farmers, traders, and consumers is still dominated by subjective visual
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observations. This condition can cause inconsistencies in assessments, so an image-based quantitative approach
is needed to assess the quality of lime and lemon more objectively [7].

The quality and consumer acceptance of limes and lemons are strongly influenced by peel appearance,
especially the green or yellow color which reflects the level of ripeness and quality. Supply chains in agriculture
mcreasingly require quality control that runs automatically and quickly, without tampering with samples, and
remains stable despite limited labeled data [8]. In this case, the relationship between peel color and chemical
properties can be studied by extracting color features from digital imagery and analyzing patterns of their
relationship with chemical parameters, such as acidity level (pH) and vitamin C levels [9]. This approach is
mmportant because it provides a more interpretive path of analysis, 1.e. visual features are not only used for
classification, but are also used to see the tendency of visual associations with chemical content in a measurable
way.

In terms of modeling and statistical validation, the main challenge in image-based classification for fruit
quality 1s the limitation of labeled data, especially if each sample must be accompanied by chemical measurements
such as pH and vitamin C, which of course requires time and cost. Small data sizes can increase the risk of
overfitting and make performance estimates more uncertain [10][11]. Therefore, evaluation designs such as
stratified k-fold cross-validation are required to maintain the proportion of classes on each fold, and results are
reported as inter-fold summaries and confidence intervals to reflect the uncertainty of evaluation metrics in small
data [12][13].

Several previous studies have applied deep learning to classification, detection of fruit damage or disease,
or determination of ripeness in citrus fruits based on imagery [14][15]. However, a number of studies have shown
that the application of computer vision to agriculture and quality assessment, small datasets or limited data
variations, plus less comprehensive evaluation procedures, can result in performance metrics that look very high
but do not necessarily reflect generalization capabilities under real conditions. Therefore, uncertainty reporting
such as through confidence intervals on evaluation metrics needs to be included so that interpretation is more
careful and transparent [16][17]. For example, the classification study of lime and jungga lime resulted in high
validation, but the confusion matrix showed low overall accuracy of 52.9%, indicating significant misclassification
and the need for generalization strategies [18].

On the other hand, lightweight architectures such as ResNet-18 are reported to be effective on a wide range
of fruit classification tasks. As in the detection of the ripeness stage of mulberries, the ResNet-18 model was able
to achieve an accuracy of 98.65% [19]. However, success in non-citrus commodities does not automatically
guarantee similar performance in limes and lemons. In addition, the application of ResNet-18 for the recognition
of citrus, such as lime and lemon is still rare, especially in the context of correlation analysis between visual
characteristics and the chemical content of fruits, such as vitamin C and acidity levels [20]. This shows that there
1s a research gap that can be further explored using a deep learning-based approach. These mitations indicate
that there 1s a gap n applied research to develop a more objective image-based quality research framework on
the two types of images.

In addition to being lightweight, ResNet-18 1s also based on the concept of residual learning through skip
connections, which is a shortcut that connects inputs and outputs in a block. With this mechanism, the network
focuses more on learning minor corrections to features from previous stages, rather than building feature
transformations from scratch. Skip connections help keep gradient flow smooth, making optimization more
stable and reducing the risk of issues such as vanishing gradients during training [21]. This becomes especially
relevant when transfer learning is applied to small datasets, particularry when combined with robust regularization
and evaluation [22].

As an applied study to strengthen image-based citrus quality assessment under limited data conditions, this
study applies a data augmentation strategy to improve the generalization ability of the model on a relatively small
dataset. The data augmentation approach has been reported to be effective in improving image classification
performance by enriching the variety of training data. The main contribution of this study lies in the application
of transfer learning in the ResNet-18 architecture combined with data augmentation applied to the training data,
as well as evaluating the stratified k-fold scheme for the classification of lime and lemon. In addition to producing
a classification model, this study also analyzed the relationship between fruit skin color features to pH and vitamin
C using Spearman correlation, as this approach is suitable for small data and relationships that are not always
linear.

Thus, this research is directed by the following research questions:

RQI1: How stable is the performance of ResNetNet-18 based lime and lemon classification on limited data
when augmented and evaluated with stratified k-fold cross-validation?

RQ2: To what extent does data augmentation help improve the generalization capabilities of the model?

RQ3: Do fruit skin color features show a meaningful relationship with pH and vitamin C based on
Spearman correlations?

Z.ero: Jurnal Sains, Matematika dan Terapan


http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&

Zero: Jurnal Sains, Matematika dan Terapan O 1111

2. RESEARCH METHOD

This study adopts a deep learning-based computational approach, which focuses on the classification of
citrus images using the ResNet-18 architecture and describes the pattern of the relationship between fruit peel
color and pH and vitamin C levels. The entire image processing process, ResNet-18 model training, and model
performance evaluation were performed on CPU-based Google Colab using Python with the PyTorch library.

The series of research stages is shown in Figure 1. The workflow starts with dataset collection, followed by
mmage pre-processing. Next, the data are partitioned using stratified k-fold cross-validation into training and
validation sets. Data augmentation is applied only to the train set, and the augmented data are used to trin the
ResNet-18 model. The trained model 1s then assessed through model evaluation on the validation set. Finally,
the study continues with peel color feature and citrus chemistry analysis, and the relationship between color
features, pH, and vitamin C is examined using Spearman correlation with a 95% confidence iterval (CI).

i . Stratified K-Fold Train Dataset
Dataset Collection Pre-processing Solit Augmentation
= Validation

A 4
Spearman Correlation Color Features and ] : [ Model Evaluation Training Model
Analysis and Cl 95% Citrus Chemistry ResNet-18

Figure 1. Research Flow

2.1 Dataset Collection

The dataset used n this study consisted of two classes of citrus fruits, namely lime and lemon, with a total
of 80 images, with 40 images per class. Fruit samples were purchased at Mayong Market and roadside shophouses
in Jepara and were randomly selected from the fruits available at the time of purchase with inclusion criteria
including ro not, no excessive abrasion, and varying fruit sizes. Lime cultivar information was not recorded,
whereas the lemon used was a California lemon with grade A. Therefore, the generalization coverage mainly
represented the lime fruit in circulation at the location and time of data collection.

Each sample is represented by one digital image and two chemical parameters, namely pH and vitamin C
levels. The image collection process was carried out in one data collection session using the iPhone 15 camera
in Portrait mode, with natural ighting and exposure compensation setting of —1 to maintain relatively uniform
lighting conditions. To minimize acquisition variations that may affect color values and classification performance,
shooting was done with a consistent black background and the fruit position and camera angles are made uniform.

After the shooting process, fruit water extract was taken from each fruit for pH measurement and vitamin
C analysis. pH values were measured using a pH meter that was calibrated before measurement with a standard
buffer solution through a two-three point calibration, namely a pH buffer of 7.00 as the starting point, followed
by a pH bulffer of 4.00 or pH 10.00 untl the reading was stable and in accordance with the buffer value. Each
sample 1s measured 2-3 times and the recorded values were stable results, 1.e. when repeated measurements
produce the same values. Vitamin C levels were calculated using the iodometric titration method with duplicate
measurements, then the titrant volume was averaged for the calculation of vitamin C levels. Therefore, the
interpretation of the relationship was carried out with caution and accompanied by a summary of the basic
variations in pH and vitamin C in each class shown in Table 1.

Table 1. Descriptive Statistics of pH and Vitamin C per Class

Class Chemical Parameters Mean SD Min Max
Lime pH 2.067500  0.840143  1.200000  4.400000
Vitamin C (%) 0.884326  0.011553  0.868442  0.925000
Lemon pH 1.782500  0.448294  1.400000  3.700000
Vitamin C (%) 1.320678  0.007539  1.307822  1.3369943

2.2 Pre-processing

The image is processed deterministically through resizing to 256x256 pixels, then center-cropping to
224x224 pixels. The 1image 1s then normalized using ImageNet normalization parameters and converted into a
PyTorch tensor using ToTensorV2, so that all data has a consistent input scale and formatbefore entering the
model training and evaluation stage.

2.8 Stratified K-Fold Split
The performance evaluation of ResNet-18 was carried out by utilizing a stratified k-fold scheme with k=5,
so that the number of lime and lemon images remained balanced in each fold. All datasets containing N images
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are divided into k parts of almost equal size, and at each fold the proportions of the two classes are maintained
to be close to the mitial distribution. In general, the amount of training data and validation data in a round of k-
fold can be expressed as follows [23].

N
Ntrain =N-— K 1)

N
NVal = E @

From the total data used N = 80 images, each fold obtained 64 training data and 16 validation data, with a
balanced proportion between the lime and lemon classes in each fold.

The selection of k=5 was used to maintain a compromise of bias and variance in the condition of a small
dataset. If k 1s too large, then the validation size per fold becomes very small, so the evaluation metric can easily
fluctuate because a few prediction errors alone can change the accuracy value significantly. This approach
prevents class imbalance and allows each image to play a role alternately as training data and validation data [24].

2.4 Dataset Augmentation

Data augmentation is used as a structured process to reproduce and enrich training images by forming new
variations of the same image through a series of transformations, without changing their meaning or label [25][26].
In this study, a data augmentation scheme was used, namely the application of random crop transformation,
horizontal flip, rotation, color jitter, and Gaussian noise that were randomly selected on the image only on the
training data. Data augmentation is only applied to the training data in each fold that is selected for classification
using the Albumentations library in Python. Data augmentation 1s not applied to images extracted using skin tone
features to keep the scale representative of the original image condition.

A summary of the transformation types and key parameters 1s presented in Table 2. This table contains the
crop size, the angle range of rotation, and the probability of applying each transform used to the training data.

Table 2. Data Augmentation Parameters

Transformation Parameters
Random crop 224 x 224 pixels
Horizontal flip 0.5
Rotation +20° (p=10.5)
Color jitter Brightness = 0.3, contrast = 0.3, saturation = 0.2, hue = 0.05
Gaussian noise Var limit = (10, 50), p=0.3

2.5 ResNet-18 Architecture

In this study, the citrus image classification model was built using the ResNet-18 architecture. The model is
mitialized with the ImageNet pretrained weights, which are IMAGENET1K_V1. ResNet-18 applies the concept
of residual learning with skip connections, so that the network does not directly learn the mapping of H (x), but
learns the residual function of F(x) against input x which 1s defined as follows [27].

F(x) = H(x) — x 3)
The output of the residual block is obtained by adding the residual function to the initial input, 1.e.
y=F(x) +x (4)

The ResNet-18 backbone structure is composed of an initial layer of convolution and max pooling, followed
by four stages of residual blocks, then global average pooling to produce a 512-dimensional feature vector. In the
mmplementation of this study, the fully connected layer of ResNet-18 was changed to Identity so that the backbone
functions as a feature extractor. The classification was carried out using a classifier head measuring 512—256—2
equipped with a p = 0.5 dropout to suppress overfitting in small datasets.

The training process was optimized using AdamW with weight decay = 1 X 10™*, and batch size 16. The
loss function used was cross-entropy loss with label smoothing of 0.15. In addition, to increase regularization
under limited data, training is conducted up to a maximum of 15 epochs on each fold, with the application of
early stopping based on validation performance to stop training when no meaningful improvements occur.
Training stability is also maintained using gradient clipping with a limit of max_norm=1.0. The best model on
each fold 1s stored based on the minimum validation loss. The final output of the model is in the form of logits
for two classes, while the probabilistic activation function is not explicitly defined because it has been
accommodated n the cross-entropy scheme during training.

Figure 2 shows the standard structure of ResNet-18 as an illustration. The main adjustment in the
implementation of this study 1s the replacement of the fully connected layer with Identity and the use of classifier
heads with dropout to produce two classes.
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Figure 2. Structure of ResNet-18

2.6 Model Evaluation
The performance of the model was evaluated in several metrics derived from the confusion matrix, namely
accuracy, precision, recall, and Fl-score [28][29]. The confusion matrix presents four main components:
1. True Positive (TP) : The actual number of images includes a positive class and 1s predicted as a positive
class by the model.
2. True Negative (TN): The actual number of images includes a negative class and is predicted as a negative
class by the model.
3. False Positive (FP) : The number of images is actually a negative class but 1s predicted to be a positive
class.
4. False Negative (FN) : The number of images that are actually a positive class but predicted to be a negative
class.
Accuracy 1s calculated as the percentage of the number of correctly classified images against all
mmages in the fold, namely: %)
A _ TP+ TN 100% ‘
Ay = TP ¥ TN+ FP+ FN « 7
Precision is used to measure how much a model's positive predictions are correct, and is defined
as follows.

_— TP (6)
recision = ——
TP + FP
Recall is also called sensitivity or true positive rate which functions to measure how many positive
samples are successfully recognized by the model, defined as follows. 7
Recall v
ecall = ——
TP + FN

To balance the trade-off between precision and recall, Fl-score is used, which is the harmonic
average of the two.
Precision - Recall

F1-S =2
core Precision + Recall

2.7 The Relationship of Fruit Peel Color Features to Fruit Chemical Content

Analysis of the pattern of relationship between fruit color features and citrus chemical content was carried
out by combining information from digital images and laboratory measurement results. For each sample, the
image 1s processed so that the color features are calculated only from the area of the fruit peel. The skin area in
the 1mage 1s cropped first and segmented to separate the skin covering from the background. Then the pixel
values on the fruit skin area are extracted to obtain average color features.
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a. RGB

In the RGB color space, each pixel in the fruit peel area is represented by three intensity channels, namely
red (R), green (G), and blue (B). To illustrate the tendency of yellow hue in citrus peel, the Normalized Difference
Yellowness Index (NDYI) is used, which 1s a yellowness index based on the normalized difference between
channels G and B, which is expressed in the equation (9) [30].

6B o)
INpyr = G+B ‘

The greater value of Iypy; indicates the dominance of the green-yellow component compared to blue, thus

indicating a yellowish-looking fruit peel.

b. CIELab

The fruit peel image was also converted to the CIELab color space to obtain a more perceptually uniform
color description. The conversion process is carried out in two stages, namely the pixel value in the RGB image
(sRGB) i1s first transformed to CIEXYZ using a standard transformation with D65 illuminant, then the CIEXYZ
value 1s converted to CIELab.

The pixel value of the image is converted to the CIELab coordinates using the standard transformation
from CIEXYZ to CIELab. For each pixel, three components are obtained, namely L*, a*, and b*, which
represent brightness, green-red axis, and blue-yellow axis, respectively [31]. The value of the feature used is the
average value in the area of the fruit peel, 1.c.

L= 116f<Y1n> —16 (10)
a® = 500 <f(X£) - f(Yl)) (a1
b* = 200 (f(Yl) - f<Z£)) (12

with X, Y, Z expressing the CIEXYZ tristimulus value of the pixel and Xn, Yn, and Zn 1s the reference
white dot tristimulus value ((lluminant D65). The nonlinear function f(t) follows the CIELab standard definition,
Le.
t1/3, t > 0.008856
f(t) = 16 (13)
7,787t + 116 t < 0.008856
Next, the values of L.*, a*, and b” are averaged on the pixels of the fruit peel area to obtain the CIELab
color features.

2.8 Spearman Correlation Analysis and 95% Confidence Interval

To assess the relationship between chemical parameters, 1.e. pH with vitamin C and skin tone features, such
as NDYI and CIELab, Spearman correlation is used because this model 1s rank-based so it is safer to use when
the relationship does not have to be linear and the distribution of data does not have to be normal.

Suppose there are data pairs (x;, y;) for i = 1, 2, ..., n. value ,x-1. and ,y-1. first changed to R(x;) dan R(y;)
ratings. Spearman coefficient, p-s. calculated as a Pearson correlation on the ranking data [32]:

?zl(Rx,i - Ex)(Ry,i - Ey)

(B Rei = R? [SLi Ry~ Ry)?

Furthermore, in addition to reporting the value of p; and p-value, the study also reported a 95% CI for pg
using a bootstrap approach because the sample size is relatively small and CI analytics for rank-based correlation
1s not always simple.

Ps = corr(Rx, Ry) =

(14)

The step 1s to resample in pairs (x;, ;) B times. On each bootstrap sample b, it is calculated pgb). The CI
of 95% 1s then taken from the 2.5% quartile and 97.5% from the distribution {ps(l), ) pS(B)} [33]:
Closy, (ps) = [Qo.025(Ps), Qo.975(ps)] (15)

3. RESULT AND ANALYSIS

In this study, the results discussed were the performance of ResNet-18 in classifying citrus images as well as
the pattern of the relationship between the color of the fruit skin and the pH and levels of vitamin C. The model
performance was summarized through the accuracy of each fold, the combined confusion matrix, as well as the
loss and accuracy graphs during training and validation. Visualization of the relationship between RGB and
CIELab-based color features is presented to illustrate the pattern trends in the dataset.
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Given the small size of the dataset and relatively controlled image acquisition conditions, very high metrics
need to be interpreted carefully as they have the potential to contain optimistic bias. Therefore, in addition to
the average value, stability is evaluated through inter-fold variations in the 5-fold stratified scheme, as well as the
combined validation predictions across all folds.

3.1. Model Evaluation

This subsection presents the results of the evaluation applied to ResNet-18 which includes the accuracy of
each fold, the combined confusion matrix, as well as the loss and accuracy graphs during training and validation.
The 5-fold division is made at the image level, based on img_path and labels. Because each fruit is represented
with one image, the split level of the image and the level of the fruit are the same in this study.
3.1.1 Accuracy of each Fold, Classification Report, and Confusion Matrix

A summary of the validation accuracy for each fold is shown in the Table 3.

Table 3. Model Accuracy of each fold

Fold Accuracy
1 0.9375
2 1.0000
3 1.0000
4 1.0000
5 1.0000

Based on Table 3, an average accuracy of 0.9875 or 98.75% was obtained. The value between the folds 1s
quite stable as most folds reach 1.0000, but there is still one fold lower, which 1s 0.9375. This indicates that there
are still samples that are more difficult to process so that the potential for prediction errors remains, in small
datasets the results can still change depending on the data division.

In addition to the average per-fold accuracy, the quality of the model predictions in each class was also
evaluated 1n the classification report. A summary of precision, recall, and f1-score values for the lime and lemon
classes 1s presented in Table 4.

Table 4. Classification Report

Class Precision Recall F1-Score
Lime 1.00 0.97 0.99
Lemon 0.98 1.00 0.99

Table 4 shows that the ResNet-18 model performed very well in both citrus classes, with precision and recall
close to 1.00, and an F1-Score of 0.99 for lime and lemon. This value indicates that the prediction error 1s
relatively small and that the model is able to distinguish between lime and lemon consistently. To see the number
of true and false predictions clearly, the validation results of all the folds are combined into the combined
confusion matrix shown in Figure 3. Predictions are taken from the best models on each fold.

Confusion Matrix - K-Fold Validation (All Folds)

35

- 30

Jeruk Mipis

=23

-20

True Label

-15

Lemon

|
Jeruk Nipis Lemon
Predicted Label

Figure 8. Confusion Matrix
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Aa shown n Figure 3, out of 40 images of limes, 39 images were correctly classified as lime and only 1
image was incorrectly identified as lemon. Meanwhile, 40 lemon images were successfully classified as lemons.
These results show that the model provides very consistent predictions for the lemon class, whereas in the lime
class there 1s still a slight overlap of visual features that can trigger misclassification in a small portion of the data.

To assess the stability of the evaluation results, the metrics were summarized with a 95% confidence interval
(CI) based on inter-fold variation. This 95% CI is calculated from 5 fold values using the t-interval method on the
average of the metric between folds, so this CI 1s approximate and mainly accounts for variations due to fold
splits. The average accuracy of 98.759% has a 95% CI of 95.28% to 100%. A weighted precision of 98.89% has a
95% confidence interval of 95.809% to 100%, a weighted recall of 98.75% has a 95% confidence interval of 95.28%
to 1009, and a weighted Fl-score of 98.75% has a 95% confidence interval of 95.26% to 100%. In general, this
summary indicates that the results tend to be consistent across different data divisions, although the amount of
data used 1s still limited.

3.1.2  Loss and Accuracy Charts

The development of loss and accuracy during training and validation 1s visible in the Figure 4.

Mean Loss during K-Feld Training Mean Accuracy during K-Fold Training
10

— —— Mean Train Loss
0.70 Mean val Loss

nas s+

L)
—

o s =t
[ s \/ - '/,-’ ——— e
8 E
3 . — -
.50 5 o7
0.a%
a6
048 )
0.35 4 —s— Mean Irain Accuracy
05 - Mean Val Accuracy
i a ] u il 1 14 2 ] b u B0 12 14
Cpach Cooch

Figure 4. Loss and Accuracy Graph in Training and Validation

This shows that after a few initial iterations the model 1s already able to separate classes quite well. The
accuracy graph shows the accuracy of the training rising gradually, while the accuracy of the validation jumps
sharply to very high values and then forms an almost horizontal pattern. The combination of reduced losses and
mcreased accuracy, especially on the validation curve, showed that on average, across all k-folds, the model
managed to learn the high classification performance on the validation data. The training is controlled using early
stopping based on validation loss, and the best model per fold 1s stored at the minimum validation loss to be used
in the evaluation of the fold. This mechanism can curtail the risk of training continuing past the optimum point
that often occurs in small datasets.

Although the validation accuracy looks very good, the size of the dataset in this study 1s relatively small
compared to the capacity of the CNN model used. Therefore, there is a risk that the model partially adapts to
the specific characteristics of the dataset, such as uniform shooting conditions, camera settings, background, and
shooting angles. As a result, the high performance of the dataset does not necessarily fully persist when applied
to new citrus images taken under different conditions.

The 5-fold stratified scheme and augmentation on the training data help to increase resilience in the dataset,
but they have not been able to replace the need for external testing using independent data from different sessions,
devices, and lighting.

3.2. Data Augmentation on Model Performance

This study applied data augmentation to training data in each fold in the form of random crop, horizontal
flip, rotation, color jitter, and Gaussian noise. This transformation enriches the variance of the training data so
that the training model deals with changes in angle, scale, and visual variation that may arise when the size of the
dataset 1s imited. Thus, augmentation acts as a data-driven regularization strategy to help reduce overfitting and
increase model resilience in small sample regimes.

Previous studies have also reported high performance on fruit classification using ResNet-18, including on
different objects and scenarios. However, due to differences in fruit types, acquisition conditions, and evaluation
protocols, the results between studies cannot be directly compared and are not intended to assert superiority. In
this study, high internal validation results showed that augmentation can support learning on small datasets, but
external tests using independent data are still needed to ensure performance stability under different imaging
conditions.
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3.3. Visual Relationship Pattern of Fruit Peel Color with Fruit Chemical Content

This section analyzes the relationship between pH and vitamin C levels as a percentage (%) with fruit peel
color features extracted from RGB and CIELab to elucidate the relationship between wvisual signals and the
chemical properties of fruits.

Since all images were captured under natural light, ambient illumination changes such as cloud cover and
time-of-day differences may shift the recorded peel color and affect the extracted NDYI and CIELab features.
Therefore, the interpretation of color-chemistry trends 1s limited to the current acquisition setting, and future
work should include explicit illumination or color normalization and additional data under more diverse lighting
conditions.

3.3.1 Visual Pattern of the Relationship of Lime Peel Color to pH and Vitamin C
The visual pattern of the relationship between the color of the lime peel and the pH and vitamin C levels
can be seen in Figure 5 and Figure 6.
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Figure 5. Visual Pattern of the Relationship Between Lime Peel Color Features and pH

In general, the scattering of points at pH vs NDYI and pH vs b”™ shows a tendency to increase as the pH
increases, so that the higher the pH of the peel, the yellower it appears, although the distribution of data is still
wide enough that the pattern formed 1s not completely linear. At pH vs L*, the dots appear to spread out without
a consistent direction of change. Meanwhile, in pH vs a*, there 1s a tendency to change to more negative values
mn some pH ranges, but in this pattern it 1s also not strong and still shows large variations between samples.

To strengthen the visual interpretation, the relationship between pH and color features was also
quantitatively tested using the Spearman correlation test, and the uncertainty of the correlation coefficient was
reported with a CI of 95%. The results of the correlation test are presented in Table 5.

Table 5. Spearman pH Correlation to Lime Peel Color Features

Variable Pairs p Spearman p-value CI 95%

pH vs NDYI 0.4522 0.0034 (0.1537, 0.6607)
pHvs L* -0.0676 0.6784 (-0.3491, 0.2252)
pH vs a” -0.3332 0.03857 (-0.5863, -0.0321)
pHvs b” 0.4044 0.0097 (0.1105, 0.6251)

Based on Table 5, pH has a significant positive relationship with NDYT with (p=0.4522, p=0.0034) and b*
(p=0.4044, p=0.0097). In magnitude, these two indicate a medium relationship, a CI of 95% which 1s entirely
positive reinforcing that the direction of the relationship is consistent. That is, in limes, the increase in pH tends
to be related to an increase in the yellowness index and the yellow component of the CIELab, although the
pattern in the scatter plot is still spreading.

In contrast, the pH relationship with L.* was not significant (p = 0.6784) and the CI was 95% across zero,
so the brightness of the lime peel did not show a consistent affinity with pH in this dataset. For component a*, a
significant negative relationship (p = -0.3332, p = 0.0357) with small to medium magnitude and a 95% CI was
entirely negative (-0.5863 to -0.0321). This shows that in some samples, an increase in pH tends to be followed
by a decrease in a* or more negative values, 1.e. a shift in hue that 1s more towards green in some samples.
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Figure 6. Visual Pattern of the Relationship Between Lime Peel Color Features and Vitamin C (%)

Figure 6 shows that higher vitamin C levels tend to appear in skin with relatively larger NDYT and b*, so
samples with slightly higher vitamin C levels are generally in areas of a stronger yellow hue, although the pattern
1s still weak due to the narrow range of vitamin C levels. However, the dot distribution on the graph of vitamin C
vs L™ levels and vitamin C vs a* levels does not form a consistent direction of change, making it less informative
to distinguish small variations in vitamin C levels.

To reinforce such visual interpretations, the relationship between vitamin C levels and color features was
also quantitatively tested using the Spearman correlation test, and the uncertainty of the correlation coefficient
was reported with a CI of 95%. The results of the correlation test are presented in Table 6.

Table 6. Spearman's Correlation of Vitamin C Levels to Lime Peel Color Features

Variable Pairs P Spearman p-value CI 95%
Vitamin C vs NDYI 0.1355 0.4044 (-0.2039, 0.4667)
Vitamin C vs L* -0.0520 0.7499 (-0.3841, 0.2907)
Vitamin C vs a* -0.0968 0.5525 (-0.4329, 0.2600)
Vitamin C vs b* 0.1103 0.4980 (-0.2359, 0.4494)

Based on Table 6, the entire correlation between vitamin C levels and color features in Iime had a small
coefficient with a p value of < 0.20 and insignificant at a p-value of > 0.05. The CI value of 95% on all variable
pairs also crosses zero, so the direction of the relationship cannot be said to be consistent. However, the
relationship between vitamin C and NDYT and the CIELab component is very weak, and the apparent tendency
to scatter plots has not been supported by strong statistical evidence. This condition 1s likely affected by a narrow

range of vitamin C and a wide variety of samples.

3.3.2 Visual Pattern of the Relationship of Lemon Peel Color to pH and Vitamin C Levels

A visual pattern of the relationship between lemon peel color and pH and vitamin C levels can be seen in

Figure 7 and Figure 8.
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Figure 7. Visual Pattern of the Relationship Between Lemon Peel Color Features and pH

In Figure 7, the dot distribution on the pH vs NDYI and pH vs b* graphs shows that most of the points are
at relatively high values in almost the entire pH range, so the color of the lemon peel tends to be predominantly
yellow and no obvious change is seen when the pH value changes. At pH vs L, it can be seen that the tendency
of L* decreases slightly at higher pH so that the fruit appears somewhat darker, although the dot distribution 1s
still quite wide. For pH vs a*, the a® value generally remained negative in some samples, indicating a
predominance of green hue and only shifting slightly even when pH increased.

To reinforce such visual mnterpretations, the relationship between pH and color features was also
quantitatively tested using the Spearman correlation test, and the uncertainty of the correlation coefficient was
reported with a CI of 95%. The results of the correlation test are presented in Table 7.

Table 7. Spearman pH Correlation to Lemon Peel Color Feature

Variable Pairs P Spearman p-value CI 95%

pH vs NDYI -0.0544 0.7388 (-0.3831, 0.2758)
pHvs L* -0.3494 0.0271 (-0.6518, -0.0012)
pH vs a* -0.3689 0.0191 (-0.6082, -0.0702)
pH vs b” -0.1489 0.3591 (-0.4716, 0.1887)

Based on Table 7, pH was not significantly related to NDYT or b* because the p-value > 0.05 and CI 95%
both crossed zero, so the pH change in lemons did not show a consistent shift in the yellowish index. In contrast,
pH was significantly negatively correlated with L™ (p = -0.3494, p = 0.0271, CI 95% = -0.6518 to -0.0012) and
a*(p = -0.3689, p =0.0191, CI 95% = -0.6082 to -0.0702). In magnitude, these two relationships are small to
moderate, indicating that an increase in pH values tends to be followed by a decrease in LL* and a decrease in a*
value in some samples. However, because the distribution of points on the graph 1s still quite wide and there are
some deviating points, the interpretation of this relationship is still done carefully.
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Figure 8. Visual Pattern of the Relationship Between Lemon Peel Color Features and Vitamin C (%)
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Figure 8 shows that the graph of vitamin C vs NDYT and vitamin C vs b* 1s spread over a fairly wide range
of values with no clear direction of change. Some samples had high NDYT and b* values, but their appearance
was inconsistent with increased vitamin C, so the resulting visual patterns tended to be weak. On the graph,
vitamin C vs L™ and vitamin C vs a* are in the medium to high brightness range without a consistent trend, so
they do not provide strong information about the variation of vitamin C in lemons.

To reinforce such visual interpretations, the relationship between vitamin C levels and color features was
also quantitatively tested using the Spearman correlation test, and the uncertainty of the correlation coethicient
was reported with a CI of 95%. The results of the correlation test are presented in Table 8.

Table 8. Spearman's Correlation of Vitamin C Levels to Lemon Peel Color Features

Variable Pairs P Spearman p-value CI 95%
Vitamin C vs NDYI -0.1008 0.5361 (-0.3973, 0.2037)
Vitamin C vs L* 0.0440 0.7877 (-0.2782, 0.3559)
Vitamin C vs a* 0.1037 0.5243 (-0.2291, 0.4289)
Vitamin C vs b* -0.0791 0.6275 (-0.3667, 0.2221)

Based on Table 8, it shows that the entire relationship between vitamin C levels and color features in lemons
has a small coefficient of p < 0.20 and 1s insignificant due to p-value > 0.05. The 95% CI value on all variable
pairs also crosses zero, so the direction of the relationship cannot be said to be consistent. Thus, the relationship
between vitamin C and NDYI and the CIELab component in lemons 1s very weak, and the pattern in Figure 8
does not show a statistically consistent relationship between vitamin C and color features in lemons.

4. CONCLUSION

This study aims to classify lime and lemon images using ResNetNet-18 based CNN under limited data
conditions and examine the relationship pattern between fruit skin color features and chemical properties,
namely pH and vitamin C levels.

The results obtained showed that ResNet-18 provides very high validation performance under uniform data
capture conditions, with an average accuracy of 98.75%. These results indicate that the difference in visual
patterns between lime and lemon is quite pronounced in a controlled scenario, so this deep learning approach
can be used as an initial prototype for citrus classification. In the analysis of color features with pH and vitamin
C, color features tended to be more consistent with pH, especially in limes, whereas the relationship of vitamin
C to color features was not significant in both limes and lemons. Thus, no strong and stable relationship between
vitamin C and peel color metrics was found in this dataset, so color metrics cannot be used as a reliable indicator
for vitamin C screening. Despite the high classification performance, this study 1s still limited by the small data
size and relatively homogeneous one-sided acquisition, so there 1s a possibility of optimistic bias and
generalization limitations when applied to the conditions of the lighting devices, and different backgrounds.
Further research 1s suggested to be strengthened by the addition of data from several sessions and lighting
variations, the capture of more than one angle per piece, and the use of external test data. In addition, from the
applied mathematics/statistical side, the research can be developed by adding predictive uncertainty analysis to
find out how confident the model is, utilizing many additional unlabeled 1magery through semi-unsupervised
learning, and applying methods to keep the model stable when used on photos from different cameras or lighting,
for example with color adjustment or domain adaptation/generalization.
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