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Article Info ABSTRACT

Article history: Metric coloring allows adjacent vertices of a graph to share the same color
provided that their associated distance vectors are distinct, leading to the concept
of the metric chromatic number. This notion 1s closely related to problems of
vertex distinguishability and resource allocation in network-like structures. In
this paper, we present the first exact determination of the metric chromatic
number for three families of theta type graphs: uniform theta graphs, centralized
Keywords: uniform theta graphs, and a newly introduced class called the cycle uniform theta
graph, obtained by cyclically arranging uniform theta subgraphs. The proposed
: construction enables an investigation of how cyclic configurations influence
DlSt}l‘IlCG; ) metric coloring behavior. Using a constructive metric coloring approach, exact
Metric Coloring. values of the metric chromatic number are obtained. It is shown that the uniform

theta graph 8(m, n) and the centralized uniform theta graph 8(m, n, p) both

satisfy u(@(m, n)) = u(6(m,n,p)) = 2 for all positive integers m,n, and p.

For the cycle uniform theta graph 6.(m, n, q), the metric chromatic number

equals 2 when n and g have the same parity or when n is odd and q 1s even. In
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Chromatic Number;

contrast, ,u(@c (m,n, q)) = 3 whennis even and q 1s odd. This latter case arises
because the longest path in the cyclic structure has odd length, forcing the graph
to have chromatic number three. Since the graph 1s connected and its chromatic
number 1s at most three, this structural constraint directly implies that three
colors are also necessary for a valid metric coloring.
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1. INTRODUCTION

Graph theory provides a versatile framework for modeling relational structures arising in mathematics,
computer science, and networked systems. Among the many graph parameters studied, graph coloring occupies
a central position due to its deep theoretical foundations and its relevance to problems such as scheduling,
resource allocation, and network design [1], [2], [3], [4], [5], [6], [7], [8], [9]. While classical vertex coloring
requires adjacent vertices to receive distinct colors, many practical settings demand more flexible labeling
schemes that still guarantee vertex distinguishability.

Distance based graph invariants were introduced to address this need for distinguishability beyond
adjacency constraints. One of the most influential concepts is the metric dimension, introduced by Harary and
Melter [10], which measures the minimum size of a vertex set capable of uniquely identifying all vertices through
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distance vectors. A comprehensive overview of subsequent developments and recent research directions on the
metric dimension can be found i [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24].
Building on this idea, Chartrand, Okamoto, and Zhang introduced the metric chromatic number [25], which
mtegrates distance based identification with coloring constraints. In a metric coloring, adjacent vertices may share
the same color provided that their associated distance vectors are distinct, and the minimum number of colors
satisfying this condition is denoted by u(G) [26], [27].

Research on the metric chromatic number has encompassed several families of graphs, including pencil
graphs, which serve as a basic reference class in the study of metric coloring [10], followed by works on wheel
graphs and related constructions [26]. More recent contributions have examined metric coloring on fan type
graphs, corona graphs, and graph products, where research on metric coloring is not limited to identifying the
graph classes alone, but also aims to reveal how structural features influence coloring behavior. These studies
demonstrate that the value of u(G) is highly sensitive to structural properties such as symmetry, connectivity, and
other inherent graph characteristics [27], [28], [29], [30], [31], [32], [33], [34]. Contemporary surveys further
confirm that distance based coloring parameters remain an active area of research, particularly in connection with
vertex 1dentification and network labeling problems [35]. Nevertheless, existing results are still largely restricted
to relatively simple or well-known graph classes.

Theta type graphs, which are composed of multiple internally disjoint paths connecting a common pair of
vertices, have received comparatively limited attention in the context of metric chromatic number. Although these
graphs play an important role in both theoretical graph theory and applied network modeling, existing studies
have not yet provided a systematic treatment of metric coloring for uniform theta graphs, centralized uniform
theta graphs, or cyclic constructions derived from these structures. To the best of our knowledge, explicit
determinations of the metric chromatic number for these families are still unavailable in the current literature.
The present study is further motivated by recent work of Riyan and Yeni [35] on the total edge irregularity strength
of centralized uniform theta graphs, which demonstrates that subtle structural modifications can substantially
affect graph labeling parameters. This naturally leads to the question of how such structural variations influence
metric coloring behavior, thereby providing a strong rationale for the investigation undertaken in this paper.

Motvated by the framework introduced 1n [35], this paper focuses on three closely related graph families:
the uniform theta graph, the centralized uniform theta graph, and a newly introduced class called the cycle
uniform theta graph. The cycle uniform theta graph is constructed by arranging uniform theta subgraphs in a
cyclic manner, yielding a hybrid cycle tree structure that enables a systematic investigation of parity effects and
cyclic connectivity on metric coloring. The primary objective of this work is to determine the exact metric
chromatic numbers of these families and to provide the first complete characterization of pu(G) for uniform,
centralized uniform, and cycle uniform theta graphs. By identifying parameter dependent conditions under which
the metric chromatic number changes, this study clarifies the interplay between graph structure, parity, and
distance-based coloring constraints, while also offering insights relevant to vertex distinguishability and resource
allocation in network-like systems.

2. RESEARCH METHOD

This work 1s purely theoretical and employs a constructive proof strategy combined with structural graph
analysis to determine the metric chromatic numbers of several theta type graph families. The study focuses on
uniform theta graphs, centralized uniform theta graphs, and the newly introduced cycle uniform theta graphs.
Throughout the paper, all graph parameters are assumed to belong to N, with explicit constraints imposed to
ensure that each construction is well defined; in particular, the uniform theta graph 8(m, n) is considered for
m,n = 2, the centralized uniform theta graph 8(m,n,p) for m,n,p = 2, and the cycle uniform theta graph
6.(m,n,q) form = 2,n = 2,and q = 3. This section presents the necessary preliminaries, notation, and proof
strategy used consistently in the subsequent analysis.

For each graph family G under consideration, the method proceeds in a systematic manner. First, the
classical chromatic number y(G) is determined using the structural properties of the graph, which provides a
natural upper bound for the metric chromatic number p(G). Next, a sequence of candidate colorings is
constructed, beginning with two colors and increasing incrementally up to y(G). For a fixed number of colors [,
an explicit coloring function f:V(G) = {1,2, ..., 1} is defined by specifying the color classes and the associated
partition T = {wy, W,, ..., w;}. For each vertex v € V(G), the corresponding metric code vector I'(v, i) is then
computed. A coloring is verified to be a metric coloring by showing that every adjacent pair of vertices has distinct
metric code vectors; if this condition is satisfied, the process terminates and the corresponding value of [ is
identified as p(G). Otherwise, the number of colors is increased and the construction is repeated, ensuring that
the smallest possible number of colors satisfying the metric coloring condition is obtained.

In the case of cycle uniform theta graphs, the analysis requires a more refined treatment due to the
mteraction between cyclic and tree-like structures. In particular, the proof is organized into separate cases
according to the parity of the parameters n and g, since even-odd configurations significantly affect metric
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distance patterns and, consequently, the feasibility of two-color metric colorings. Fach parity case 1s addressed
explicitly, either through direct distance calculations or via structured lemmas that formalize recurring arguments
and avoid reliance on informal analogies. No empirical data are collected, as all results are derived analytically.
Finally, for notational convenience, the interval [a,, a,] is defined as [a;,a,] = {c € N | a; < ¢ < a, } where
a,,a, € N.

In summary, the proof strategy adopted in this paper follows a unified scheme across all graph families
under consideration. The chromatic number y(G) is first established to obtain a sharp upper bound for pu(G).
Subsequently, explicit metric colorings are constructed, and parity-based case analyses are employed to ensure
that all adjacency configurations are covered. The mimmality of the resulting colorings is then verified by
demonstrating that adjacent vertices admit distinct metric vectors, thereby yielding the exact value of u(G) for
each graph family.

Definition 1 [10] Consider graph G and f: V(G) = {1,2, ..., [} be a vertex coloring in which adjacent vertices are
allowed to share the same color. Let T = {w;, w,, ..., w;} denote the associated collection of color classes, and
define for each vertex v € V(G) the metric vector
['(v,m) = (d(v,wy),d(v,w,), ..., d(v,w,)),
where d(v,w;) = min {d(v,w) | w € w;}. The coloring f is referred to as a metric coloring if every adjacent
pair u, v € V(G) satisfies
I'(u, ) # I'(v, 7).

Definition 2 [26] The quantity arising from identifying the smallest number of colors that can induce a metric
coloring on a graph G is referred to as its metric chromatic number, denoted by u(G).

Lemma 1 [26] Given a connected graph G with n vertices, the following bound holds for its metric chromatic
number:

2<p(6) <x(@)<n,
where y(G) is the chromatic number of G.

Definition 3 [35] The uniform theta graph 8 (m, n) for m,n € N, is formally specified as the graph with vertex
set

V(0(mn)) = {co 1, vi]-| i €[1,m]; j €[1,n]},

whose edge set 1s given by

E(B(m,n)) = {{Co'vu}' Win, 1} {vijﬁvi(j+1)}| i€[l,m];je[l,n—1]}

Uml Um2 Um3 Umnn

Figure 1. Uniform Theta Graph 8(m,n)

Definition 4 [35] The centralized uniform theta graph 8(m, n, p) where m,n, p € N, is defined by the vertex set
V(Q(m,n, p)) = {co, Cry vi]-k| i€[1,m]; je[l,n]; rk €[1,p]}

whose edge set 1s given by

E(Q(m, n,p)) = {{CO'vilk}' Winko ¢}, {Vijk: vi(j+1)k}| i€[l,m]; je[l,n—1]; k€ [1,p]}
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Figure 2. Centralized Unil‘orin Theta Graph 6(m, n, p)

The author then introduces a new graph constructed from the combined ideas of uniform theta graphs and cycle
graphs, leading to the following Definition 5.

Definition 5 The cycle uniform theta graph 6,.(m,n, q) with m,n, q € N, is characterized by the vertex set
V(6.0m,n,q) = {co ¢y vy i € [1,m]; j € [L,n]; v € [1,q — 1]; k € [1, 4]},
while its corresponding collection of edges is described by
E(Bc(m, n, Q)) = {{COfvill}' {cr Vi) {vinq'co}' Winko ¢}, {vijk: 17i(j+1)k}| i€[lm];je[lL,n—1]; T €
[1,q —1];k € [1,q]}.

Vml(g-1

Um2(g-1),

Figure 3. Cycle Uniform Theta Graph 6,.(m,n, q)

Lemma 2 For a uniform theta graph 8 (m, n) with m,n € N, the chromatic number is
x(@(m,n)) = 2.

Proof. Let 8(m,n) for m,n € N. When m = 1, the graph 6(1,n) reduces to a path graph. Therefore,
x(6(1,n)) = 2. For m = 2, the construction of 8(m, n) yields exactly m internally disjoint paths of length n
joining the same pair of end vertices. Since these paths have equal length, any two of them form a cycle of even
length. Hence, 8(m,n) contains only even cycles. It follows that y(6(m,n)) = 2, for all m = 2. Hence,

x(@(m,n)) = 2.

Lemma 3 For the centralized uniform theta graph 8(m, n, p) with m,n,p € N, its chromatic number is given by
x(6(m,n,p)) = 2.

Exploring the Metric Chromatic Number of Uniform, Centralized Uniform, and Cycle Uniform Theta Graphs (Raventino)
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Proof. Consider 8(m, n,p) constructed by taking p copies of the graph 8(m, n) and identifying one prescribed
vertex of each copy with a common central vertex ¢,. Since each 8(m, n) is 2-colorable, fix a proper 2-coloring
for one copy and apply the same color assignment to all remaining copies. Because the only shared vertex among
the pcopies 1s ¢y, and this vertex receives a consistent color across all copies, no adjacency conflicts arise in the
combined structure. Thus, the entire graph admits a proper 2-coloring, and therefore

x(@(m,n,p)) =2,

as claimed.
Lemma 4 Let 8.(m, n, q) be a cycle uniform theta graph with m, n, ¢ € N. Then its chromatic number satisfies

2; if n and g are both odd, both even, or if n 1s odd and q 1s even

X(QC (m,n, q)) = {3 ;ifnis even and q 1s odd
Proof. Consider the cycle uniform theta graph 8,(m, n, q) with m,n, q € N. Observe that this graph necessarily
contains cycles whose lengths are either even or odd. To determine its chromatic number, it suffices to examine
the largest cycle in the graph, since every smaller cycle is structurally analogous to those already characterized in
Lemma 2. In the cases where n and q are both odd, both even, or when n is odd and g is even, the largest cycle
in 8,(m, n, @) has even length. Conversely, when n is even and q is odd, the largest cycle of 8,.(m, n, q) has odd
length. It is well known that an even cycle has chromatic number 2, whereas an odd cycle requires chromatic

number 3. Therefore,

2; if nand q are both odd, both even, or if n 1s odd and q is even

X(QC (m,n, q)) = {3 ;ifnis even and q is odd ”

3. RESULT AND ANALYSIS

This section presents the main results of the paper concerning the metric chromatic numbers of uniform,
centralized uniform, and cycle uniform theta graphs. The results are established through explicit metric coloring
constructions and rigorous proofs, and are supported by illustrative examples and figures. In particular, the
analysis highlights how structural properties and parity conditions play a decisive role in determining the feasibility
and exact value of metric colorings across these graph families.

3.1  Metric Chromatic Number of Uniform Theta Graph
As an illustrative example, consider the graph 6(2,3), with vertex set
V(9(2'3)) = {Co, €1, V11, V12, V13, V21, V22, Va3}s
and whose edge set is defined as
E(9(2'3)) = {{co, 11} {0, V213 {v11, Y12} V12, Vi) {21, V223 {V22, V233 {v13, €1} {v23, €433
To determine the metric chromatic number of the graph 8(2,3), we first define a function f: V(6(2,3)) - {1,2}
given by
fv) = {1: UV = Co, €1, V12, V22
2, V = V11, V13, V21, V23
this assignment induces a proper and consistent vertex coloring on the graph 8(2,3). Based on this coloring, we
construct the set of color classes T = {w;, w,}, were
w;y = {Co, €1, V12, V2 } and
Wy = { V11, V13, Va1, Va3}
Using these color classes, the metric code vector of each vertex 1s computed with respect to 7. The resulting
metric code vectors for all vertices of 8(2,3) are presented in Table 1.

Table 1. Metric code vectors I' (v, ) of the graph 8(2,3)

Vertex div,w;)) dww,) T(v,n)

¢ 0 1 0,1)
o 0 1 0,1)
vy, 1 0 (1,0)
v, 0 1 (0,1)
Vs 1 0 (1,0)
Vyy 1 0 (1,0)
Vya 0 1 0,1)
Vya 1 0 (1,0)
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Based on Table 1, the resulting metric coloring is illustrated in Figure 4.

(0,1)
Uil V12 U3

(0,1) ¢o ¢1(0,1)

V21 Va2 V23
0,1)

Figure 4. Uniform Theta Graph 0(2, 3)

We observe that any two adjacent vertices of 6(2,3) admit different metric code vectors, which implies that the
metric chromatic number of the graph is 2.

In general, for the uniform theta graph 8(m, n), the metric chromatic number is given in Theorem 1.

Theorem 1 For the uniform theta graph 8(m, n) where m,n € N, the metric chromatic number 1s
u(0(m,n)) = 2.

Proof.
Case for odd n
Consider the function f: V(8 (m, n)) = {1,2} given by
B 1,v = ¢y, c1, v withi € [1,m]; j € [1,n]; jeven

f(”)‘{z, v = vy withi € [L,m]; j € [L,n]; j odd
this assignment defines a consistent vertex-coloring on the graph 8(m, n). Based on this coloring, construct the
set of color classes T = {w;, w,}, were

wy = {co, ¢y, V5| i € [1,m]; j € [1,n]; j even}
w, ={v;|i €[1,m]; j € [Ln]; jodd}.
We analyze the vectors I'(u, m) and I'(v, i) for all distinct vertices u, v € V(8(m, n)) to ensure that each pair of
adjacent vertices receives distinct metric representations.
['(cy, m) = (d(cy, Wy), d(cg, w,)). Since
d(co, wy) = min{d(cy, ¢o), d(cqo, ¢1), d(co, vi]-)| i €[1,m]; j€[1,n]; jeven} =0

d(co, w,) = min{ d(c,, vij)| i€[l,m]; je[l,n]; jodd} =1
we establish T'(cy, ) = (0,1).
T(vij,m) = (d(vij, wy), d(vij, w,)) with odd j. Since

d(vij,wl) = min{d(vij,co),d(vij,cl),d(vi]-, vit)| i€[1,m]; j,t€[1,n]; teven} =1
d(vi]-,wz) = min{ d(v vit)| i€[1l,m]; j,te[l,n]; todd} =0
then F(vi]-, T[) = (1,0) with odd j.
F(vij,rr) = (d(vi]-, Wl): d(vij, Wz)) with even j. Since
d(vij,wl) = min{d(vij,co),d(vij,cl),d(vi]-, vit)| i€[1,m]; j,t€[1,n]; teven} =0
d(vi]-,wz) = min{ d(vij,vit)| i€[1l,m]; j,te[l,n]; todd} =1
we conclude that F(vi 1 T[) = (0,1) with j even.
['(cy, m) = (d(cq, wy),d(c1, W5)). Since
d(c, wy) = min{d(cy, ), d(cy, 1), d(cy, vi]-)| i€[1,m]; je[1,n]; jeven} =0

d(c;, wy) = min{ d(c,, vl-j)| i€[l,m]; je[1,n]; jodd} =1
then I'(¢,, ™) = (0,1).
For any adjacent pair of vertices u, v € V(6(m, n)) with u # v, their metric representations satisty I'(u, m) #
['(v, ). Hence, for odd n, the metric chromatic number of the graph satisties u(6(m, n)) = 2.

ijr
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Ul U2 Um3
0,1)

Figure 5. Uniform Theta Graph 8(m, 3)

Case for even n
Consider the function f: V(8 (m, n)) = {1,2} defined by
B 1, V = Co, v;j Withi € [1,m]; j € [1,n]; j even
f(v)_{Z, v = ¢y, v withi € [L,m]; j € [1,n]; j odd
which constitutes a vertex-coloring of the graph 8(m, n). Define the color classes
w; = {co,vij| i € [1,m]; j € [1,n]; j even},
w, ={c, vl i € [Lm]; j € [Ln]; jodd},
and set of color classes m = {wy;, w,}.
For each vertex u € V(6 (m, n)), the corresponding metric vector is
I(u,m) = (d(u,wy), d(u, wy)),

with distances computed as follows:

a. T(cym) = (0,1),

b. T(v,m) = (1,0) for j odd,

c. T(vy,m) = (0,1) for j even,

d. T(cy, ) =(1,0).
Since I'(u, ) # ['(v, ) for every pair of adjacent vertices u # v, f defines a valid metric coloring using two
colors, implying u(6(m,n)) < 2. By Lemma 2, y(6(m,n)) = 2, and since 8(m, n) is connected, it follows
from [26] result that u(6(m,n)) = 2.
Therefore, for every pair of adjacent vertices in the uniform theta graph, the corresponding metric code vectors
are distinct. Hence, we conclude that u(@(m, n)) = 2, forallm,n € N.

0,1) 0,1

0.1) ¢o

Uml Umn2 Um3 U4
0,1) 0,1)

Figure 6. Uniform Theta Graph 8(m, 4)

3.2  Metric Chromatic Number of Centralized Uniform Theta Graph

Theorem 2 Let 6(m, n, p) denote a centralized uniform theta graph with m, n, p € N. Then the metric chromatic
number of 8(m, n, p) is

u(@(@m,n,p)) = 2.

Proof. The proof follows the same constructive framework as that employed for Theorem 1. In the present case,
the vertex set is extended from {c,, ¢, } to {¢y, ¢, | € [1, p]}, and each original vertex v;; is replaced by a family
of vertices {v;j; | k € [1,p]}. These extensions do not alter the metric chromatic number of the graph.
Consequently, by systematically replacing ¢; with ¢, and v;; with v in the argument of Theorem 1, the metric

coloring remains valid. Therefore, it follows rigorously that u(6(m, n, p)) = 2.
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Figure 8. Centralized U niform Theta Graph 8(m, 4,p)

3.3  Metric Chromatic Number of Cycle Uniform Theta Graphs

Theorem 3 Let cycle uniform theta graph 6,.(m, n, q) with m,n, q € N, then
( 0.( )) _ (2, ifnand q are both odd; both even; or if . is odd and q is even
moAmn,q)) = 3, if n is even and q is odd

Proof.
Case for n and q are both odd
Consider the function f: V(GC (m,n, q)) — {1,2} given by
B 1, v=co v, Withi € [L,m]; je[L,n];re[l,q—1];k €[1,q]; jeven
fl) = {2, v = vy, withi € [1m]; j € [Ln];k € [1,q]; j odd
this assignment defines a consistent vertex-coloring on the graph 6,.(m, n, q). Based on this coloring, construct
the set of color classes T = {w;, w,}, were
wy ={co, ¢, Vil L E[L,m]; j € [Ln];r €[1,q—1];k € [1,q]; j even}
w, = { vl L € [L,m]; j € [Ln]; k € [1,q]; j odd}
we analyze the vectors I'(u, ) and I'(v, ) for all distinct vertices u, v € V(6,(m,n, q)) to ensure that each pair
of adjacent vertices receives distinct metric representations.
['(cy, m) = (d(cy, wy), d(cg, w,)). Since
d(co, w;) = min{d(cy, ¢o), d(co, cr),d(co,vl-jk)| i€e[l,m]; je[lL,n]; re[l,q—1]; k €[1,q]; j even}
=0
d(co, w,) = min{ d(c,, vijk)| i€[l,m];je[Ln];k€[l,q]; jodd} =1
we conclude that T'(cy, ) = (0,1).
T(vijro ) = (d(Viji, w1 ), d (v, w)) with odd j. Since
d(vijk, wl) = min{d(vijk, co),d(vijk, cr),d(vl-]-k,vitk)| i€e[l,m]; j,te[l,n;re[l,q—1];k €
[1,q]; teven} =1
d(vijk,wz) = min{ d(vijk,vitk)| i€[1l,m]; j,te[l,n];ke€[l,q]; todd} =0
then F(vi]-k,rr) = (1,0) with odd j.
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F(vijk, T[) = (d(vijk, Wl), d(vijk, Wz)) with even j. Since
d(vi]-k, wy) = min{d(v”k,co),d(v”k, CT),d(Uijk, vin)| 1€ [Lm]; j,t € [Lnl;r€[l,q—1];k
€[1,q]; teven} =0
d(vijk,wz) = min{ d(vijk,vitk)| i€[1l,m]; j,te[l,n];ke[l,q]; todd} =1
we establish F(vi ko TL') = (0,1) with even j.
I'(c,, ) = (d(c,, wy),d(cr, W;)). Since
d(c,,w;) = min{d(c,, ¢o), d(c,, c,), d(c,, vl-]-k)| i€e[l,m]; je[l,n];re€[l,q—1];k € [1,q]; j even}
=0
d(c,wy) = min{d(cr,vi]-k)| i€e[l,m];je[l,nl;re[l,q—-1;k€[1,q]; jodd} =1
then I'(c,, ) = (0,1).
For any adjacent pair of vertices u, v € V(6,.(m,n, q)) with u # v, their metric representations satisty I'(u, m) #
['(v, ). Hence, for n and q are both odd, the metric chromatic number of the graph satisfies u(6,(m,n, q)) =
2.
Case for odd n and even q
In this case, the underlying distance structure coincides with that of the odd-odd configuration. The only
distinction arises from the increased multiplicity of the vertices c¢,., which does not affect the distance relationships
to the color classes. Accordingly, assigning each vertex ¢, to the color class w; preserves distinct metric
representations for all adjacent vertices and yields a valid metric coloring,.
Case for n and q are both even
This case is divided into two parts, namely when k 1s odd and when k is even.
For the case where k is odd, the construction is given as follows:
Consider the function f: V(GC (m,n, q)) — {1,2} given by
B 1, v = €y, Cry Vyji With i € [L,m]; je[L,n];re[l,q—1];k €[1,q]; r,jeven
fv) = {2, v =, Vi withi € [1,m]; j € [Ln];r €[1,q—1];k € [1,q]; r,j odd
this assignment defines a consistent vertex-coloring on the graph 6,.(m, n, q). Based on this coloring, construct
the set of color classes T = {w;, w,}, were
wy ={co, ¢, Vil L E[L,m]; j € [Ln];r €[1,q—1];k € [1,q]; 7,j even}
w, ={c,vli €[L,m]; jE[L,n];r €[1,q—1];k € [1,q]; 7,j odd}
we analyze the vectors I'(u, ) and I'(v, i) for all distinct vertices u, v € V(6,.(m,n, q)) to ensure that each pair
of adjacent vertices receives distinct metric representations.
['(cy, m) = (d(cy, wy), d(cg, w,)). Since
d(co, w;) = min{d(cy, ¢o), d(co, cr),d(co,vl-]-k)| i€e[l,m];je[l,n;re€[l,q—-1];k € [1,q]; r,j even}
=0
d(co, w,) = min{ d(c,, cr),d(co,vi]-k)| ie[l,m]; je[l,n;re[l,q—-1;k €[1,q]; r,jodd} =1
then I'(cy, ) = (0,1).
T(vijro ) = (d(Viji, w1 ), d (v, w)) with odd j. Since
d(vi]-k, Wl) = min{d(v”k,co),d(v”k, CT),d(Uijk, vitk)| i€e[1l,m]; j,te[L,n];re[l,q—1];k
€[1,q]; r,teven} =1
d(vijk, w,) = min{ d(vijk, cr),d(vl-jk,vitk)| i€e[l,m]; j,te[l,n;re[l,q—1];k €[1,q]; r,t odd}
=0
we conclude that F(vi ko n) = (1,0) with odd j.
F(vijk, T[) = (d(vijk, Wl), d(vijk, Wz)) with even j. Since
d(vi]-k, Wl) = min{d(v”k,co),d(v”k, CT),d(Uijk, vitk)| i€e[1,m]; j,te[L,n];re[l,q—1];k
€[1,q]; r,teven} =0
d(vijk, w,) = min{d(vijk,cr),d(vijk, vin)| i€ [Lm]; jt €[1,nl;r €[1,q— 1]k € [1,q]; 7t odd}
=1
then F(vi ]-k,T[) = (0,1) with even j.
I'(c,,m) = (d(c,, wy),d(c,, w,)) with odd . Since
d(c,,wy) = min{d(cr, o), d(c,, c,) d(cr,vijk)| i€[1l,m]; je[l,n];re€[l,q—1];k € [1,q]; r,j even}
=1
d(c,,wy) = min{d(cr, cr),d(cr,vijk)| ie[l,m];je[l,nl;re[l,q—1;k€[1,q]; r,jodd} =0
we obtain T'(¢,., ) = (1,0) with odd 7.
I'(c,, m) = (d(c,, wy),d(c,, w,)) with even r. Since

Zero: Jurnal Sains, Matematika dan Terapan



Zero: Jurnal Sains, Matematika dan Terapan a 21

d(c,,w;) = min{d(c,, ¢y), d(c,, c,) d(c, vl-jk)| i€[1l,m]; je[lL,n];re€[l,q—1];k € [1,q]; r,j even}
=0
d(c,,w;) = min{d(c,, cr),d(cr,vijk)| ie[l,m]; je[l,n;re[l,q—-1;k€[1,q]; r,jodd} =1
then I'(¢c,, ) = (0,1) with even 7.
For the case where k is even, the construction is given as follows:
This case is the same as the scenario when k is odd. The distinction lies in the coloring of each vertex v; ., where
the assignment of colors is interchanged: vertices v;j; with even j that were originally colored with color 1 are
now assigned color 1 when j 1s odd, and conversely, vertices with odd j that were colored with color 2 are now
assigned color 2 when J is even.

Figure 9. Cycle Uniform Theta Graph 6,.(m, 4,4)

Case for even n and odd q

In contrast to the even-even case, the parity configuration with n even and g odd prevents the existence of a valid
two-color metric coloring. In particular, the vertex v, admits the same metric code vector as at least one of its
adjacent vertices under any two-color assignment. To resolve this conflict, an additional color class wy is
introduced, with v, assigned to w, which guarantees distinct metric representations for all adjacent vertex pairs.
Consequently, the metric coloring of this graph necessitates three distinct colors. For the cases where n and q are
odd-odd, odd-even, or even-even, for every pair of adjacent vertices u, v € V(8,(m,n, q)) with u # v, the
corresponding metric vectors satisfy I'(u, m) # ['(v, ). Hence, a metric coloring using two colors is feasible,
vielding u(6.(m,n, q)) < 2. By Lemma 4, x(6.(m,n,q)) = 2, and since 8,(m,n, q) is connected, it follows
from [26] result that u(6,(m, n, q)) = 2. Next, in the case where n is even and q 1s odd, for every adjacent pair
u,v € V(6.(m,n, q)) with u # v, the metric vectors satisty I'(u, &) # I'(v, 7).

Therefore, each pair of adjacent vertices in the cycle uniform theta graph admits distinct metric code vectors.
Consequently, a valid metric coloring necessitates three colors, and hence u(8,(m,n, q)) < 3. Applying Lemma
4, we have y(6.(m,n, q)) = 3, and given that 8,.(m, n, q) is connected, [26] result implies u(6.(m, n, q)) = 3.

0,14
c

Figure 10. Cycle Uniform Theta Graph 8,(m, 4,3)
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we establish

2
1(6.(m,n,q)) = {3
form,n,q € N.

;1f mand g are both odd, both even, or if n 1s odd and g 1s even
;ifn1s even and q 1s odd

For clarity and completeness, the main results obtained in this study are summarized in Table 2, which lists the
metric chromatic numbers for each theta type graph family under the corresponding parameter conditions.

Table 2. Metric Chromatic Numbers of the Considered Theta Type Graph Families

Graph family Parameter conditions Metric chromatic number
uniform theta graph  m,n € N p(6(m,n)) =2
centralized uniform  m,n,p €N u(6(m,n,p)) =2

theta graph

n and q are both odd, both even, or _
if n odd and q even, form,n,q € N H (QC (m,n, q)) =2
neven and q odd, form,n,q € N ,u(ec(m, n, q)) =3

cycle uniform theta
graph

These results are consistent with previously studied graph families in metric coloring theory, such as paths,
trees, and classical theta graphs, where bipartite or tree-like structures typically yield u(G) = 2. The cycle uniform
theta graph, however, exhibits a clear structural departure from these families, as the interaction between cyclic
configurations and parity conditions necessitates the use of a third color in specific cases. From a broader
perspective, these findings indicate that parity-sensitive cyclic arrangements play a crucial role in determining
metric distinguishability. Beyond their theoretical significance, the results may have implications for the design
and analysis of structured networks in which vertex identification based on distance information is essential, such
as communication networks, distributed systems, or sensor placement problems. Moreover, the structural
msights obtained here suggest potential directions for future work, including the development of efficient metric
coloring algorithms for cyclic graph classes and the extension of the analysis to more general network topologies
with mixed tree-cycle structures.

4. CONCLUSION
This study provides a complete and rigorous determination of the metric chromatic numbers for several
families of theta type graphs. In particular, the results establish that
u(Q(m,n)) =2forallm,n €N,
u(Q(m,n,p)) =2forallm,n,p €N,
and for the cycle uniform theta graph,
2, 1fn and q are both odd; both even; or if n is odd and q is even,
u(O:(m,n, q)) = {3, if nis even and q is odd,
forallm,n,q € N.

Beyond the exact values, the results reveal a clear structural insight: while uniform and centralized uniform
theta graphs admit metric colorings with two colors regardless of parameter parity, the interaction between cyclic
structure and path parity in cycle uniform theta graphs introduces a threshold phenomenon that necessitates
three colors in the even-odd configuration. This demonstrates that parity and cyclic assemblies play a decisive
role in metric distinguishability, even when the underlying graph remains connected and relatively sparse.

The introduction of the cycle uniform theta graph expands the landscape of metric coloring by bridging
tree-like theta structures and cyclic constructions, thereby highlighting how combining these two features affects
metric coloring behavior. From a broader perspective, these findings contribute to the growing body of work on
distance-based graph mvariants by illustrating how subtle structural modifications can alter metric chromatic
requirements.

Several directions for future research naturally arise from this work. A first problem is to investigate the
metric chromatic number of non-uniform theta graphs, where path lengths vary and symmetry is partially broken.
Another promising direction is the study of metric chromatic numbers for disconnected graphs or for connected
graphs G with chromatic number y(G) = 4, where higher chromatic constraints may interact in nontrivial ways
with metric coloring conditions. Such extensions are expected to deepen the understanding of metric coloring
on more complex graph families and to uncover new structural phenomena.
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