
Zero : Jurnal Sains, Matematika, dan Terapan 
E-ISSN : 2580-5754; P-ISSN : 2580-569X 
Volume 10, Number 1, 2026 
DOI: 10.30829/zero.v10i1.27103 
Page: 12-24                                                  r   12 
 

Journal homepage: http://jurnal.uinsu.ac.id/index.php/zero/index 

Exploring the Metric Chromatic Number of Uniform, Centralized 
Uniform, and Cycle Uniform Theta Graphs 

 
1 Raventino         
  Department of Mathematics, Universitas Tanjungpura, Pontianak, Indonesia  
 
2 Fransiskus Fran  
  Department of Mathematics, Universitas Tanjungpura, Pontianak, Indonesia  

 

Article Info  ABSTRACT 
Article history: 

Accepted 25 January 2026 
 

 Metric coloring allows adjacent vertices of a graph to share the same color 
provided that their associated distance vectors are distinct, leading to the concept 
of the metric chromatic number. This notion is closely related to problems of 
vertex distinguishability and resource allocation in network-like structures. In 
this paper, we present the first exact determination of the metric chromatic 
number for three families of theta type graphs: uniform theta graphs, centralized 
uniform theta graphs, and a newly introduced class called the cycle uniform theta 
graph, obtained by cyclically arranging uniform theta subgraphs. The proposed 
construction enables an investigation of how cyclic configurations influence 
metric coloring behavior. Using a constructive metric coloring approach, exact 
values of the metric chromatic number are obtained. It is shown that the uniform 
theta graph 𝜃(𝑚, 𝑛) and the centralized uniform theta graph 𝜃(𝑚, 𝑛, 𝑝) both 
satisfy 𝜇)𝜃(𝑚, 𝑛)* = 𝜇(𝜃(𝑚, 𝑛, 𝑝)) = 2 for all positive integers 𝑚,𝑛, and 𝑝. 
For the cycle uniform theta graph 𝜃!(𝑚, 𝑛, 𝑞), the metric chromatic number 
equals 2 when 𝑛 and 𝑞 have the same parity or when 𝑛 is odd and 𝑞 is even. In 
contrast, 𝜇)𝜃!(𝑚, 𝑛, 𝑞)* = 3 when 𝑛 is even and 𝑞 is odd. This latter case arises 
because the longest path in the cyclic structure has odd length, forcing the graph 
to have chromatic number three. Since the graph is connected and its chromatic 
number is at most three, this structural constraint directly implies that three 
colors are also necessary for a valid metric coloring. 

 

Keywords: 

Chromatic Number; 
Distance; 
Metric Coloring. 
 
 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author:  

Raventino, 
Department of Mathematics, 
Universitas Tanjungpura, Pontianak, Indonesia 
Email: raventino@fmipa.untan.ac.id 

 
1. INTRODUCTION 

Graph theory provides a versatile framework for modeling relational structures arising in mathematics, 
computer science, and networked systems. Among the many graph parameters studied, graph coloring occupies 
a central position due to its deep theoretical foundations and its relevance to problems such as scheduling, 
resource allocation, and network design [1], [2], [3], [4], [5], [6], [7], [8], [9]. While classical vertex coloring 
requires adjacent vertices to receive distinct colors, many practical settings demand more flexible labeling 
schemes that still guarantee vertex distinguishability. 

Distance based graph invariants were introduced to address this need for distinguishability beyond 
adjacency constraints. One of the most influential concepts is the metric dimension, introduced by Harary and 
Melter [10], which measures the minimum size of a vertex set capable of uniquely identifying all vertices through 



Zero: Jurnal Sains, Matematika dan Terapan  r 

                                                                   Exploring the Metric Chromatic Number of Uniform, Centralized Uniform, and Cycle Uniform Theta Graphs (Raventino)	 

13 

distance vectors. A comprehensive overview of subsequent developments and recent research directions on the 
metric dimension can be found in [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24]. 
Building on this idea, Chartrand, Okamoto, and Zhang introduced the metric chromatic number [25], which 
integrates distance based identification with coloring constraints. In a metric coloring, adjacent vertices may share 
the same color provided that their associated distance vectors are distinct, and the minimum number of colors 
satisfying this condition is denoted by 𝜇(𝐺) [26], [27]. 

Research on the metric chromatic number has encompassed several families of graphs, including pencil 
graphs, which serve as a basic reference class in the study of metric coloring [10], followed by works on wheel 
graphs and related constructions [26]. More recent contributions have examined metric coloring on fan type 
graphs, corona graphs, and graph products, where research on metric coloring is not limited to identifying the 
graph classes alone, but also aims to reveal how structural features influence coloring behavior. These studies 
demonstrate that the value of 𝜇(𝐺) is highly sensitive to structural properties such as symmetry, connectivity, and 
other inherent graph characteristics [27], [28], [29], [30], [31], [32], [33], [34]. Contemporary surveys further 
confirm that distance based coloring parameters remain an active area of research, particularly in connection with 
vertex identification and network labeling problems [35]. Nevertheless, existing results are still largely restricted 
to relatively simple or well-known graph classes. 

Theta type graphs, which are composed of multiple internally disjoint paths connecting a common pair of 
vertices, have received comparatively limited attention in the context of metric chromatic number. Although these 
graphs play an important role in both theoretical graph theory and applied network modeling, existing studies 
have not yet provided a systematic treatment of metric coloring for uniform theta graphs, centralized uniform 
theta graphs, or cyclic constructions derived from these structures. To the best of our knowledge, explicit 
determinations of the metric chromatic number for these families are still unavailable in the current literature. 
The present study is further motivated by recent work of Riyan and Yeni [35] on the total edge irregularity strength 
of centralized uniform theta graphs, which demonstrates that subtle structural modifications can substantially 
affect graph labeling parameters. This naturally leads to the question of how such structural variations influence 
metric coloring behavior, thereby providing a strong rationale for the investigation undertaken in this paper. 

Motivated by the framework introduced in [35], this paper focuses on three closely related graph families: 
the uniform theta graph, the centralized uniform theta graph, and a newly introduced class called the cycle 
uniform theta graph. The cycle uniform theta graph is constructed by arranging uniform theta subgraphs in a 
cyclic manner, yielding a hybrid cycle tree structure that enables a systematic investigation of parity effects and 
cyclic connectivity on metric coloring. The primary objective of this work is to determine the exact metric 
chromatic numbers of these families and to provide the first complete characterization of 𝜇(𝐺) for uniform, 
centralized uniform, and cycle uniform theta graphs. By identifying parameter dependent conditions under which 
the metric chromatic number changes, this study clarifies the interplay between graph structure, parity, and 
distance-based coloring constraints, while also offering insights relevant to vertex distinguishability and resource 
allocation in network-like systems. 
 
2. RESEARCH METHOD 

This work is purely theoretical and employs a constructive proof strategy combined with structural graph 
analysis to determine the metric chromatic numbers of several theta type graph families. The study focuses on 
uniform theta graphs, centralized uniform theta graphs, and the newly introduced cycle uniform theta graphs. 
Throughout the paper, all graph parameters are assumed to belong to ℕ, with explicit constraints imposed to 
ensure that each construction is well defined; in particular, the uniform theta graph 𝜃(𝑚, 𝑛) is considered for 
𝑚,𝑛 ≥ 2, the centralized uniform theta graph 𝜃(𝑚, 𝑛, 𝑝) for 𝑚,𝑛, 𝑝 ≥ 2, and the cycle uniform theta graph 
𝜃!(𝑚, 𝑛, 𝑞) for 𝑚 ≥ 2, 𝑛 ≥ 2, and 𝑞 ≥ 3. This section presents the necessary preliminaries, notation, and proof 
strategy used consistently in the subsequent analysis. 

For each graph family 𝐺 under consideration, the method proceeds in a systematic manner. First, the 
classical chromatic number 𝜒(𝐺) is determined using the structural properties of the graph, which provides a 
natural upper bound for the metric chromatic number 𝜇(𝐺). Next, a sequence of candidate colorings is 
constructed, beginning with two colors and increasing incrementally up to 𝜒(𝐺). For a fixed number of colors 𝑙, 
an explicit coloring function 𝑓: 𝑉(𝐺) → {1,2, … , 𝑙} is defined by specifying the color classes and the associated 
partition 𝜋 = {𝑤", 𝑤#, … , 𝑤$}. For each vertex 𝑣 ∈ 𝑉(𝐺), the corresponding metric code vector Γ(𝑣, 𝜋) is then 
computed. A coloring is verified to be a metric coloring by showing that every adjacent pair of vertices has distinct 
metric code vectors; if this condition is satisfied, the process terminates and the corresponding value of  𝑙 is 
identified as 𝜇(𝐺). Otherwise, the number of colors is increased and the construction is repeated, ensuring that 
the smallest possible number of colors satisfying the metric coloring condition is obtained. 

In the case of cycle uniform theta graphs, the analysis requires a more refined treatment due to the 
interaction between cyclic and tree-like structures. In particular, the proof is organized into separate cases 
according to the parity of the parameters n and q, since even–odd configurations significantly affect metric 



     r                                                                                                E-ISSN : 2580-5754; P-ISSN : 2580-569X 

Zero: Jurnal Sains, Matematika dan Terapan 

14 

distance patterns and, consequently, the feasibility of two-color metric colorings. Each parity case is addressed 
explicitly, either through direct distance calculations or via structured lemmas that formalize recurring arguments 
and avoid reliance on informal analogies. No empirical data are collected, as all results are derived analytically. 
Finally, for notational convenience, the interval [𝑎", 𝑎#] is defined as [𝑎", 𝑎#] = { 𝑐 ∈ ℕ ∣ 𝑎" ≤ 𝑐 ≤ 𝑎# } where 
𝑎", 𝑎# ∈ ℕ. 

In summary, the proof strategy adopted in this paper follows a unified scheme across all graph families 
under consideration. The chromatic number 𝜒(𝐺) is first established to obtain a sharp upper bound for 𝜇(𝐺). 
Subsequently, explicit metric colorings are constructed, and parity-based case analyses are employed to ensure 
that all adjacency configurations are covered. The minimality of the resulting colorings is then verified by 
demonstrating that adjacent vertices admit distinct metric vectors, thereby yielding the exact value of 𝜇(𝐺) for 
each graph family. 
 
Definition 𝟏 [10] Consider graph 𝐺 and 𝑓: 𝑉(𝐺) → {1,2, … , 𝑙} be a vertex coloring in which adjacent vertices are 
allowed to share the same color. Let 𝜋 = {𝑤", 𝑤#, … , 𝑤$} denote the associated collection of color classes, and 
define for each vertex 𝑣 ∈ 𝑉(𝐺) the metric vector 

Γ(𝑣, 𝜋) = (𝑑(𝑣,𝑤"), 𝑑(𝑣, 𝑤#), … , 𝑑(𝑣, 𝑤$)), 
where 𝑑(𝑣,𝑤%) = min	{𝑑(𝑣, 𝑤) ∣ 𝑤 ∈ 𝑤%}. The coloring 𝑓 is referred to as a metric coloring if every adjacent 
pair 𝑢, 𝑣 ∈ 𝑉(𝐺) satisfies 

Γ(𝑢, 𝜋) ≠ Γ(𝑣, 𝜋).	
 
Definition 𝟐 [26] The quantity arising from identifying the smallest number of colors that can induce a metric 
coloring on a graph 𝐺 is referred to as its metric chromatic number, denoted by 𝜇(𝐺). 
 
Lemma 1 [26] Given a connected graph 𝐺 with 𝑛 vertices, the following bound holds for its metric chromatic 
number: 

2 ≤ 𝜇(𝐺) ≤ 𝜒(𝐺) ≤ 𝑛, 
where 𝜒(𝐺) is the chromatic number of 𝐺. 
 
Definition 𝟑 [35] The uniform theta graph 𝜃(𝑚, 𝑛) for 𝑚,𝑛 ∈ ℕ, is formally specified as the graph with vertex 
set 

𝑉P𝜃(𝑚, 𝑛)Q = R𝑐&, 𝑐", 𝑣%'S	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]}, 
whose edge set is given by 

𝐸P𝜃(𝑚, 𝑛)Q = X{𝑐&, 𝑣%"}, {𝑣%(, 𝑐"}, R𝑣%' , 𝑣%('*")YZ 	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛 − 1]}. 
 

 
Figure 𝟏. Uniform Theta Graph 𝜃(𝑚, 𝑛) 

 
Definition 𝟒 [35] The centralized uniform theta graph 𝜃(𝑚, 𝑛, 𝑝) where 𝑚,𝑛, 𝑝 ∈ ℕ, is defined by the vertex set  

𝑉P𝜃(𝑚, 𝑛, 𝑝)Q = R𝑐&, 𝑐, , 𝑣%'-S	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 	𝑟, 𝑘 ∈ [1, 𝑝]}, 
whose edge set is given by 

𝐸P𝜃(𝑚, 𝑛, 𝑝)Q = X{𝑐&, 𝑣%"-}, {𝑣%(- , 𝑐,}, R𝑣%'- , 𝑣%('*")-YZ 	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛 − 1]; 	𝑟, 𝑘 ∈ [1, 𝑝]}. 
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Figure 𝟐. Centralized Uniform Theta Graph 𝜃(𝑚, 𝑛, 𝑝) 

 
The author then introduces a new graph constructed from the combined ideas of uniform theta graphs and cycle 
graphs, leading to the following Definition 5. 
 
Definition 𝟓 The cycle uniform theta graph 𝜃!(𝑚, 𝑛, 𝑞) with 𝑚,𝑛, 𝑞 ∈ ℕ, is characterized by the vertex set 

𝑉P𝜃!(𝑚, 𝑛, 𝑞)Q = R𝑐&, 𝑐, , 𝑣%'-S	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 	𝑟 ∈ [1, 𝑞 − 1]; 𝑘 ∈ [1, 𝑞]}, 
while its corresponding collection of edges is described by 

𝐸P𝜃!(𝑚, 𝑛, 𝑞)Q = X{𝑐&, 𝑣%""}, {𝑐, , 𝑣%"-}, R𝑣%(. , 𝑐&Y, {𝑣%(- , 𝑐,}, R𝑣%'- , 𝑣%('*")-YZ 	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛 − 1]; 	𝑟 ∈
[1, 𝑞 − 1]; 𝑘 ∈ [1, 𝑞]}. 

 

 
Figure 𝟑. Cycle Uniform Theta Graph 𝜃!(𝑚, 𝑛, 𝑞) 

 
Lemma 𝟐 For a uniform theta graph 𝜃(𝑚, 𝑛) with 𝑚,𝑛 ∈ ℕ, the chromatic number is 

𝜒(𝜃(𝑚, 𝑛)) = 2. 

Proof. Let 𝜃(𝑚, 𝑛) for 𝑚,𝑛 ∈ ℕ. When 𝑚 = 1, the graph 𝜃(1, 𝑛) reduces to a path graph. Therefore, 
𝜒(𝜃(1, 𝑛)) = 2. For 𝑚 ≥ 2, the construction of 𝜃(𝑚, 𝑛) yields exactly 𝑚 internally disjoint paths of length 𝑛 
joining the same pair of end vertices. Since these paths have equal length, any two of them form a cycle of even 
length. Hence, 𝜃(𝑚, 𝑛) contains only even cycles. It follows that 𝜒(𝜃(𝑚, 𝑛)) = 2, for all 𝑚 ≥ 2. Hence, 
𝜒(𝜃(𝑚, 𝑛)) = 2.	 

Lemma 𝟑 For the centralized uniform theta graph 𝜃(𝑚, 𝑛, 𝑝) with 𝑚,𝑛, 𝑝 ∈ ℕ, its chromatic number is given by 
𝜒(𝜃(𝑚, 𝑛, 𝑝)) = 2. 
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Proof. Consider 𝜃(𝑚, 𝑛, 𝑝) constructed by taking 𝑝 copies of the graph 𝜃(𝑚, 𝑛) and identifying one prescribed 
vertex of each copy with a common central vertex 𝑐&. Since each 𝜃(𝑚, 𝑛) is 2-colorable, fix a proper 2-coloring 
for one copy and apply the same color assignment to all remaining copies. Because the only shared vertex among 
the 𝑝copies is 𝑐&, and this vertex receives a consistent color across all copies, no adjacency conflicts arise in the 
combined structure. Thus, the entire graph admits a proper 2-coloring, and therefore 

𝜒(𝜃(𝑚, 𝑛, 𝑝)) = 2, 
as claimed.  
 
Lemma 𝟒 Let 𝜃!(𝑚, 𝑛, 𝑞) be a cycle uniform theta graph with 𝑚,𝑛, 𝑞 ∈ ℕ. Then its chromatic number satisfies 

𝜒P𝜃!(𝑚, 𝑛, 𝑞)Q = a2	; 	if 𝑛 and 𝑞 are both odd, both even, or if 𝑛 is odd and 𝑞 is even	
3																																																																							; if 𝑛 is even and 𝑞 is odd		

 
Proof. Consider the cycle uniform theta graph 𝜃!(𝑚, 𝑛, 𝑞) with 𝑚,𝑛, 𝑞 ∈ ℕ. Observe that this graph necessarily 
contains cycles whose lengths are either even or odd. To determine its chromatic number, it suffices to examine 
the largest cycle in the graph, since every smaller cycle is structurally analogous to those already characterized in 
Lemma 2. In the cases where 𝑛 and 𝑞 are both odd, both even, or when 𝑛 is odd and 𝑞 is even, the largest cycle 
in 𝜃!(𝑚, 𝑛, 𝑞) has even length. Conversely, when 𝑛 is even and 𝑞 is odd, the largest cycle of 𝜃!(𝑚, 𝑛, 𝑞) has odd 
length. It is well known that an even cycle has chromatic number 2, whereas an odd cycle requires chromatic 
number 3. Therefore, 

𝜒P𝜃!(𝑚, 𝑛, 𝑞)Q = a2	; 	if 𝑛 and 𝑞 are both odd, both even, or if 𝑛 is odd and 𝑞 is even	
3																																																																							; if 𝑛 is even and 𝑞 is odd	. 

 
 

3. RESULT AND ANALYSIS 
This section presents the main results of the paper concerning the metric chromatic numbers of uniform, 

centralized uniform, and cycle uniform theta graphs. The results are established through explicit metric coloring 
constructions and rigorous proofs, and are supported by illustrative examples and figures. In particular, the 
analysis highlights how structural properties and parity conditions play a decisive role in determining the feasibility 
and exact value of metric colorings across these graph families. 

3.1 Metric Chromatic Number of Uniform Theta Graph 
As an illustrative example, consider the graph 𝜃(2,3),  with vertex set 

𝑉P𝜃(2,3)Q = {𝑐&, 𝑐", 𝑣"", 𝑣"#, 𝑣"/, 𝑣#", 𝑣##, 𝑣#/}, 
and whose edge set is defined as 

𝐸P𝜃(2,3)Q = {{𝑐&, 𝑣""}, {𝑐&, 𝑣#"}, {𝑣"", 𝑣"#}, {𝑣"#, 𝑣"/}, {𝑣#", 𝑣##}, {𝑣##, 𝑣#/}, {𝑣"/, 𝑐"}, {𝑣#/, 𝑐"}}. 
To determine the metric chromatic number of the graph 𝜃(2,3), we first define a function 𝑓: 𝑉(𝜃(2,3)) → {1,2} 
given by 

𝑓(𝑣) = a1,																𝑣 = 𝑐&, 𝑐", 𝑣"#, 𝑣##		
2,													𝑣 = 𝑣"", 𝑣"/, 𝑣#", 𝑣#/	

 

this assignment induces a proper and consistent vertex coloring on the graph 𝜃(2,3). Based on this coloring, we 
construct the set of color classes 𝜋 = {𝑤", 𝑤#}, were 

𝑤" = {𝑐&, 𝑐", 𝑣"#, 𝑣##} and 
𝑤# = {	𝑣"", 𝑣"/, 𝑣#", 𝑣#/}. 

Using these color classes, the metric code vector of each vertex is computed with respect to 𝜋. The resulting 
metric code vectors for all vertices of 𝜃(2,3) are presented in Table 1. 

 
Table 𝟏. Metric code vectors 𝛤(𝑣, 𝜋) of the graph 𝜃(2,3) 

Vertex 𝑑(𝑣,𝑤") 𝑑(𝑣,𝑤#) Γ(𝑣, 𝜋) 
𝑐& 0 1 (0,1) 
𝑐" 0 1 (0,1) 
𝑣"" 1 0 (1,0) 
𝑣"# 0 1 (0,1) 
𝑣"/ 1 0 (1,0) 
𝑣#" 1 0 (1,0) 
𝑣## 0 1 (0,1) 
𝑣#/ 1 0 (1,0) 



Zero: Jurnal Sains, Matematika dan Terapan  r 

                                                                   Exploring the Metric Chromatic Number of Uniform, Centralized Uniform, and Cycle Uniform Theta Graphs (Raventino)	 

17 

 
Based on Table 1, the resulting metric coloring is illustrated in Figure 4. 

 
Figure 𝟒. Uniform Theta Graph 𝜃(2, 3) 

 
We observe that any two adjacent vertices of 𝜃(2,3) admit different metric code vectors, which implies that the 
metric chromatic number of the graph is 2. 
 
In general, for the uniform theta graph 𝜃(𝑚, 𝑛), the metric chromatic number is given in Theorem 1. 

Theorem 𝟏 For the uniform theta graph 𝜃(𝑚, 𝑛) where 𝑚,𝑛 ∈ ℕ, the metric chromatic number is 
𝜇(𝜃(𝑚, 𝑛)) = 2. 

Proof.  
Case for odd 𝒏 
Consider the function 𝑓: 𝑉(𝜃(𝑚, 𝑛)) → {1,2} given by 

𝑓(𝑣) = f
1, 𝑣 = 𝑐&, 𝑐", 𝑣%' 	𝑤𝑖𝑡ℎ	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 	𝑗	𝑒𝑣𝑒𝑛	
2,													𝑣 = 𝑣%' 	𝑤𝑖𝑡ℎ	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 	𝑗	𝑜𝑑𝑑	

 

this assignment defines a consistent vertex-coloring on the graph 𝜃(𝑚, 𝑛). Based on this coloring, construct the 
set of color classes 𝜋 = {𝑤", 𝑤#}, were 

𝑤" = {	𝑐&, 𝑐", 𝑣%'|	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 	𝑗	𝑒𝑣𝑒𝑛} 
𝑤# = {	𝑣%'|	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 	𝑗	𝑜𝑑𝑑}. 

We analyze the vectors Γ(𝑢, 𝜋) and Γ(𝑣, 𝜋) for all distinct vertices 𝑢, 𝑣 ∈ 𝑉(𝜃(𝑚, 𝑛)) to ensure that each pair of 
adjacent vertices receives distinct metric representations. 
Γ(𝑐&, 𝜋) = (𝑑(𝑐&, 𝑤"), 𝑑(𝑐&, 𝑤#)). Since 

𝑑(𝑐&, 𝑤") = minR𝑑(𝑐&, 𝑐&), 𝑑(𝑐&, 𝑐"), 𝑑P𝑐&, 𝑣%'QS 𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 	𝑗	𝑒𝑣𝑒𝑛} = 0 
𝑑(𝑐&, 𝑤#) = minR	𝑑P𝑐&, 𝑣%'QS 𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 	𝑗	𝑜𝑑𝑑} = 1 

we establish Γ(𝑐&, 𝜋) = (0,1). 
ΓP𝑣%' , 𝜋Q = (𝑑P𝑣%' , 𝑤"Q, 𝑑P𝑣%' , 𝑤#Q) with odd 𝑗. Since 

𝑑P𝑣%' , 𝑤"Q = minR𝑑P𝑣%' , 𝑐&Q, 𝑑P𝑣%' , 𝑐"Q, 𝑑P𝑣%' , 𝑣%0QS 	𝑖 ∈ [1,𝑚]; 	𝑗, 𝑡 ∈ [1, 𝑛]; 	𝑡	𝑒𝑣𝑒𝑛} = 1 
𝑑P𝑣%' , 𝑤#Q = minR	𝑑P𝑣%' , 𝑣%0QS 	𝑖 ∈ [1,𝑚]; 	𝑗, 𝑡 ∈ [1, 𝑛]; 	𝑡	𝑜𝑑𝑑} = 0 

then ΓP𝑣%' , 𝜋Q = (1,0) with odd 𝑗. 
ΓP𝑣%' , 𝜋Q = (𝑑P𝑣%' , 𝑤"Q, 𝑑P𝑣%' , 𝑤#Q) with even 𝑗. Since 

𝑑P𝑣%' , 𝑤"Q = minR𝑑P𝑣%' , 𝑐&Q, 𝑑P𝑣%' , 𝑐"Q, 𝑑P𝑣%' , 𝑣%0QS 	𝑖 ∈ [1,𝑚]; 	𝑗, 𝑡 ∈ [1, 𝑛]; 	𝑡	𝑒𝑣𝑒𝑛} = 0 
𝑑P𝑣%' , 𝑤#Q = minR	𝑑P𝑣%' , 𝑣%0QS 	𝑖 ∈ [1,𝑚]; 	𝑗, 𝑡 ∈ [1, 𝑛]; 	𝑡	𝑜𝑑𝑑} = 1 

we conclude that ΓP𝑣%' , 𝜋Q = (0,1) with 𝑗 even. 
Γ(𝑐", 𝜋) = (𝑑(𝑐", 𝑤"), 𝑑(𝑐", 𝑤#)). Since 

𝑑(𝑐", 𝑤") = minR𝑑(𝑐", 𝑐&), 𝑑(𝑐", 𝑐"), 𝑑P𝑐", 𝑣%'QS 𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 	𝑗	𝑒𝑣𝑒𝑛} = 0 
𝑑(𝑐", 𝑤#) = minR	𝑑P𝑐", 𝑣%'QS 𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 	𝑗	𝑜𝑑𝑑} = 1 

then Γ(𝑐", 𝜋) = (0,1). 
For any adjacent pair of vertices 𝑢, 𝑣 ∈ 𝑉(𝜃(𝑚, 𝑛)) with 𝑢 ≠ 𝑣, their metric representations satisfy Γ(𝑢, 𝜋) ≠
Γ(𝑣, 𝜋). Hence, for odd 𝑛, the metric chromatic number of the graph satisfies 𝜇(𝜃(𝑚, 𝑛)) = 2. 
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Figure 𝟓. Uniform Theta Graph 𝜃(𝑚, 3) 

 
Case for even 𝒏  
Consider the function 𝑓: 𝑉(𝜃(𝑚, 𝑛)) → {1,2} defined by 

𝑓(𝑣) = f
1,											𝑣 = 𝑐&, 𝑣%' 	𝑤𝑖𝑡ℎ	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 	𝑗	𝑒𝑣𝑒𝑛	
2,												𝑣 = 𝑐", 𝑣%' 	𝑤𝑖𝑡ℎ	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 	𝑗	𝑜𝑑𝑑	

 

which constitutes a vertex-coloring of the graph 𝜃(𝑚, 𝑛). Define the color classes 
𝑤" = {	𝑐&, 𝑣%'|	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 	𝑗	𝑒𝑣𝑒𝑛}, 
𝑤# = {	𝑐", 𝑣%'|	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 	𝑗	𝑜𝑑𝑑}, 

and set of color classes 𝜋 = {𝑤", 𝑤#}. 
For each vertex 𝑢 ∈ 𝑉(𝜃(𝑚, 𝑛)), the corresponding metric vector is 

Γ(𝑢, 𝜋) = (𝑑(𝑢,𝑤"), 𝑑(𝑢,𝑤#)), 
with distances computed as follows: 

a. Γ(𝑐&, 𝜋) = (0,1), 
b. Γ(𝑣%' , 𝜋) = (1,0) for 𝑗 odd, 
c. Γ(𝑣%' , 𝜋) = (0,1) for 𝑗 even, 
d. Γ(𝑐", 𝜋) = (1,0). 

Since Γ(𝑢, 𝜋) ≠ Γ(𝑣, 𝜋) for every pair of adjacent vertices 𝑢 ≠ 𝑣, 𝑓 defines a valid metric coloring using two 
colors, implying 𝜇(𝜃(𝑚, 𝑛)) ≤ 2. By Lemma 2, 𝜒(𝜃(𝑚, 𝑛)) = 2, and since 𝜃(𝑚, 𝑛) is connected, it follows 
from [26] result that 𝜇(𝜃(𝑚, 𝑛)) = 2.  
Therefore, for every pair of adjacent vertices in the uniform theta graph, the corresponding metric code vectors 
are distinct. Hence, we conclude that 𝜇P𝜃(𝑚, 𝑛)Q = 2, for all 𝑚,𝑛 ∈ ℕ.	 

 
Figure 𝟔. Uniform Theta Graph 𝜃(𝑚, 4) 

3.2 Metric Chromatic Number of Centralized Uniform Theta Graph 

Theorem 𝟐 Let 𝜃(𝑚, 𝑛, 𝑝) denote a centralized uniform theta graph with 𝑚,𝑛, 𝑝 ∈ ℕ. Then the metric chromatic 
number of 𝜃(𝑚, 𝑛, 𝑝) is 

𝜇(𝜃(𝑚, 𝑛, 𝑝)) = 2. 

Proof. The proof follows the same constructive framework as that employed for Theorem 1. In the present case, 
the vertex set is extended from {𝑐&, 𝑐"} to {𝑐&, 𝑐, ∣ 𝑟 ∈ [1, 𝑝]}, and each original vertex 𝑣%' is replaced by a family 
of vertices {𝑣%'- ∣ 𝑘 ∈ [1, 𝑝]}. These extensions do not alter the metric chromatic number of the graph. 
Consequently, by systematically replacing 𝑐" with 𝑐, and 𝑣%' with 𝑣%'- in the argument of Theorem 1, the metric 
coloring remains valid. Therefore, it follows rigorously that 𝜇(𝜃(𝑚, 𝑛, 𝑝)) = 2.  
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Figure 7. Centralized Uniform Theta Graph 𝜃(𝑚, 3, 𝑝) 

 

 
Figure 8. Centralized Uniform Theta Graph 𝜃(𝑚, 4, 𝑝) 

 
3.3 Metric Chromatic Number of Cycle Uniform Theta Graphs 
 
Theorem 𝟑 Let cycle uniform theta graph 𝜃!(𝑚, 𝑛, 𝑞) with 𝑚,𝑛, 𝑞 ∈ ℕ, then	

𝜇P𝜃!(𝑚, 𝑛, 𝑞)Q = a2,				if 𝑛 and 𝑞 are both odd; both even; or if 𝑛 is odd and 𝑞 is even	
3,																																																																									if 𝑛 is even and 𝑞 is odd	 

 
Proof.  
Case for 𝒏 and 𝒒 are both odd 
Consider the function 𝑓: 𝑉P𝜃!(𝑚, 𝑛, 𝑞)Q → {1,2} given by 

𝑓(𝑣) = f
1,					𝑣 = 𝑐&, 𝑐, , 𝑣%'-	𝑤𝑖𝑡ℎ	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 𝑟 ∈ [1, 𝑞 − 1]; 𝑘 ∈ [1, 𝑞]; 	𝑗	𝑒𝑣𝑒𝑛	
2,																																													𝑣 = 𝑣%'-	𝑤𝑖𝑡ℎ	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 𝑘 ∈ [1, 𝑞]; 		𝑗	𝑜𝑑𝑑	

 

this assignment defines a consistent vertex-coloring on the graph 𝜃!(𝑚, 𝑛, 𝑞). Based on this coloring, construct 
the set of color classes 𝜋 = {𝑤", 𝑤#}, were 

𝑤" = {	𝑐&, 𝑐, , 𝑣%'-|	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 𝑟 ∈ [1, 𝑞 − 1]; 𝑘 ∈ [1, 𝑞]; 	𝑗	𝑒𝑣𝑒𝑛} 
𝑤# = {	𝑣%'-|	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 𝑘 ∈ [1, 𝑞]; 	𝑗	𝑜𝑑𝑑} 

we analyze the vectors Γ(𝑢, 𝜋) and Γ(𝑣, 𝜋) for all distinct vertices 𝑢, 𝑣 ∈ 𝑉(𝜃!(𝑚, 𝑛, 𝑞)) to ensure that each pair 
of adjacent vertices receives distinct metric representations. 
Γ(𝑐&, 𝜋) = (𝑑(𝑐&, 𝑤"), 𝑑(𝑐&, 𝑤#)). Since 
𝑑(𝑐&, 𝑤") = minR𝑑(𝑐&, 𝑐&), 𝑑(𝑐&, 𝑐,), 𝑑P𝑐&, 𝑣%'-QS 𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 	𝑟 ∈ [1, 𝑞 − 1]; 	𝑘 ∈ [1, 𝑞]; 	𝑗	𝑒𝑣𝑒𝑛}

= 0 
𝑑(𝑐&, 𝑤#) = minR	𝑑P𝑐&, 𝑣%'-QS 𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 𝑘 ∈ [1, 𝑞]; 	𝑗	𝑜𝑑𝑑} = 1 

we conclude that Γ(𝑐&, 𝜋) = (0,1). 
ΓP𝑣%'- , 𝜋Q = (𝑑P𝑣%'- , 𝑤"Q, 𝑑P𝑣%'- , 𝑤#Q) with odd 𝑗. Since 

𝑑P𝑣%'- , 𝑤"Q = minR𝑑P𝑣%'- , 𝑐&Q, 𝑑P𝑣%'- , 𝑐,Q, 𝑑P𝑣%'- , 𝑣%0-QS 	𝑖 ∈ [1,𝑚]; 	𝑗, 𝑡 ∈ [1, 𝑛]; 𝑟 ∈ [1, 𝑞 − 1]; 𝑘 ∈
[1, 𝑞]; 	𝑡	𝑒𝑣𝑒𝑛} = 1  

𝑑P𝑣%'- , 𝑤#Q = minR	𝑑P𝑣%'- , 𝑣%0-QS 	𝑖 ∈ [1,𝑚]; 	𝑗, 𝑡 ∈ [1, 𝑛]; 𝑘 ∈ [1, 𝑞]; 	𝑡	𝑜𝑑𝑑} = 0 
then ΓP𝑣%'- , 𝜋Q = (1,0) with odd 𝑗. 
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ΓP𝑣%'- , 𝜋Q = (𝑑P𝑣%'- , 𝑤"Q, 𝑑P𝑣%'- , 𝑤#Q) with even 𝑗. Since 
𝑑P𝑣%'- , 𝑤"Q = minR𝑑P𝑣%'- , 𝑐&Q, 𝑑P𝑣%'- , 𝑐,Q, 𝑑P𝑣%'- , 𝑣%0-QS 	𝑖 ∈ [1,𝑚]; 	𝑗, 𝑡 ∈ [1, 𝑛]; 𝑟 ∈ [1, 𝑞 − 1]; 𝑘

∈ [1, 𝑞]; 	𝑡	𝑒𝑣𝑒𝑛} = 0 
𝑑P𝑣%'- , 𝑤#Q = minR	𝑑P𝑣%'- , 𝑣%0-QS 	𝑖 ∈ [1,𝑚]; 	𝑗, 𝑡 ∈ [1, 𝑛]; 𝑘 ∈ [1, 𝑞]; 	𝑡	𝑜𝑑𝑑} = 1 

we establish ΓP𝑣%'- , 𝜋Q = (0,1) with even 𝑗. 
Γ(𝑐, , 𝜋) = (𝑑(𝑐, , 𝑤"), 𝑑(𝑐, , 𝑤#)). Since 
𝑑(𝑐, , 𝑤") = minR𝑑(𝑐, , 𝑐&), 𝑑(𝑐, , 𝑐,), 𝑑P𝑐, , 𝑣%'-QS 𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 𝑟 ∈ [1, 𝑞 − 1]; 𝑘 ∈ [1, 𝑞]; 	𝑗	𝑒𝑣𝑒𝑛}

= 0 
𝑑(𝑐, , 𝑤#) = minR	𝑑P𝑐, , 𝑣%'-QS 𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 𝑟 ∈ [1, 𝑞 − 1]; 𝑘 ∈ [1, 𝑞]; 	𝑗	𝑜𝑑𝑑} = 1 

then Γ(𝑐, , 𝜋) = (0,1). 
For any adjacent pair of vertices 𝑢, 𝑣 ∈ 𝑉(𝜃!(𝑚, 𝑛, 𝑞))  with 𝑢 ≠ 𝑣, their metric representations satisfy Γ(𝑢, 𝜋) ≠
Γ(𝑣, 𝜋). Hence, for 𝑛 and 𝑞 are both odd, the metric chromatic number of the graph satisfies 𝜇(𝜃!(𝑚, 𝑛, 𝑞)) =
2. 
Case for odd 𝒏 and even 𝒒 
In this case, the underlying distance structure coincides with that of the odd–odd configuration. The only 
distinction arises from the increased multiplicity of the vertices 𝑐,, which does not affect the distance relationships 
to the color classes. Accordingly, assigning each vertex 𝑐, to the color class 𝑤" preserves distinct metric 
representations for all adjacent vertices and yields a valid metric coloring. 
Case for 𝒏 and 𝒒 are both even 
This case is divided into two parts, namely when 𝑘 is odd and when 𝑘 is even. 
For the case where 𝑘 is odd, the construction is given as follows: 
Consider the function 𝑓: 𝑉P𝜃!(𝑚, 𝑛, 𝑞)Q → {1,2} given by 

𝑓(𝑣) = f
1,																	𝑣 = 𝑐&, 𝑐, , 𝑣%'-	𝑤𝑖𝑡ℎ	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 𝑟 ∈ [1, 𝑞 − 1]; 𝑘 ∈ [1, 𝑞]; 	𝑟, 𝑗	𝑒𝑣𝑒𝑛	
2,																									𝑣 = 𝑐, , 𝑣%'-	𝑤𝑖𝑡ℎ	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 𝑟 ∈ [1, 𝑞 − 1]; 𝑘 ∈ [1, 𝑞]; 	𝑟, 𝑗	𝑜𝑑𝑑	

 

this assignment defines a consistent vertex-coloring on the graph 𝜃!(𝑚, 𝑛, 𝑞). Based on this coloring, construct 
the set of color classes 𝜋 = {𝑤", 𝑤#}, were 

𝑤" = {	𝑐&, 𝑐, , 𝑣%'-|	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 𝑟 ∈ [1, 𝑞 − 1]; 𝑘 ∈ [1, 𝑞]; 	𝑟, 𝑗	𝑒𝑣𝑒𝑛} 
𝑤# = {	𝑐, , 𝑣%'-|	𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 𝑟 ∈ [1, 𝑞 − 1]; 𝑘 ∈ [1, 𝑞]; 	𝑟, 𝑗	𝑜𝑑𝑑} 

we analyze the vectors Γ(𝑢, 𝜋) and Γ(𝑣, 𝜋) for all distinct vertices 𝑢, 𝑣 ∈ 𝑉(𝜃!(𝑚, 𝑛, 𝑞)) to ensure that each pair 
of adjacent vertices receives distinct metric representations. 
Γ(𝑐&, 𝜋) = (𝑑(𝑐&, 𝑤"), 𝑑(𝑐&, 𝑤#)). Since 
𝑑(𝑐&, 𝑤") = minR𝑑(𝑐&, 𝑐&), 𝑑(𝑐&, 𝑐,), 𝑑P𝑐&, 𝑣%'-QS 𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 𝑟 ∈ [1, 𝑞 − 1]; 𝑘 ∈ [1, 𝑞]; 	𝑟, 𝑗	𝑒𝑣𝑒𝑛}

= 0 
𝑑(𝑐&, 𝑤#) = minR		𝑑(𝑐&, 𝑐,), 𝑑P𝑐&, 𝑣%'-QS 𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 𝑟 ∈ [1, 𝑞 − 1]; 𝑘 ∈ [1, 𝑞]; 	𝑟, 𝑗	𝑜𝑑𝑑} = 1 

then Γ(𝑐&, 𝜋) = (0,1). 
ΓP𝑣%'- , 𝜋Q = (𝑑P𝑣%'- , 𝑤"Q, 𝑑P𝑣%'- , 𝑤#Q) with odd 𝑗. Since 

𝑑P𝑣%'- , 𝑤"Q = minR𝑑P𝑣%'- , 𝑐&Q, 𝑑P𝑣%'- , 𝑐,Q, 𝑑P𝑣%'- , 𝑣%0-QS 	𝑖 ∈ [1,𝑚]; 	𝑗, 𝑡 ∈ [1, 𝑛]; 𝑟 ∈ [1, 𝑞 − 1]; 𝑘
∈ [1, 𝑞]; 	𝑟, 𝑡	𝑒𝑣𝑒𝑛} = 1 

𝑑P𝑣%'- , 𝑤#Q = minR	𝑑P𝑣%'- , 𝑐,Q, 𝑑P𝑣%'- , 𝑣%0-QS 	𝑖 ∈ [1,𝑚]; 	𝑗, 𝑡 ∈ [1, 𝑛]; 𝑟 ∈ [1, 𝑞 − 1]; 𝑘 ∈ [1, 𝑞]; 	𝑟, 𝑡	𝑜𝑑𝑑}
= 0 

we conclude that ΓP𝑣%'- , 𝜋Q = (1,0) with odd 𝑗. 
ΓP𝑣%'- , 𝜋Q = (𝑑P𝑣%'- , 𝑤"Q, 𝑑P𝑣%'- , 𝑤#Q) with even 𝑗. Since 

𝑑P𝑣%'- , 𝑤"Q = minR𝑑P𝑣%'- , 𝑐&Q, 𝑑P𝑣%'- , 𝑐,Q, 𝑑P𝑣%'- , 𝑣%0-QS 	𝑖 ∈ [1,𝑚]; 	𝑗, 𝑡 ∈ [1, 𝑛]; 𝑟 ∈ [1, 𝑞 − 1]; 𝑘
∈ [1, 𝑞]; 	𝑟, 𝑡	𝑒𝑣𝑒𝑛} = 0 

𝑑P𝑣%'- , 𝑤#Q = minR𝑑P𝑣%'- , 𝑐,Q, 𝑑P𝑣%'- , 𝑣%0-QS 	𝑖 ∈ [1,𝑚]; 	𝑗, 𝑡 ∈ [1, 𝑛]; 𝑟 ∈ [1, 𝑞 − 1]; 𝑘 ∈ [1, 𝑞]; 	𝑟, 𝑡	𝑜𝑑𝑑}
= 1 

then ΓP𝑣%'- , 𝜋Q = (0,1) with even 𝑗. 
Γ(𝑐, , 𝜋) = (𝑑(𝑐, , 𝑤"), 𝑑(𝑐, , 𝑤#)) with odd 𝑟. Since 
𝑑(𝑐, , 𝑤") = minR𝑑(𝑐, , 𝑐&), 𝑑(𝑐, , 𝑐,)	𝑑P𝑐, , 𝑣%'-QS 𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 𝑟 ∈ [1, 𝑞 − 1]; 𝑘 ∈ [1, 𝑞]; 	𝑟, 𝑗	𝑒𝑣𝑒𝑛}

= 1 
𝑑(𝑐, , 𝑤#) = minR𝑑(𝑐, , 𝑐,), 𝑑P𝑐, , 𝑣%'-QS 𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 𝑟 ∈ [1, 𝑞 − 1]; 𝑘 ∈ [1, 𝑞]; 	𝑟, 𝑗	𝑜𝑑𝑑} = 0 

we obtain Γ(𝑐, , 𝜋) = (1,0) with odd 𝑟. 
Γ(𝑐, , 𝜋) = (𝑑(𝑐, , 𝑤"), 𝑑(𝑐, , 𝑤#)) with even 𝑟. Since 
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𝑑(𝑐, , 𝑤") = minR𝑑(𝑐, , 𝑐&), 𝑑(𝑐, , 𝑐,)	𝑑P𝑐, , 𝑣%'-QS 𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 𝑟 ∈ [1, 𝑞 − 1]; 𝑘 ∈ [1, 𝑞]; 	𝑟, 𝑗	𝑒𝑣𝑒𝑛}
= 0 

𝑑(𝑐, , 𝑤#) = minR𝑑(𝑐, , 𝑐,), 𝑑P𝑐, , 𝑣%'-QS 𝑖 ∈ [1,𝑚]; 	𝑗 ∈ [1, 𝑛]; 𝑟 ∈ [1, 𝑞 − 1]; 𝑘 ∈ [1, 𝑞]; 	𝑟, 𝑗	𝑜𝑑𝑑} = 1 
then Γ(𝑐, , 𝜋) = (0,1) with even 𝑟. 
For the case where 𝑘 is even, the construction is given as follows: 
This case is the same as the scenario when 𝑘 is odd. The distinction lies in the coloring of each vertex 𝑣%'-, where 
the assignment of colors is interchanged: vertices 𝑣%'- with even 𝑗 that were originally colored with color 1 are 
now assigned color 1 when 𝑗 is odd, and conversely, vertices with odd 𝑗 that were colored with color 2 are now 
assigned color 2 when 𝑗 is even. 
 

 
Figure 9. Cycle Uniform Theta Graph 𝜃!(𝑚, 4,4) 

 
Case for even 𝒏 and odd 𝒒 
In contrast to the even–even case, the parity configuration with 𝑛 even and 𝑞 odd prevents the existence of a valid 
two-color metric coloring. In particular, the vertex 𝑣%(. admits the same metric code vector as at least one of its 
adjacent vertices under any two-color assignment. To resolve this conflict, an additional color class 𝑤/ is 
introduced, with 𝑣%(. assigned to 𝑤/, which guarantees distinct metric representations for all adjacent vertex pairs. 
Consequently, the metric coloring of this graph necessitates three distinct colors. For the cases where 𝑛 and 𝑞 are 
odd-odd, odd-even, or even-even, for every pair of adjacent vertices 𝑢, 𝑣 ∈ 𝑉(𝜃!(𝑚, 𝑛, 𝑞)) with 𝑢 ≠ 𝑣, the 
corresponding metric vectors satisfy Γ(𝑢, 𝜋) ≠ Γ(𝑣, 𝜋). Hence, a metric coloring using two colors is feasible, 
yielding 𝜇(𝜃!(𝑚, 𝑛, 𝑞)) ≤ 2. By Lemma 4, 𝜒(𝜃!(𝑚, 𝑛, 𝑞)) = 2, and since 𝜃!(𝑚, 𝑛, 𝑞) is connected, it follows 
from [26] result that 𝜇(𝜃!(𝑚, 𝑛, 𝑞)) = 2. Next, in the case where 𝑛 is even and 𝑞 is odd, for every adjacent pair 
𝑢, 𝑣 ∈ 𝑉(𝜃!(𝑚, 𝑛, 𝑞)) with 𝑢 ≠ 𝑣, the metric vectors satisfy Γ(𝑢, 𝜋) ≠ Γ(𝑣, 𝜋).  
 
Therefore, each pair of adjacent vertices in the cycle uniform theta graph admits distinct metric code vectors. 
Consequently, a valid metric coloring necessitates three colors, and hence 𝜇(𝜃!(𝑚, 𝑛, 𝑞)) ≤ 3. Applying Lemma 
4, we have 𝜒(𝜃!(𝑚, 𝑛, 𝑞)) = 3, and given that 𝜃!(𝑚, 𝑛, 𝑞) is connected, [26] result implies 𝜇(𝜃!(𝑚, 𝑛, 𝑞)) = 3. 

 
Figure 10. Cycle Uniform Theta Graph 𝜃!(𝑚, 4,3) 
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we establish 

𝜇P𝜃!(𝑚, 𝑛, 𝑞)Q = a2				; if 𝑛 and 𝑞 are both odd, both even, or if 𝑛 is odd and 𝑞 is even	
3																																																																									; if 𝑛 is even and 𝑞 is odd	 

for 𝑚,𝑛, 𝑞 ∈ ℕ. 
 
For clarity and completeness, the main results obtained in this study are summarized in Table 2, which lists the 
metric chromatic numbers for each theta type graph family under the corresponding parameter conditions. 
 

Table 𝟐. Metric Chromatic Numbers of the Considered Theta Type Graph Families 
 

Graph family Parameter conditions Metric chromatic number 
uniform theta graph 𝑚,𝑛 ∈ ℕ 𝜇P𝜃(𝑚, 𝑛)Q = 2 
centralized uniform 
theta graph 

𝑚,𝑛, 𝑝 ∈ ℕ 𝜇P𝜃(𝑚, 𝑛, 𝑝)Q = 2 

cycle uniform theta 
graph 

𝑛 and 𝑞 are both odd, both even, or  
if 𝑛 odd and 𝑞 even, for 𝑚,𝑛, 𝑞 ∈ ℕ 

𝜇P𝜃!(𝑚, 𝑛, 𝑞)Q = 2 

𝑛	even and 𝑞	odd, for 𝑚,𝑛, 𝑞 ∈ ℕ 𝜇P𝜃!(𝑚, 𝑛, 𝑞)Q = 3 
 
 These results are consistent with previously studied graph families in metric coloring theory, such as paths, 
trees, and classical theta graphs, where bipartite or tree-like structures typically yield 𝜇(𝐺) = 2. The cycle uniform 
theta graph, however, exhibits a clear structural departure from these families, as the interaction between cyclic 
configurations and parity conditions necessitates the use of a third color in specific cases. From a broader 
perspective, these findings indicate that parity-sensitive cyclic arrangements play a crucial role in determining 
metric distinguishability. Beyond their theoretical significance, the results may have implications for the design 
and analysis of structured networks in which vertex identification based on distance information is essential, such 
as communication networks, distributed systems, or sensor placement problems. Moreover, the structural 
insights obtained here suggest potential directions for future work, including the development of efficient metric 
coloring algorithms for cyclic graph classes and the extension of the analysis to more general network topologies 
with mixed tree–cycle structures. 
 
4. CONCLUSION 

This study provides a complete and rigorous determination of the metric chromatic numbers for several 
families of theta type graphs. In particular, the results establish that 

𝜇P𝜃(𝑚, 𝑛)Q = 2	for all 𝑚,𝑛 ∈ ℕ,	
𝜇P𝜃(𝑚, 𝑛, 𝑝)Q = 2	for all 𝑚,𝑛, 𝑝 ∈ ℕ, 

and for the cycle uniform theta graph, 

𝜇(𝜃!(𝑚, 𝑛, 𝑞)) = a2, if 𝑛 and 𝑞 are both odd; both even; or if 𝑛 is odd and 𝑞 is even,
3, if 𝑛 is even and 𝑞 is odd,  

for all 𝑚,𝑛, 𝑞 ∈ ℕ. 
Beyond the exact values, the results reveal a clear structural insight: while uniform and centralized uniform 

theta graphs admit metric colorings with two colors regardless of parameter parity, the interaction between cyclic 
structure and path parity in cycle uniform theta graphs introduces a threshold phenomenon that necessitates 
three colors in the even–odd configuration. This demonstrates that parity and cyclic assemblies play a decisive 
role in metric distinguishability, even when the underlying graph remains connected and relatively sparse. 

The introduction of the cycle uniform theta graph expands the landscape of metric coloring by bridging 
tree-like theta structures and cyclic constructions, thereby highlighting how combining these two features affects 
metric coloring behavior. From a broader perspective, these findings contribute to the growing body of work on 
distance-based graph invariants by illustrating how subtle structural modifications can alter metric chromatic 
requirements. 

Several directions for future research naturally arise from this work. A first problem is to investigate the 
metric chromatic number of non-uniform theta graphs, where path lengths vary and symmetry is partially broken. 
Another promising direction is the study of metric chromatic numbers for disconnected graphs or for connected 
graphs 𝐺 with chromatic number 𝜒(𝐺) ≥ 4, where higher chromatic constraints may interact in nontrivial ways 
with metric coloring conditions. Such extensions are expected to deepen the understanding of metric coloring 
on more complex graph families and to uncover new structural phenomena. 
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