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Article Info ABSTRACT

. , Tornadoes are major weather hazards in Indonesia, where wind variability is
Article history: important for assessing disaster risk and supporting energy planning. This study
Accepted, 26 December 2025 conducts a short-term (one-year) analysis by identify similarities in regional wind
speed patterns using a time-series clustering approach, treating monthly average
wind speeds in 2024 as proxies for tornado-relevant wind regimes rather than
direct tornado occurrence data. Agglomerative hierarchical clustering is
integrated with three distance measures—Dynamic Time Warping (DTW),
Keywords: Autocorrelation Function (ACF), and Short Time Series (STS)—and optimized
using Brain Storm Optimization (BSO) to determine optimal distance weighting
and cluster numbers. The results indicate that DTW provides the best
performance, yielding a two-cluster solution with a Silhouette Coefficient of
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Tomadoes 0.5292. The first cluster exhibits relatively stable wind patterns, while the second
shows higher temporal variability. This framework provides a data-driven basis
for region-specific wind energy planning and tornado-adaptive infrastructure
considerations in Indonesia.
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1. INTRODUCTION

Indonesia is also known as an agricultural country and an archipelago located in a geographical,
hydrological, geological, and demographic position that is prone to disasters [1]. One of the atmospheric hazards
affecting Indonesia 1s tornadoes. Tornadoes stand out as some of the most devastating weather events, inflicting
substantial harm on structures, essential services, and the natural environment nearby [2].

Numerous public databases have been made available online by different countries, including those n
Europe [3], the United States [4], Canada [5], and Japan [6]. Conversely, numerous tornado frequency
studies have been documented for various nations throughout Europe [7], Northern Eurasia [8], South America
[9], Australia [10], and Asian nations like Japan [11];[12], China [13]; [14], India-Pakistan [15], and the
Philippines [16].

In this paper, the definition of a tornado comes from the [17]. A tornado isdescribed as "a spinning column
of air that rapidly rotates, extending from the ground up to the bottom of a cumuliform cloud, frequently seen as
a funnel cloud." Moreover, this description is expanded to include all waterspouts, regardless of whether
they come ashore, consistent with the tornado description by [18].

Tornadoes occur in areas with large temperature gradients [19]. Temperature gradients affect pressure
gradients and wind energy [20]. Currently, wind energy has received increasing attention. Although wind energy
capacity 1s relatively low compared to other renewable energy sources such as biomass, hydro, and nuclear power
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plants, it 1s estimated that wind energy will contribute 18% of the world's electricity supply by 2050 [21]. For
developing countries such as Indonesia, wind energy is an attractive option for switching from fossil fuels to
renewable energy. However, wind energy development in Indonesia 1s still low. One of the main factors 1s the
relatively low average wind speed, making it difficult to generate electricity on a large scale. Wind speeds are not
high enough to build large-diameter wind turbines, as large-scale wind turbines require a minimum wind speed
range of between 5 m/s and 7 m/s [22]. This study provides an indirect, wind-regime-based characterization
relevant to preliminary tornado risk assessment. Most existing studies address tornado hazards or wind energy
potential separately, without explicitly linking wind pattern classification to disaster risk mitigation and resilient
wind power development. Furthermore, improved knowledge of tornado occurrence patterns can enhance early
warning dissemination, community awareness programs, and emergency response planning, particularly in
densely populated and vulnerable areas. This can be done by cluster analysis with similar characteristics.

Cluster analysis groups objects with similar traits while preserving their natural structure, creating meaningful
patterns or classifications [23]. Cluster analysis aims to group data objectively into homogeneous groups where
the similarities of objects within groups are minimized, and dissimilarities between groups of objects are
maximized [24]. The application of cluster analysis is growing with the use of time series data (time series). Time
series data 1s data obtained by observing sequences taken sequentially in time, which has a correlation structure
between the values in each time series data [25]. Time series cluster analysis groups objects by their patterns, but
the method must account for the dynamic nature of time series data. Calculating the distance between time series
objects 1s one of the main foundations of time series clustering algorithms [26]. Currently, there have been many
developments related to the distance measurements used in this study, namely Dynamic Time Warping (DTW)
distance, Short Time Series (STS) distance [27], and Autocorrelation Function (ACF) distance [28].

Clustering analysis 1s divided into two types, namely hierarchical clustering and non-hierarchical clustering.
The main difference between the two lies in the mitial grouping process. Hierarchical grows clusters gradually,
while non-hierarchical fixes cluster count and refines iteratively [29], [30]. According to previous research, the
hierarchical method is selected in this study, as this approach is robust to outliers [31]. Hierarchical cluster
analysis with agglomerative method consists of single linkage, average linkage, complete linkage, and ward method
[32]. But, [33] conducted research on the clustering of districts/cities in South Sulawesi using hierarchical
clustering with the average linkage method, and the results showed three clusters: 21 districts/cities, 2
districts/cities, and 1 district/city. In [34] also conducted research on the grouping of secondary crop production
using hierarchical clustering by comparing complete linkage and average linkage. The results of the study show
that the average linkage method is better because the standard deviation value of average linkage (0.056) 1s smaller
than that of complete linkage. Different from earlier research on grouping wind speeds that depend on just one
way to measure distance or a set method for clustering, this research combines multiple time-series distance
measures within an optimization-based clustering framework. Grouping wind speed patterns is indirectly relevant
to reducing tornado risk, as similar patterns reveal regions with comparable risks and support disaster planning.
Grouping recent wind patterns provides insights for resilient wind power planning, disaster preparedness, and
Integrating risk to energy and infrastructure strategies. However, this analysis represents a short-term snapshot
rather than long-term climatology. This research examines the practical and methodological issues involved in
grouping short wind speed data at the provincial level in Indonesia. From a methodological angle,
the key question is how the methods of Dynamic Time Warping (DTW), Autocorrelation Function (ACF), and
Short Time Series (STS) can be integrated into an optimization framework to enhance the clustering of short
wind speed data. From a practical standpoint, the study investigates which  provinces in  Indonesia
show similar patterns in wind speeds during 2024 that are important for initial wind energy planning. It should
be noted that this analysis is based only on wind speed data, which means it indirectly provides insights on
tornado risk and serves as an initial step toward improving disaster risk management and sustainable energy
planning.

2. RESEARCH METHOD
2.1 Data Representation and Normalization
2.1.1 Wind Speed

It's crucial to understand that the grouping method hinges on how alike wind speeds are, not on specific
records of tornado touchdowns. Because of this, the groups that emerge don't show the definite chance of
a tornado happening; instead, they mirror the wind patterns of an area, which are related in theory to how
unstable the air is and the risk of strong winds. Wind speed is the speed of air moving horizontally and is
influenced by the barometric gradient of the location, the altitude of the location, and the topography [35]. The
BMKG classifies wind speed based on the Beaufort scale, which describes wind conditions and visible
phenomena in the surrounding environment. There are 12 categories of wind speed according to the Beaufort
scale [36]. Information related to the categorization of wind types according to the Beaufort scale can be seen as
follows:
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Table 1. Wind Speed on Beaufort Scale

‘Wind Speed (m/s) Wind Category
0-0,2 Calm

0,3-1,5 Light air

1,6 - 3,3 Light breeze

3,4 - 5,4 Soft breeze
55-79 Moderate breeze
8,0 - 10,7 Strong breeze
13,9 - 17,1 Light windstorm
17,2 - 20,7 Windstorm

20,8 - 24,4 Strong windstorm
24,5 - 28,4 Storm

28,5 - 32,6 Violent storm

> 32,7 Cyclone

Systematic and continuous wind speed measurements enable the identification of seasonal patterns and
trends. Monitoring wind speed through time series analysis is essential for predicting future events or evaluating
the continuity of wind supply in a particular region [37].

2.1.2 Preprocessing Data

A completeness check confirmed that the monthly wind speed dataset for all 34 provinces contains no
missing observations over the January-December 2024 period. Consequently, no data imputation or correction
was performed prior to normalization. Detailed information on provinces, station codes, geographic coordinates,
elevation, and valid observation periods is provided in Appendix A.

Normalization data processes common data distribution with the aim of normalization. One of the best
methods of normalization 1s Min-Max normalization. Min-Max normalization maps the value from each variable
into the same range. Normalization can be calculated by Equation (1) with $x$ as data per column, min as the
minimum value of data per column, and max as the maximum value of data per column [38]. The Min-Max
normalization formula is written as follows:

X~ Xmin 1
Xnorm = _ (L
Xmax — Xmin

Where x denotes the original observation, and X, and X« represent the mimimum and maximum values
within each variable.

It is acknowledged that the resulting time series consist of only 12 monthly observations, which 1s extremely
short for robust time-series clustering. Consequently, DTW, STS, and ACF distances were selected due to their
suitability for short-length, pattern-based, and non-stationary time series, rather than for long-term temporal
modeling.

2.2 Distance Matrix Calculation
2.2.1 Dynamic Time Warping (DTW) Distance

The first distance is Dynamic Time Warping (DTW) distance is an algorithm used to find the distance
between two time series that have the same or different lengths. With the Dynamic Time Warping (DTW)
algorithm, the distance 1s determined by finding the optimal warping path between two time series, so that the
warping path values and the distance between the two time series are obtained. Dynamic Time Warping (DTW)
uses dynamic programming by searching for all possible paths and selecting one path with the minimum
cumulative distance between two time series data using a distance matrix. Given two time series data X = x1, x2,
wees Xl ooy xnwith length nand Y = y1, y2, ..., yj, ..., ym with length m. Next, create a matrix D with size n x m.
The element (i,j) of matrix D is the difference between xi and yj, which can be formulated with the following
equation:

di; = |x; — }’j| (2)

whichisi=1,2,...,nandj = 1, 2, ... , m. The implementation of the D matrix 1s as follows:
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diy dip dig dy j
d2,1 d2 2 d2‘3 s dz']

D = d3'1 d3‘2 d3‘3 s d3']' (3)
di,l di,z dL,3 . di.j

After obtaining the distance, it 1s then added to a mimnimum of 3 adjacent elements {di=sj—n sy ciy—1}
where () < j <pand () < j<m thus forming matrix E. Equation (4) can be defined for element (i) In matrix

I as follows:

Eij = dy +{dg-1G-1,da-1;di-n)Eij 4

The iterative equation for the cumulative cost matrix within the Dynamic Time Warping (DTW)
algorithm is presented in Equation (4). Specifically, each element E; ; represents the minimum cumulative
distance required to align the subsequence (xq, ..., %;) with (y1, ..., ¥;). The local distance d; ; =| x; —
¥; Imeasures the instantancous dissimilarity between the two time series at positions iand j. This local
distance is then added to the minimum cumulative cost among the three admissible predecessor cells,
namely E;_4 j_q (diagonal move), E;_4 ;(vertical move), and E; ;_; (horizontal move). These shifts align with
the operations of matching, adding, and removing within the warping route, in that order. Dynamic Time
Warping (DTW) works by propagating the lowest cumulative cost through the matrix to determine the
optimal warping path, minimizing alignment differences between two time series. The implementation of
the E matrix 1s as follows:

Eiyx Eip Eis Ey;
[52,1 E,, E,; .. Ez‘]
E = Esq Es, E3s .. E3J- (5
[+ & & i
|.Ei,1 Ei,z El,3 El,jJ

After the E matrix is formed, the DTW distance between two time series X and Y can be calculated using
Equation (6) below [39]:

k
dprw (X,Y) = min (> E;j} ()

ij=1
VwEep

Where, p is a set of all possible warping paths, Ei,j is elements (i,j) in matrix E, and k is the length of the
warping path.

Equation (6) represents the final Dynamic Time Warping (DTW) distance between two time series Xand
Y, obtained as the minimum cumulative cost along the optimal warping path in the accumulated cost matrix E.
The derived DTW distance is a scalar value that is not negative and measures the total dissimilarity between two
time series once non-linear temporal alignment has been taken into account. Concerning monthly wind speed
data, a lower DTW distance implies that two provinces have very comparable wind speed trends over time,
even when peak events orseasonal changes are moved in time. In contrast, greater ~ DTW  distances show
significant variations in wind speed dynamics, such as opposing seasonal variability or
strength. As a result, this DTW  distance matrix acts as the main data for the clustering procedure, enabling
provinces with similar wind behavior features to be clustered together using the agglomerative hierarchical
clustering method.
2.2.2 Autocorrelation Function (ACF) Distance

Galeano and Pella [40] conducted research on the relationship between time series data using the
Autocorrelation function (ACF) approach. Suppose we are given two time series data X: and Y, where t is the
length of the time series. The autocorrelation function (ACF) distance consists of autocorrelation vectors from
X and Y, namely Px,= Prxs Poxs oo s Pry)t and Py, = Pry, Poy, oo, Pry)t respectively represent the

estimated autocorrelation vectors from lag 1 to lag k where Pix.= 0 and Piy; = 0 for i > k. Suppose the time

series data Z = Zl.ZZ, vy Zn, then the ACF value can be calculated using equation (7).
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— Z?==1k(xi - X)(Xt+k - X) 7
T~ Xy @

Pk

Equation (7) computes the sample autocorrelation coefficient pgpat lag k, which measures the linear
dependence between observations of a time series separated by k time steps. In this equation, X; denotes the
wind speed observation at time i, X;,, represents the observation at lag k, X is the mean of the time series, and
n is the total length of the series. The numerator captures the covariance between lagged observations, while the
denominator normalizes the value by the total variance of the series, ensuring that pj, lies within the range [—1,1].
In  thisresearch,a  collection  of autocorrelation values at various  time  Intervals are arranged  to
form autocorrelation vectors, which describe the pattern of how monthly wind speeds depend on each other
over time. Following this, the resemblance between two regions is determined by assessing the  distance
between each of their unique autocorrelation vectors, giving another way to understand wind speed activity that
goes beyond only comparing the strength of the wind.

After obtaining the autocorrelation vectors, the ACF distance between two time series data 47 and Y can
be calculated using the following equation:

dace (X ¥) =[P = D) 2P = Pr) @)

Equation (8) defines the Autocorrelation Function (ACF) distance between two time series Xyand Y;based
on the Fuclidean distance between their respective autocorrelation vectors. In this formulation, py,and
Py, denote the estimated autocorrelation vectors of the two wind speed time series, constructed from
autocorrelation coefficients at selected time lags. The matrix Q represents a weighting matrix that determines the
relative contribution of each lag; in this study,  1s set as an identity matrix, implying equal importance across all
lags. The ACF distance that arises gauges the resemblance of how time affects different regions; this
allows the grouping procedure to detect shared traits in wind duration and yearly patterns, instead of just
focusing on the actual strength of the wind.

Where @acr(4B) is the distance between autocorrelation A and B, and Q is the weighting matrix.
However, the ACF distance in this study does not have a weight, so € is an identity matrix. Thus, from equation
(8), the ACF distance becomes the Fuclidean distance between the autocorrelation function estimates with the
following equation:

dACF(Xt 'Yt) = \/Z?:l(ﬁxt - ﬁyt)z (9)

2.2.3 Short Time Series (STS) Distance

Short Time Series (STS) distance was introduced by Moller-Levet et al. [41] and 1s used to measure the
similarity of DNA microarray time series data. Microarray is a pattern obtained from the analysis of the function
and expression of a large number of genes simultaneously in a single experiment. Moéller aimed to determine a
distance that could capture differences in form, determined by relative expressive changes and corresponding
temporal information. Suppose there are two time series data sets X = {xg,%q,...,Xy_1} and Y =
{Yo, V1, --+» Yn—1}, the STS distance is defined in Equation (10) as follows:

N-1 —_ _ 2
ders(X,Y) = Zk_o (Yk+1 Y Xk+1 xk) (10)

berr — e lewr — Ui
where t;, 1s the time of each point in the X and Y data.

2.3 Construction and Normalization of Distance Matrices
In order for each distance matrix to be on a comparable scale, normalization to the interval is performed
in [0,1] with method min-max normalization:

p Di,j - mln(D)
"' max(D) — min(D)

(11)
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This results in three normalized distance matrices:
a.  P.=DTW normalized matrix
b. P.= ACF normalized matrix
c.  P.=STS normalized matrix
The diagonal values of each matrix are set to 0 to ensure d; j = 0.

2.4 Agglomerative Hierarchical Clustering (Average Linkage)

Agglomerative hierarchical clustering has been the dominant approach to constructing embedded
classification schemes. It is our aim to direct the reader’s attention to practical methods that are both effective
and efficient [42]. Agglomerative hierarchical clustering was then performed on Deep,, using the Average Linkage
method:

1
d(Cq, Cp) = —Z Z D; (12)
Cal 100l £ Lo
2.5 Determining the k range using Elbow (WSS)
The Elbow method is used only to determine the range of candidate k values, not to select the final k value.

Temporary clustering is performed using a combined distance with balanced weights:

P+ P, +P
Dtemp = % (13)

For each k € {2, ..., 8} calculated Within-Cluster Sum of Squares:

WSS =" " IIX = XIP (14)

Given that the cluster count, represented by k, is a discrete value, a second-order finite difference method
1s employed to estimate the curvature of the WSS curve. This discrete approximation ivolves using the second
difference of WSS, which is defined as:

A’WSS(k) = WSS(k +1) — 2WSS(k) + WSS(k— 1),k =3,.., K —1 (15)
The elbow index 1s determined using the second derivative of WSS:

AZWSS(k)|
dk?

Keipow = arg max (16)
Rather than fixing a single value of k, the elbow point is used to define a candidate search interval for the
optimization procedure. Then, the k range 1s determined:

kmin = max(2, kepow — 1) (17)
kmax = kepow + 2 (18)

The initial range k € {2, ...,8}is selected to ensure sufficient cluster interpretability given the limited
number of provinces and the short length of the time series. Range Kqyin, Kmax 18 used as the search space for
the value k in BSO.

2.6 Brain Storm Optimization

To improve the optimality of the AHC method 1n this study, an optimization approach 1s needed that can
adjust the distance and cluster search space parameters based on the characteristics of time series data. Brain
Storm Optimization (BSO), inspired by the collaborative creativity process of humans in searching for the best
solutions, has been used in a number of studies to optimize cluster structures in hierarchical bottom-up methods,
including agglomerative clustering. In [43], hierarchical clustering is applied. Meanwhile, the impact on the
performance of the creation operator 1s discussed in depth. A new BSO with hierarchical clustering is then
proposed. Agglomerative hierarchical clustering not only does not require a predetermined number of clusters,
but also helps the creation operator to improve search performance in exploration and exploitation. The
convergence curve and statistical results show that the proposed method can quickly identify regions with high-
quality solutions in the search space and obtain satisfactory solutions. On contrast, in [44], the human
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brainstorming process 1s modeled, based on which two versions of the Brain Storm Optimization (BSO)
algorithm are introduced. Simulation results show that both BSO algorithms perform well on ten benchmark
functions, proving the effectiveness and usefulness of the proposed BSO algorithm. FEFxpanding
on these investigations, this article puts forward an improved BSO-based approach using agglomerative
hierarchical clustering in order to fine-tune both the significance of distance measurements and the quantity of
clusters for the examination of wind speed data over time. Agglomerative hierarchical clustering is especially well-
suited for  this application  because it  does not need a predetermined  cluster count and offers an
adaptable hierarchical arrangement that facilitates the creation of fresh potential solutions while ideas are being
developed. Brain storm optimization algorithm (BSO), which is inspired by brain storm process of human, has
been adopted as an efficient optimizer for various complex problems [45]. The Brain Storm Optimization
algorithm operates according to the following procedure [42]:
Input:
Candidate initial population solutions
Three normalized distance matrices
Candidate cluster range k € [Kpin, Kimax ]
Maximum iteration parameter MaxIter = 100
Solution Representation:
s = (W, Wy, w3, k)
where wy, w,, wg denote the weights associated with the DTW, ACF, and STS distance matrices, respectively,
and k reperesnts the number of cluster. The constraints imposed are wy + w, +ws = 1 and w; = 0 for all j,
with k € [kin, Kmax]
Output:
Optimal distance weight (wy, w,, ws)
Number of best clusters kjqs; in the candidate range k
Algorithm steps:

1. Imitialization:

a. Initialize the population with raw distance weights and k values sampled randomly from the
candidate range. The initial distance weights are generated using a uniform random distribution and
subsequently normalized to satisfy the weight constraints, while the cluster number k is sampled
from a discrete uniform distribution over [kpin, Kmax]-

b. Select anumber of initial centroids k as the initial solution representation for the brainstorming stage.

2. Assignment:
a.  For cach solution in the population, calculate the combined distance matrix based on the weights:

Deombinea = WiPy + wo Py + w3 Py (18)

b. Assign each object to the nearest cluster using the combined distance.
c¢.  Form a temporary cluster hierarchy using the Agglomerative Hierarchical Clustering (Average
Linkage) method.

3. Updating:

a. Update distance weights through brainstorming mechanisms (local recombination and global
mutation). To utilize local search areas, solution vectors inside the same cluster core are
combined to conduct local recombination.

b. Evaluate all candidates for new solutions using the Silhouette Coefficient as a fitness function. The
fitness of each candidate solution is defined as the global average Silhouette Coefficient computed
across all provinces, and the optimization objective 1s to maximize this value.

¢.  Maintain solutions with the highest fitness to shape the next generation of the population.

4. Termination: End the process when the termination criteria are met (unchanged between iterations).
The algorithm terminates when either the maximum number of iterations (MaxIter) is reached or no
improvement in the best fitness value is observed over successive iterations; otherwise, return to Step 2
and repeat the steps.

Robustness Verification of Linkage Criteria

Following the acquisition of the conclusive clustering result derived from the BSO enhanced agglomerative
hierarchical clustering employing average linkage, a verification of robustness was executed through the
implementation of Ward and complete linkage methodologies, utilizing an identical Dynamic Time Warping
distance metric and the most favorable quantity of clusters. This comparative analysis is designed to evaluate the
consistency of the determined cluster arrangement in relation to varying linkage standards.
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2.7  Silhouette Coefficient

The silhouette coefficient 1s a measure used to assess the quality and strength of clusters, particularly to
measure how accurately an object 1s placed in a particular cluster in time series clustering. This method combines
two main concepts of cohesion and separation, where cohesion refers to the measurement of the proximity
between an object and other objects in a cluster, while separation refers to the measurement of how far an object
is from objects in other clusters [46].

The Silhouette Coefficient calculation process begins by calculating a(i), which is the average distance
between object 1 and other objects in the same cluster, also known as cohesion. a(i) can be written in the following
equation:

1
a® = =7 D, ) (19)

JEA =i

where A is a cluster, 1 and j are objects in cluster A, and d(i,) is the distance between objects 1 and j [47].

The next step is to calculate b(i), which 1s the average value of the distance of data 1 to other clusters, and
select the smallest value as the separation. Where C is another cluster different from A, so that it can be expressed
in another equation as follows:

1
b(i) = min WZ d(i, ) 20)
je

The Silhouette Coefhicient value for object 1 can be calculated using the following equation:

b(i) — a(i)

s = max(a(i), b(i))

(21)

The following are the criteria for measuring the Silhouette Coefficient [48]:

Table 2. Silhouette Coeflicient Criteria
Silhouette Coeflicient Value Cluster Criteria

0,71-1,00 Strong
0,51-0,70 Moderate
0,26 - 0,50 Weak
0,00 - 0,25 Bad

It's important to recognize that the Silhouette Coefficient, when utilized for internal validation, could be
affected by the presence of outliers and how distances are distributed, most notably when using hierarchical
clustering techniques. To deal with these possible problems, this research incorporates Dynamic Time Warping
(DTW) to lessen the effect of differences in timing and uses Brain Storm Optimization (BSO) for the purpose
of automatically improving distance weighting and cluster arrangement. Moreover, checking how well it works
with different linkage standards helps to prove that the discovered clustering structure is consistent.

2.8 Data Source

The dataset in this study, includes monthly average wind speeds for 34 provinces in Indonesia during the
period from January 2024 to December 2024 [49]. Three different observation stations were selected for each
province based on altitude and geographical location to ensure that the data obtained represented the
characteristics of the province. The monthly wind speed data from the three stations in a province was then
averaged to produce a single value used as a representation of the province's monthly wind speed, was obtained
from the Meteorology, Climatology, and Geophysics Agency (BMKG) of Indonesia. To accurately represent the
various wind conditions present in each province, encompassing coastal, lowland, and elevated areas, three
different monitoring locations were chosen, contingent upon the accessibility and reliability of their data. The
monthly wind speed measurements gathered from these locations were then used to calculate an average, yielding
a province-level metric designed to showcase the typical wind patterns of the region, as opposed to any unusual
or isolated instances. The data is publicly available and can be accessed through the official publications databases
of BMKG Indonesia. Even though the data spans merely the year 2024, the assessment seeks to identify present-
day wind pattern resemblances among provinces that are pertinent to both infrastructure development in progress
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and evaluations of potential disaster threats. Rather than determining enduring climate-based wind behaviors, the
study intends to deliver a timely overview of immediate wind activity. This overview can be used to guide
approaches to energy development and risk reduction that are planned for the near or intermediate future.

The entire data processing and analysis were conducted using RStudio, a statistical computing and
visualization software environment. To begin the research process, data preprocessing was conducted, which
included data cleaning and data standardization. After preprocessing, DTW, ACF, and STS distance calculations
were performed, and the distance calculation matrix was normalized. Then, the best distance was produced by
Agglomerative Average Linkage using the Silhouette Coeflicient, then range number of clusters was identified
using the Elbow method criteria with the BSO. Subsequently, cluster analysis was performed using the and
Agglomerative Average Linkage methods and Brain Storm methods, which produced the best weights and the
best number of clusters. Finally, the quality of the resulting clusters was validated through the Silhouette
Coefhicient to assess their accuracy and determine the most appropriate clustering method. The following section
explains the results and analysis in detail. RStudio was employed for all computational analyses and data
processing, which offered a versatile and repeatable setting for statistical calculations and examining data over
time. The dtwclust package was utilized to determine Dynamic Time Warping distances, and the stats package
was used to carry out hierarchical clustering that combines clusters using average, Ward, and complete linkage
methods. The cluster package's silhouette function was applied to assess how well the clusters were formed, and
tidyverse and readx] were used to help with managing and getting the data ready. A completely unique R script
was written to implement Brain Storm Optimization, which specifically defines the solution vector (cluster
number and distance weights), makes sure normalization rules are followed, and uses the global silhouette
coefficient to judge fitness. To maintain clarity and make sure the results can be reproduced, the default settings
of the packages used were kept, unless the script stated otherwise

3. RESULT AND ANALYSIS

The preliminary phase of this study involves data collection and preprocessing. The initial phase of working
with  wind speed information involved checking the data to find any absent or illogical entries. The
ultimate monthly wind speed dataset employed for clustering did not exhibit any absent data points; hence, there
was no necessity to implement any methods for either data imputation or removal throughout the analysis. Even
though things like mistakes in how wind speed was measured at particular spots or differences in the environment
from place to place can have an impact on the specific wind speed numbers, the way we grouped the data focused
more on how the wind changed over time relative to other locations; this approach lessened the effect of minor,
local data problems. Next, use the Elbow Method criterion to identify the most suitable range of cluster. Figure
1 below presents the results of the cluster number identification.

Elbow Method for Optimal k Range Determination
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Figure 1. Elbow Method Plot

According to Figure 1, indicates a clear elbow at k = 2, while the second derivative of WSS suggests a
plausible range of k = 2-5. This interval was therefore used as the search domain for the BSO optimization stage.

Next, the range cluster is then entered into the BSO implementation in AHC to produce the best coefficient
value, best distance and the best number of clusters as well as the best distance weight after several iterations.
Table 3 below shows the best distance using Silhouette Coefficient.

Table 3. Result Distance with Silhouette Coeflicient

Distance Silhouette Coefficient
Dyanmic Time Warping 0.5300564
Autocorrelation Function 0.3228557

Short Time Series 0.4145011
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Table 3 shows that distance metrics for short time-series data: Dynamic Time Warping (DTW), Auto-
Correlation Function (ACF), and Short Time Series (STS) were evaluated using the Agglomerative Hierarchical
Clustering (AHC) method combined with the Silhouette coefficient. The evaluation results show that Dynamic
Time Warping obtained the highest Silhouette value, namely 0.5300564. Meanwhile, the Autocorrelation
Function metric produced a value of 0.3228557 and Short Time Sseries produced a value of 0.4145011. These
values confirm that Dynamic Time Warping has the best ability to form cohesive clusters (intra-cluster
compactness) while being optimally separated from other clusters (inter-cluster separation). Therefore, Dynamic
Time Warping is identified as the best distance metric among the alternatives tested.

At the end of the optimization process, the best configuration was obtained with best Silhouette = 0.5292
and best k = 2. The combination of final distance weights produced by BSO shows the dominance of DTW
contribution, with DTW weight value = 0.9983, ACF weight = 1x107™*, and STS weight = 0.0017. These findings
indicate that DTW is the main factor in the best clustering structure found by BSO, while ACF and STS only
make minor contributions.

After BSO found the best weight and k, the final clustering was built using the Agglomerative Hierarchical
Clustering (AHC) method with the Average Linkage scheme based on the weighted combined distance matrix
resulting from BSO. The resulting clusters consisted of two groups of provincial clusters, which represented the
most optimal pattern of monthly wind speed similarity according to the algorithmic evaluation performed.
Cluster-level descriptive statistics in Table 4 indicate that Cluster 1 exhibits higher mean wind speeds with lower
variability compared to Cluster 2, which shows lower averages and wider dispersion. These differences
quantitatively support the interpretation of more stable wind regimes in Cluster 1.

Table 4. Cluster-Level Descriptive Statistics

Cluster Mean Standart Dev. Min Max
1 2.01296 0.42749 1.24444 3.42528
2 1.27569 0.34424 0.50038 251612

The results from the AHC-BSO clustering suggest that Cluster 1 exhibits a wind pattern that is comparatively
stronger and more consistent, potentially making it suitable for evaluations of large renewable energy projects
under different conditions, especially when paired with examinations of technical practicality, financial viability,
and ecological impact. This pattern is supported by the characteristics of several provinces included in this cluster,
such as South Sulawesi, Bali, and South Kalimantan. All of them of which have wind power plants. For example,
South Sulawesi has the Sidrap wind power plant with a capacity of 70 MW and 30 Wind Turbine Generators
(WTGs) [50]. Meanwhile, Bali has the Nusa Penida wind power plant with 80 kW with 9 units [51]. South
Kalimantan has Tanah Laut wind power plant project with a capacity of 70 MW and 10 MW/10 MWh battery
storage in the Kalimantan FElectricity Grid. The Tanah Laut wind power plant project reaffirms Indonesia's
commitment to achieving net zero emissions by 2060 [52]. This condition reinforces the interpretation that the
provinces in Cluster 1 are suitable locations for wind power plants supported by advanced electricity grid
mtegration and energy storage systems. In addition, from a scenario-based perspective, robust wind infrastructure
in these regions could potentially be designed to support broader early warning and resilience strategies.
However, such applications would require further integration with severe weather observations, tornado
occurrence records, and convective environment indicators. The implementation of predictive wind monitoring
from turbine networks can also contribute to the identification of local tornado risks and improve adaptive
disaster mitigation planning.

On the contrary, Cluster 2 describes areas with lower or more fluctuating wind speeds, require strategic
interventions through hybrid renewable energy systems. This pattern is supported by the characteristics of several
provinces included in this cluster, such as West Kalimantan and North Sulawesi, both of which have hybrd
renewable energy systems. For example, West Kalimantan has undergone an energy transition in Temajok
Village through the implementation of a hybrid solar-diesel power plant system, with solar power plant
performance in 2024 showing stability with a total production of 200,528 KkWh, a significant increase compared
to 37,497 kWh at the end of 2023 [53]. Meanwhile, North Sulawesi has Kawaluso island, is one of the outhermost
islands 1in northern Sulawesi Electricty in Kawaluso island depends from Diesel energy and it has 12 hour
operation. with a distance of 68 KM from the city of Tahuna With the cost of generation up to Rp. 10.360/kWh,
its important to find the alternative energy to make lower cost of generation than diesel generator [54]. This
condition reinforces the interpretation that provinces in Cluster 2 are better prepared for energy diversification
and optimal site selection to improve wind capture efficiency. These examples are presented for contextual
illustration only and do not constitute a systematic statistical validation of the relationship between cluster
membership and existing wind energy infrastructure. From an analytical perspective, the clustering outcomes
provide a structured summary of regional wind variability patterns, which may inform subsequent applied studies
on energy planning and hazard-related infrastructure design. It should be emphasized that the clustering is derived
solely from wind speed similarity patterns. Therefore, any implication related to tornado hazards should be
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mterpreted as a hypothesis rather than a confirmed finding. The identified clusters might serve as one component
in a broader multi-hazard framework, conditional on further integration with severe convective weather indicators
and documented tornado occurrence data.
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Figure 2. Dendrogram Result of AHC-BSO
The dendrogram above shows the result of Agglomerative Average Linkage clustering with Brain Storm
Optimization generated in RStudio, with Cluster 1 marked in green and Cluster 2 in red. The result AHC-BSO
Clustering shown in Table 5 below.

Table 5. Result AHC-BSO Clustering

Cluster Provinces Number of
Members
Cluster 1 Aceh, Bengkulu, Kepulauan Bangka Belitung, Kepulauan 17

Riau, DKI Jakarta, Jawa Tengah, DI Yogyakarta, Jawa
Timur, Bali, Nusa Tenggara Barat, Nusa Tenggara Timur,
Kalimantan Selatan, Sulawesi Selatan, Maluku, Maluku
Utara, Papua Barat, and Papua.
Cluster 2 Sumatera Utara, Sumatera Barat, Riau, Jambi, Sumatera 17
Selatan, Lampung, Jawa Barat, Banten, Kalimantan Barat,
Kalimantan Tengah, Kalimantan Timur, Kalimantan
Utara, Sulawesi Utara, Sulawesi Tengah, Sulawesi
Tenggara, Gorontalo, Sulawesi Barat.

To assess the robustness of the identified clustering structure, a comparative analysis using alternative
linkage criteria was conducted. Using the same Dynamic Time Warping (DTW) distance and the optimal
number of clusters obtained from the BSO optimization, agglomerative hierarchical clustering was re-applied
with Ward and complete linkage methods. The results show that the average linkage (BSO-based) and Ward
linkage yield identical Silhouette Coefficient values of 0.5301, while the complete linkage produces a slightly
lower value of 0.5246. This consistency across different linkage methods indicates that the two-cluster solution 1s
stable and not sensitive to the choice of linkage criterion. Therefore, the selected clustering configuration reliably
captures the underlying wind speed pattern structure across Indonesian provinces. It should be emphasized that
all hazard- and policy-related interpretations in this study are scenario-based and exploratory, derived from wind
speed similarity patterns rather than from direct tornado occurrence data or severe convective environment
indicators. Further validation shows that the average pairwise distance within clusters 1s substantially lower than
between clusters, confirming good intra-cluster compactness in Appendix B. In addition, province-level silhouette
in Figure 3 below scores are predominantly positive across both clusters, indicating consistent membership
assignment.
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Figure 3. Distribution of Silhouette Score by Cluster
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A leave-one-month-out stability analysis in Appendix C was performed to assess the robustness of the
clustering structure against temporal perturbations. In this analysis, one month was sequentially removed from
the monthly wind speed time series, and the clustering procedure was re-applied using the same optimal
configuration obtained from the AHC-BSO framework. The agreement rate between the perturbed clustering
results and the baseline clustering was then calculated for each iteration. The results show that the agreement rate
ranges from 0.7647 to 1.0000 across all months, with an average stability value of 0.9314. Several months (B24,
C24, D24, F24, and J24) exhibit perfect agreement, indicating no change in cluster membership. Even in the
least stable cases, more than 76% of provinces remain consistently assigned to the same clusters. These findings
demonstrate that the identified two-cluster solution 1s highly stable and not dominated by any single monthly
observation, confirming the robustness of the wind speed clustering results.

It should be noted that the results presented in this section are subject to several limitations. The analysis
relies on monthly wind speed data from a single year (2024), which may not fully represent long-term wind
variability. In addition, the relatively short time series and the use of a single variable (wind speed) constrain the
mterpretation of atmospheric dynamics. Moreover, no direct tornado occurrence data or severe weather indices
are incorporated; therefore, any discussion related to tornado risk should be interpreted as inferential and
conditional on further integration with multi-variable meteorological and hazard datasets.

Based on these findings, region-specific policy recommendations can be formulated according to the wind
speed characteristics of each cluster. Cluster 1 provinces, which exhibit relatively higher and more stable wind
profiles, can prioritize the development of large-scale renewable energy projects, particularly wind farm
deployment supported by advanced grid integration and energy storage systems. Meanwhile, Cluster 2 provinces,
characterized by lower or more fluctuating wind speeds, require strategic interventions through hybrid renewable
energy systems, localized energy diversification, and optimization of site selection to improve energy capture
efficiency. The regional wind behaviors that have been discovered offer a useful substitute for guiding tornado-
vulnerable infrastructure design and disaster readiness approaches, even if the clusters are created using wind-
speed similarities instead of precise tornado occurrence data.

4. CONCLUSION

Based on wind speed clustering results across Indonesian provinces in 2024, the BSO-guided framework
identified Dynamic Time Warping (DTW) as the most representative distance metric, yielding the highest
Silhouette Coefficient (0.5301) and an optimal two-cluster configuration (global Silhouette = 0.5292). Beyond
supporting region-specific wind energy planning, these clusters provide insights relevant to infrastructure
resilience and wind-related hazard assessment, conditional on further integration with severe weather indicators
and explicit tornado occurrence data. Provinces in Cluster 1, characterized by relatively stable and higher wind
speeds, are suitable for large-scale wind power development under controlled engineering standards, where
predictable wind regimes allow for optimized turbine design and grid integration with lower exposure to abrupt
wind hazards. In contrast, Cluster 2 provinces, which exhibit more fluctuating wind patterns associated with
convective variability, require tornado-adaptive infrastructure strategies, including reinforced turbine structures,
flexible foundation systems, and spatial zoning that avoids high-exposure corridors.

From a policy perspective, the clustering outcomes support risk-informed disaster management, enabling
authorities to prioritize early-warning integration, infrastructure strengthening, and land-use regulation in tornado-
prone regions. This study thus contributes a data-driven bridge between wind climatology, disaster risk mitigation,
and renewable energy infrastructure planning, offering practical guidance for resilient development in Indonesia.
From an applied mathematics perspective, future research may extend this framework to multivariate spatio-
temporal clustering by incorporating additional atmospheric variables and spatial dependencies. Further work is
also needed to establish theoretical guarantees or bounds for BSO-based distance weighting and to compare its
performance with alternative optimization schemes, such as genetic algorithms or Bayesian model selection
approaches.
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