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Tornadoes are major weather hazards in Indonesia, where wind variability is 

important for assessing disaster risk and supporting energy planning. This study 

conducts a short-term (one-year) analysis by identify similarities in regional wind 

speed patterns using a time-series clustering approach, treating monthly average 

wind speeds in 2024 as proxies for tornado-relevant wind regimes rather than 

direct tornado occurrence data. Agglomerative hierarchical clustering is 

integrated with three distance measures—Dynamic Time Warping (DTW), 

Autocorrelation Function (ACF), and Short Time Series (STS)—and optimized 

using Brain Storm Optimization (BSO) to determine optimal distance weighting 

and cluster numbers. The results indicate that DTW provides the best 

performance, yielding a two-cluster solution with a Silhouette Coefficient of 

0.5292. The first cluster exhibits relatively stable wind patterns, while the second 

shows higher temporal variability. This framework provides a data-driven basis 

for region-specific wind energy planning and tornado-adaptive infrastructure 

considerations in Indonesia. 
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1. INTRODUCTION 
Indonesia is also known as an agricultural country and an archipelago located in a geographical, 

hydrological, geological, and demographic position that is prone to disasters [1]. One of the atmospheric hazards 

affecting Indonesia is tornadoes. Tornadoes stand out as some of the most devastating weather events, inflicting 

substantial harm on structures, essential services, and the natural environment nearby [2].  

Numerous public databases have been made available online by different countries, including those in 

Europe [3], the United States [4], Canada [5], and Japan [6]. Conversely, numerous tornado frequency 

studies have been documented for various nations throughout Europe [7], Northern Eurasia [8], South America 

[9], Australia [10], and Asian nations like Japan [11];[12], China [13]; [14], India-Pakistan [15], and the 

Philippines [16]. 

In this paper, the definition of a tornado comes from the [17].  A tornado isdescribed as "a spinning column 

of air that rapidly rotates, extending from the ground up to the bottom of a cumuliform cloud, frequently seen as 

a funnel cloud. " Moreover, this description is expanded to include all waterspouts, regardless of whether 

they come ashore, consistent with the tornado description by [18].  

Tornadoes occur in areas with large temperature gradients [19]. Temperature gradients affect pressure 

gradients and wind energy [20]. Currently, wind energy has received increasing attention. Although wind energy 

capacity is relatively low compared to other renewable energy sources such as biomass, hydro, and nuclear power 
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plants, it is estimated that wind energy will contribute 18% of the world's electricity supply by 2050 [21]. For 

developing countries such as Indonesia, wind energy is an attractive option for switching from fossil fuels to 

renewable energy. However, wind energy development in Indonesia is still low. One of the main factors is the 

relatively low average wind speed, making it difficult to generate electricity on a large scale. Wind speeds are not 

high enough to build large-diameter wind turbines, as large-scale wind turbines require a minimum wind speed 

range of between 5 m/s and 7 m/s [22]. This study provides an indirect, wind-regime-based characterization 

relevant to preliminary tornado risk assessment. Most existing studies address tornado hazards or wind energy 

potential separately, without explicitly linking wind pattern classification to disaster risk mitigation and resilient 

wind power development. Furthermore, improved knowledge of tornado occurrence patterns can enhance early 

warning dissemination, community awareness programs, and emergency response planning, particularly in 

densely populated and vulnerable areas. This can be done by cluster analysis with similar characteristics. 

Cluster analysis groups objects with similar traits while preserving their natural structure, creating meaningful 

patterns or classifications [23]. Cluster analysis aims to group data objectively into homogeneous groups where 

the similarities of objects within groups are minimized, and dissimilarities between groups of objects are 

maximized [24]. The application of cluster analysis is growing with the use of time series data (time series). Time 

series data is data obtained by observing sequences taken sequentially in time, which has a correlation structure 

between the values in each time series data [25]. Time series cluster analysis groups objects by their patterns, but 

the method must account for the dynamic nature of time series data. Calculating the distance between time series 

objects is one of the main foundations of time series clustering algorithms [26]. Currently, there have been many 

developments related to the distance measurements used in this study, namely Dynamic Time Warping (DTW) 

distance, Short Time Series (STS) distance [27], and Autocorrelation Function (ACF) distance [28]. 

Clustering analysis is divided into two types, namely hierarchical clustering and non-hierarchical clustering. 

The main difference between the two lies in the initial grouping process. Hierarchical grows clusters gradually, 

while non-hierarchical fixes cluster count and refines iteratively [29], [30]. According to previous research, the 

hierarchical method is selected in this study, as this approach is robust to outliers [31]. Hierarchical cluster 

analysis with agglomerative method consists of single linkage, average linkage, complete linkage, and ward method 

[32]. But, [33] conducted research on the clustering of districts/cities in South Sulawesi using hierarchical 

clustering with the average linkage method, and the results showed three clusters: 21 districts/cities, 2 

districts/cities, and 1 district/city. In [34] also conducted research on the grouping of secondary crop production 

using hierarchical clustering by comparing complete linkage and average linkage. The results of the study show 

that the average linkage method is better because the standard deviation value of average linkage (0.056) is smaller 

than that of complete linkage. Different from earlier research on grouping wind speeds that depend on just one 

way to measure distance or a set method for clustering, this research combines multiple time-series distance 

measures within an optimization-based clustering framework. Grouping wind speed patterns is indirectly relevant 

to reducing tornado risk, as similar patterns reveal regions with comparable risks and support disaster planning. 

Grouping recent wind patterns provides insights for resilient wind power planning, disaster preparedness, and 

integrating risk into energy and infrastructure strategies. However, this analysis represents a short-term snapshot 

rather than long-term climatology. This research examines the practical and methodological issues involved in 

grouping short wind speed data at the provincial level in Indonesia. From a methodological angle, 

the key question is how the methods of Dynamic Time Warping (DTW), Autocorrelation Function (ACF), and 

Short Time Series (STS) can be integrated into an optimization framework to enhance the clustering of short 

wind speed data. From a practical standpoint, the study investigates which provinces in Indonesia 

show similar patterns in wind speeds during 2024 that are important for initial wind energy planning. It should 

be noted that this analysis is based only on wind speed data, which means it indirectly provides insights on 

tornado risk and serves as an initial step toward improving disaster risk management and sustainable energy 

planning. 

 

2. RESEARCH METHOD 

2.1 Data Representation and Normalization 

2.1.1 Wind Speed 

It's crucial to understand that the grouping method hinges on how alike wind speeds are, not on specific 

records of tornado touchdowns. Because of this, the groups that emerge don't show the definite chance of 

a tornado happening; instead, they mirror the wind patterns of an area, which are related in theory to how 

unstable the air is and the risk of strong winds. Wind speed is the speed of air moving horizontally and is 

influenced by the barometric gradient of the location, the altitude of the location, and the topography [35]. The 

BMKG classifies wind speed based on the Beaufort scale, which describes wind conditions and visible 

phenomena in the surrounding environment. There are 12 categories of wind speed according to the Beaufort 

scale [36]. Information related to the categorization of wind types according to the Beaufort scale can be seen as 

follows: 
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        Table 1. Wind Speed on Beaufort Scale 

Wind Speed (m/s) Wind Category 

0 – 0,2 Calm 

0,3 – 1,5 Light air 

1,6 – 3,3 Light breeze 

3,4 – 5,4 Soft breeze 

5,5 – 7,9 Moderate breeze 

8,0 – 10,7 Strong breeze 

13,9 – 17,1 Light windstorm 

17,2 – 20,7 Windstorm 

20,8 – 24,4 Strong windstorm 

24,5 – 28,4 Storm 

28,5 – 32,6 Violent storm 

≥ 32,7 Cyclone 

 

Systematic and continuous wind speed measurements enable the identification of seasonal patterns and 

trends. Monitoring wind speed through time series analysis is essential for predicting future events or evaluating 

the continuity of wind supply in a particular region [37]. 

2.1.2 Preprocessing Data 

A completeness check confirmed that the monthly wind speed dataset for all 34 provinces contains no 

missing observations over the January–December 2024 period. Consequently, no data imputation or correction 

was performed prior to normalization. Detailed information on provinces, station codes, geographic coordinates, 

elevation, and valid observation periods is provided in Appendix A.  

Normalization data processes common data distribution with the aim of normalization. One of the best 

methods of normalization is Min-Max normalization. Min-Max normalization maps the value from each variable 

into the same range. Normalization can be calculated by Equation (1) with $x$ as data per column, min as the 

minimum value of data per column, and max as the maximum value of data per column [38]. The Min-Max 

normalization formula is written as follows: 

 

𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

  (1) 

   

Where 𝑥 denotes the original observation, and 𝑥min and 𝑥max represent the minimum and maximum values 

within each variable. 

  It is acknowledged that the resulting time series consist of only 12 monthly observations, which is extremely 

short for robust time-series clustering. Consequently, DTW, STS, and ACF distances were selected due to their 

suitability for short-length, pattern-based, and non-stationary time series, rather than for long-term temporal 

modeling. 

 

2.2 Distance Matrix Calculation 

2.2.1 Dynamic Time Warping (DTW) Distance 

The first distance is Dynamic Time Warping (DTW) distance is an algorithm used to find the distance 

between two time series that have the same or different lengths. With the Dynamic Time Warping (DTW) 

algorithm, the distance is determined by finding the optimal warping path between two time series, so that the 

warping path values and the distance between the two time series are obtained. Dynamic Time Warping (DTW) 

uses dynamic programming by searching for all possible paths and selecting one path with the minimum 

cumulative distance between two time series data using a distance matrix. Given two time series data 𝑋 = 𝑥1, 𝑥2, 

…, 𝑥𝑖, …, 𝑥𝑛 with length 𝑛 and 𝑌 = 𝑦1, 𝑦2, …, 𝑦𝑗, …, 𝑦𝑚 with length 𝑚. Next, create a matrix D with size 𝑛 × 𝑚. 

The element (𝑖,𝑗) of matrix D is the difference between 𝑥𝑖 and 𝑦𝑗, which can be formulated with the following 

equation: 

 

𝑑𝑖,𝑗 = |𝑥𝑖 − 𝑦𝑗|  (2) 

                                         

which is 𝑖 = 1, 2, … , 𝑛 and 𝑗 = 1, 2, … , 𝑚. The implementation of the D matrix is as follows: 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&
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𝐷 =

[
 
 
 
 
 
𝑑1,1

𝑑2,1

𝑑1,2 𝑑1,3 … 𝑑1,𝑗

𝑑2,2 𝑑2,3 … 𝑑2,𝑗

𝑑3,1

⋮
𝑑𝑖,1

𝑑3,2 𝑑3,3 … 𝑑3,𝑗

⋮
𝑑𝑖,2

⋮
𝑑𝑖,3

⋱
…

⋮
𝑑𝑖,𝑗 ]

 
 
 
 
 

   (3) 

 

After obtaining the distance, it is then added to a minimum of 3 adjacent elements {d(𝑖−1)(𝑗−1),d(𝑖−1)𝑗,d𝑖(𝑗−1)} 

where 0 < 𝑖 ≤ 𝑛 and 0 < 𝑗 ≤ m, thus forming matrix E. Equation (4) can be defined for element (i,j) in matrix 

E as follows: 

𝐸𝑖,𝑗 =  𝑑𝑖𝑗 + {𝑑(𝑖−1)(𝑗−1),𝑑(𝑖−1)𝑗,𝑑𝑖(𝑗−1)}𝐸𝑖𝑗  (4) 

            

The iterative equation for the cumulative cost matrix within the Dynamic Time Warping (DTW) 

algorithm is presented in Equation (4). Specifically, each element 𝐸𝑖,𝑗  represents the minimum cumulative 

distance required to align the subsequence (𝑥1 , … , 𝑥𝑖) with (𝑦1 , … , 𝑦𝑗). The local distance 𝑑𝑖,𝑗 =∣ 𝑥𝑖 −

𝑦𝑗 ∣measures the instantaneous dissimilarity between the two time series at positions 𝑖and 𝑗. This local 

distance is then added to the minimum cumulative cost among the three admissible predecessor cells, 

namely 𝐸𝑖−1,𝑗−1(diagonal move), 𝐸𝑖−1,𝑗(vertical move), and 𝐸𝑖,𝑗−1(horizontal move). These shifts align with 

the operations of matching, adding, and removing within the warping route, in that order. Dynamic Time 

Warping (DTW) works by propagating the lowest cumulative cost through the matrix to determine the 

optimal warping path, minimizing alignment differences between two time series. The implementation of 

the E matrix is as follows: 

 

𝐸 =

[
 
 
 
 
 
𝐸1,1

𝐸2,1

𝐸1,2 𝐸1,3 … 𝐸1,𝑗

𝐸2,2 𝐸2,3 … 𝐸2,𝑗

𝐸3,1

⋮
𝐸𝑖,1

𝐸3,2 𝐸3,3 … 𝐸3,𝑗

⋮
𝐸𝑖,2

⋮
𝐸𝑖,3

⋱
…

⋮
𝐸𝑖,𝑗 ]

 
 
 
 
 

  (5) 

 

After the E matrix is formed, the DTW distance between two time series X and Y can be calculated using 

Equation (6) below [39]: 

 

𝑑𝐷𝑇𝑊(X,Y) = min {∑ 𝐸𝑖,𝑗}

𝑘

𝑖,𝑗=1

                                                              (6) 

  ∀𝑤∈𝑝            

 

Where, 𝑝 is a set of all possible warping paths, 𝐸𝑖,𝑗 is elements (𝑖,𝑗) in matrix 𝐸, and 𝑘 is the length of the 

warping path. 

Equation (6) represents the final Dynamic Time Warping (DTW) distance between two time series 𝑋and 

𝑌, obtained as the minimum cumulative cost along the optimal warping path in the accumulated cost matrix 𝐸. 

The derived DTW distance is a scalar value that is not negative and measures the total dissimilarity between two 

time series once non-linear temporal alignment has been taken into account. Concerning monthly wind speed 

data, a lower DTW distance implies that two provinces have very comparable wind speed trends over time, 

even when peak events orseasonal changes are moved in time. In contrast, greater DTW distances show 

significant variations in wind speed dynamics, such as opposing seasonal variability or 

strength. As a result, this DTW distance matrix acts as the main data for the clustering procedure, enabling 

provinces with similar wind behavior features to be clustered together using the agglomerative hierarchical 

clustering method. 

2.2.2 Autocorrelation Function (ACF) Distance 

Galeano and Pella [40] conducted research on the relationship between time series data using the 

Autocorrelation function (ACF) approach. Suppose we are given two time series data 𝑋t and Yt, where t is the 

length of the time series. The autocorrelation function (ACF) distance consists of autocorrelation vectors from 

𝑋t and Yt,, namely 𝜌̂ 𝑋𝑡= (𝜌̂ 
1,𝑋, 𝜌̂ 

2,𝑋, … , 𝜌̂ 
𝑘,𝑋)𝑡 and 𝜌̂ 𝑌𝑡  = (𝜌̂ 

1,𝑌, 𝜌̂ 
2,𝑌, … , 𝜌̂ 

𝑘,𝑌)𝑡 respectively represent the 

estimated autocorrelation vectors from lag 1 to lag k where  𝜌̂ 
𝑖,𝑋𝑡≈ 0 and 𝜌̂ 

𝑖,𝑌𝑡  ≈ 0 for 𝑖 > 𝑘. Suppose the time 

series data Z = 𝑍1 , 
𝑍2, ..., 𝑍𝑛 , then the ACF value can be calculated using equation (7). 
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𝜌̂𝑘 =
∑ (𝑋𝑖

𝑛=𝑘
𝑖=1  −  𝑋̅)(𝑋𝑡+𝑘  −  𝑋̅)

∑ (𝑋𝑖  −  𝑋̅)𝑛
𝑖=1

2  (7) 

Equation (7) computes the sample autocorrelation coefficient 𝜌̂𝑘at lag 𝑘, which measures the linear 

dependence between observations of a time series separated by 𝑘 time steps. In this equation, 𝑋𝑖  denotes the 

wind speed observation at time 𝑖, 𝑋𝑖+𝑘 represents the observation at lag 𝑘, 𝑋̄ is the mean of the time series, and 

𝑛 is the total length of the series. The numerator captures the covariance between lagged observations, while the 

denominator normalizes the value by the total variance of the series, ensuring that 𝜌̂𝑘  lies within the range [−1,1]. 
In this research, a collection of autocorrelation values at various time intervals are arranged to 

form autocorrelation vectors, which describe the pattern of how monthly wind speeds depend on each other 

over time. Following this, the resemblance between two regions is determined by assessing the distance 

between each of their unique autocorrelation vectors, giving another way to understand wind speed activity that 

goes beyond only comparing the strength of the wind. 

After obtaining the autocorrelation vectors, the ACF distance between two time series data 𝑋t and Yt can 

be calculated using the following equation: 

 

𝑑𝐴𝐶𝐹(𝑋𝑡  , 𝑌𝑡) =  √(𝜌̂̂𝑋𝑡 − 𝜌̂̂𝑌𝑡)′𝛺(𝜌̂̂𝑋𝑡 − 𝜌̂̂𝑌𝑡)  (8) 

 

Equation (8) defines the Autocorrelation Function (ACF) distance between two time series 𝑋𝑡and 𝑌𝑡based 

on the Euclidean distance between their respective autocorrelation vectors. In this formulation, 𝜌̂̂𝑋𝑡
and 

𝜌̂̂𝑌𝑡  denote the estimated autocorrelation vectors of the two wind speed time series, constructed from 

autocorrelation coefficients at selected time lags. The matrix Ω represents a weighting matrix that determines the 

relative contribution of each lag; in this study, Ω is set as an identity matrix, implying equal importance across all 

lags. The ACF distance that arises gauges the resemblance of how time affects different regions; this 

allows the grouping procedure to detect shared traits in wind duration and yearly patterns, instead of just 

focusing on the actual strength of the wind. 

Where 𝑑𝐴𝐶𝐹(𝐴, 𝐵) is the distance between autocorrelation A and B, and Ω is the weighting matrix. 

However, the ACF distance in this study does not have a weight, so Ω is an identity matrix. Thus, from equation 

(8), the ACF distance becomes the Euclidean distance between the autocorrelation function estimates with the 

following equation: 

 

𝑑𝐴𝐶𝐹(𝑋𝑡  , 𝑌𝑡) = √∑ (𝜌̂̂𝑋𝑡 − 𝜌̂̂𝑌𝑡)2𝑘
𝑖=1  (9)  

 

2.2.3 Short Time Series (STS) Distance 

Short Time Series (STS) distance was introduced by Mӧller-Levet et al. [41] and is used to measure the 

similarity of DNA microarray time series data. Microarray is a pattern obtained from the analysis of the function 

and expression of a large number of genes simultaneously in a single experiment. Mӧller aimed to determine a 

distance that could capture differences in form, determined by relative expressive changes and corresponding 

temporal information. Suppose there are two time series data sets 𝑋 = {𝑥0, 𝑥1, … , 𝑥𝑁−1} and 𝑌 =
{𝑦0 , 𝑦1, … , 𝑦𝑁−1}, the STS distance is defined in Equation (10) as follows: 

 

𝑑𝑆𝑇𝑆(𝑋, 𝑌) =  √∑ (
𝑦𝑘+1 − 𝑦𝑘

𝑡𝑘+1 − 𝑡𝑘
−

𝑥𝑘+1 − 𝑥𝑘

𝑡𝑘+1 − 𝑡𝑘
)

2𝑁−1

𝑘=0
 (10) 

   

where 𝑡𝑘 is the time of each point in the X and Y data. 

 

2.3 Construction and Normalization of Distance Matrices 

In order for each distance matrix to be on a comparable scale, normalization to the interval is performed 

in [0,1] with method min-max normalization:  

 

𝑃𝑖,𝑗 = 
𝐷𝑖,𝑗  − min(𝐷)

𝑚𝑎𝑥(𝐷)  − min(𝐷)
  (11) 
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This results in three normalized distance matrices: 

a. P1 = DTW normalized matrix 

b. P2 = ACF normalized matrix 

c. P3 = STS normalized matrix 

The diagonal values of each matrix are set to 0 to ensure 𝑑(𝑖,𝑗) = 0. 

 

2.4 Agglomerative Hierarchical Clustering (Average Linkage) 

Agglomerative hierarchical clustering has been the dominant approach to constructing embedded 

classification schemes. It is our aim to direct the reader’s attention to practical methods that are both effective 

and efficient [42]. Agglomerative hierarchical clustering was then performed on 𝐷𝑡𝑒𝑚𝑝 using the Average Linkage 

method: 

 

𝑑(𝐶𝑎 , 𝐶𝑏) =  
1

|𝐶𝑎| |𝐶𝑏|
∑ ∑ 𝐷𝑖,𝑗  

𝑗∈𝐶𝑏

 

𝑖∈𝐶𝑎

(12) 

 

2.5 Determining the k range using Elbow (WSS) 

The Elbow method is used only to determine the range of candidate k values, not to select the final k value. 

Temporary clustering is performed using a combined distance with balanced weights: 

 

𝐷𝑡𝑒𝑚𝑝 = 
𝑃1 + 𝑃2 + 𝑃3

3
  (13) 

   

For each 𝑘 ∈ {2, . . . , 8} calculated Within-Cluster Sum of Squares: 

 

𝑊𝑆𝑆 =  ∑ ∑ ||𝑋𝑖 − 𝑋𝑐||
2

i∈𝐶𝑐

𝑘

𝑐=1

 (14) 

              

Given that the cluster count, represented by 𝑘, is a discrete value, a second-order finite difference method 

is employed to estimate the curvature of the WSS curve. This discrete approximation involves using the second 

difference of WSS, which is defined as: 

 

∆2𝑊𝑆𝑆(𝑘) = 𝑊𝑆𝑆(𝑘 + 1) − 2𝑊𝑆𝑆(𝑘) + 𝑊𝑆𝑆(𝑘 − 1), 𝑘 = 3,… , 𝐾 − 1 (15) 

 

The elbow index is determined using the second derivative of WSS: 

 

𝑘𝑒𝑙𝑏𝑜𝑤 = 𝑎𝑟𝑔 max
𝑘

|
∆2𝑊𝑆𝑆(𝑘)

𝑑𝑘2 |                                    (16) 

 

Rather than fixing a single value of 𝑘, the elbow point is used to define a candidate search interval for the 

optimization procedure. Then, the k range is determined: 

 

𝑘𝑚𝑖𝑛 = max(2, 𝑘𝑒𝑙𝑏𝑜𝑤 − 1)              (17) 

𝑘𝑚𝑎𝑥 = 𝑘𝑒𝑙𝑏𝑜𝑤 + 2 (18) 

 

The initial range 𝑘 ∈ {2,… ,8}is selected to ensure sufficient cluster interpretability given the limited 

number of provinces and the short length of the time series. Range 𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥 is used as the search space for 

the value k in BSO. 

 

2.6 Brain Storm Optimization 

To improve the optimality of the AHC method in this study, an optimization approach is needed that can 

adjust the distance and cluster search space parameters based on the characteristics of time series data. Brain 

Storm Optimization (BSO), inspired by the collaborative creativity process of humans in searching for the best 

solutions, has been used in a number of studies to optimize cluster structures in hierarchical bottom-up methods, 

including agglomerative clustering. In [43], hierarchical clustering is applied. Meanwhile, the impact on the 

performance of the creation operator is discussed in depth. A new BSO with hierarchical clustering is then 

proposed. Agglomerative hierarchical clustering not only does not require a predetermined number of clusters, 

but also helps the creation operator to improve search performance in exploration and exploitation. The 

convergence curve and statistical results show that the proposed method can quickly identify regions with high-

quality solutions in the search space and obtain satisfactory solutions. On contrast, in [44], the human 
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brainstorming process is modeled, based on which two versions of the Brain Storm Optimization (BSO) 

algorithm are introduced. Simulation results show that both BSO algorithms perform well on ten benchmark 

functions, proving the effectiveness and usefulness of the proposed BSO algorithm. Expanding 

on these investigations, this article puts forward an improved BSO-based approach using agglomerative 

hierarchical clustering in order to fine-tune both the significance of distance measurements and the quantity of 

clusters for the examination of wind speed data over time. Agglomerative hierarchical clustering is especially well-

suited for this application because it does not need a predetermined cluster count and offers an 

adaptable hierarchical arrangement that facilitates the creation of fresh potential solutions while ideas are being 

developed. Brain storm optimization algorithm (BSO), which is inspired by brain storm process of human, has 

been adopted as an efficient optimizer for various complex problems [45]. The Brain Storm Optimization 

algorithm operates according to the following procedure [42]: 

Input: 

Candidate initial population solutions 

Three normalized distance matrices 

Candidate cluster range 𝑘 ∈ [𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥] 
Maximum iteration parameter 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 100 

Solution Representation: 

𝑠 = (𝑤1, 𝑤2, 𝑤3, 𝑘) 

where 𝑤1, 𝑤2, 𝑤3 denote the weights associated with the DTW, ACF, and STS distance matrices, respectively, 

and k reperesnts the number of cluster. The constraints imposed are 𝑤1 + 𝑤2 + 𝑤3 = 1 and 𝑤𝑗 ≥ 0 for all j, 

with 𝑘 ∈ [𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥] 
Output: 

Optimal distance weight (𝑤1, 𝑤2, 𝑤3) 

Number of best clusters 𝑘𝑏𝑒𝑠𝑡 in the candidate range k 

Algorithm steps: 

1. Initialization:  

a. Initialize the population with raw distance weights and k values sampled randomly from the 

candidate range. The initial distance weights are generated using a uniform random distribution and 

subsequently normalized to satisfy the weight constraints, while the cluster number 𝑘 is sampled 

from a discrete uniform distribution over [𝑘min, 𝑘max]. 
b. Select a number of initial centroids k as the initial solution representation for the brainstorming stage. 

2. Assignment: 

a. For each solution in the population, calculate the combined distance matrix based on the weights: 

 

𝐷𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑤1𝑃1 + 𝑤2𝑃2 + 𝑤3𝑃3 (18) 

b. Assign each object to the nearest cluster using the combined distance. 

c. Form a temporary cluster hierarchy using the Agglomerative Hierarchical Clustering (Average 

Linkage) method. 

3.  Updating: 

a. Update distance weights through brainstorming mechanisms (local recombination and global 

mutation). To utilize local search areas, solution vectors inside the same cluster core are 

combined to conduct local recombination. 

b. Evaluate all candidates for new solutions using the Silhouette Coefficient as a fitness function. The 

fitness of each candidate solution is defined as the global average Silhouette Coefficient computed 

across all provinces, and the optimization objective is to maximize this value. 

c. Maintain solutions with the highest fitness to shape the next generation of the population. 

4.  Termination: End the process when the termination criteria are met (unchanged between iterations). 

The algorithm terminates when either the maximum number of iterations (MaxIter) is reached or no 

improvement in the best fitness value is observed over successive iterations; otherwise, return to Step 2 

and repeat the steps. 

 

Robustness Verification of Linkage Criteria 

Following the acquisition of the conclusive clustering result derived from the BSO enhanced agglomerative 

hierarchical clustering employing average linkage, a verification of robustness was executed through the 

implementation of Ward and complete linkage methodologies, utilizing an identical Dynamic Time Warping 

distance metric and the most favorable quantity of clusters. This comparative analysis is designed to evaluate the 

consistency of the determined cluster arrangement in relation to varying linkage standards. 
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2.7 Silhouette Coefficient 

The silhouette coefficient is a measure used to assess the quality and strength of clusters, particularly to 

measure how accurately an object is placed in a particular cluster in time series clustering. This method combines 

two main concepts of cohesion and separation, where cohesion refers to the measurement of the proximity 

between an object and other objects in a cluster, while separation refers to the measurement of how far an object 

is from objects in other clusters [46]. 

The Silhouette Coefficient calculation process begins by calculating a(i), which is the average distance 

between object i and other objects in the same cluster, also known as cohesion. a(i) can be written in the following 

equation: 

 

𝑎(𝑖) =  
1

|𝐴| − 1
 ∑ 𝑑(𝑖, 𝑗) 

j∈A,j≠i

(19) 

              

where A is a cluster, i and j are objects in cluster A, and d(i,j) is the distance between objects i and j [47]. 

The next step is to calculate b(i), which is the average value of the distance of data i to other clusters, and 

select the smallest value as the separation. Where C is another cluster different from A, so that it can be expressed 

in another equation as follows: 

 

𝑏(𝑖) = min
C≠A

(
1

|𝐶|
∑𝑑(𝑖, 𝑗)

j∈C

) (20) 

             

The Silhouette Coefficient value for object i can be calculated using the following equation: 

 

𝑠(𝑖) =  
𝑏(𝑖) − 𝑎(𝑖)

max(𝑎(𝑖), 𝑏(𝑖))
  (21) 

             

The following are the criteria for measuring the Silhouette Coefficient [48]: 

 

Table 2. Silhouette Coefficient Criteria 

Silhouette Coefficient Value Cluster Criteria 

0,71 - 1,00 Strong 

0,51 - 0,70 Moderate 

0,26 - 0,50 Weak 

0,00 - 0,25 Bad 

 

It's important to recognize that the Silhouette Coefficient, when utilized for internal validation, could be 

affected by the presence of outliers and how distances are distributed, most notably when using hierarchical 

clustering techniques. To deal with these possible problems, this research incorporates Dynamic Time Warping 

(DTW) to lessen the effect of differences in timing and uses Brain Storm Optimization (BSO) for the purpose 

of automatically improving distance weighting and cluster arrangement. Moreover, checking how well it works 

with different linkage standards helps to prove that the discovered clustering structure is consistent. 

 

2.8 Data Source 

The dataset in this study, includes monthly average wind speeds for 34 provinces in Indonesia during the 

period from January 2024 to December 2024 [49]. Three different observation stations were selected for each 

province based on altitude and geographical location to ensure that the data obtained represented the 

characteristics of the province. The monthly wind speed data from the three stations in a province was then 

averaged to produce a single value used as a representation of the province's monthly wind speed, was obtained 

from the Meteorology, Climatology, and Geophysics Agency (BMKG) of Indonesia. To accurately represent the 

various wind conditions present in each province, encompassing coastal, lowland, and elevated areas, three 

different monitoring locations were chosen, contingent upon the accessibility and reliability of their data. The 

monthly wind speed measurements gathered from these locations were then used to calculate an average, yielding 

a province-level metric designed to showcase the typical wind patterns of the region, as opposed to any unusual 

or isolated instances. The data is publicly available and can be accessed through the official publications databases 

of BMKG Indonesia. Even though the data spans merely the year 2024, the assessment seeks to identify present-

day wind pattern resemblances among provinces that are pertinent to both infrastructure development in progress 
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and evaluations of potential disaster threats. Rather than determining enduring climate-based wind behaviors, the 

study intends to deliver a timely overview of immediate wind activity. This overview can be used to guide 

approaches to energy development and risk reduction that are planned for the near or intermediate future. 

The entire data processing and analysis were conducted using RStudio, a statistical computing and 

visualization software environment. To begin the research process, data preprocessing was conducted, which 

included data cleaning and data standardization. After preprocessing, DTW, ACF, and STS distance calculations 

were performed, and the distance calculation matrix was normalized. Then, the best distance was produced by 

Agglomerative Average Linkage using the Silhouette Coefficient, then range number of clusters was identified 

using the Elbow method criteria with the BSO. Subsequently, cluster analysis was performed using the and 

Agglomerative Average Linkage methods and Brain Storm methods, which produced the best weights and the 

best number of clusters. Finally, the quality of the resulting clusters was validated through the Silhouette 

Coefficient to assess their accuracy and determine the most appropriate clustering method. The following section 

explains the results and analysis in detail. RStudio was employed for all computational analyses and data 

processing, which offered a versatile and repeatable setting for statistical calculations and examining data over 

time. The dtwclust package was utilized to determine Dynamic Time Warping distances, and the stats package 

was used to carry out hierarchical clustering that combines clusters using average, Ward, and complete linkage 

methods. The cluster package's silhouette function was applied to assess how well the clusters were formed, and 

tidyverse and readxl were used to help with managing and getting the data ready. A completely unique R script 

was written to implement Brain Storm Optimization, which specifically defines the solution vector (cluster 

number and distance weights), makes sure normalization rules are followed, and uses the global silhouette 

coefficient to judge fitness. To maintain clarity and make sure the results can be reproduced, the default settings 

of the packages used were kept, unless the script stated otherwise 

 

3. RESULT AND ANALYSIS 
The preliminary phase of this study involves data collection and preprocessing. The initial phase of working 

with wind speed information involved checking the data to find any absent or illogical entries. The 

ultimate monthly wind speed dataset employed for clustering did not exhibit any absent data points; hence, there 

was no necessity to implement any methods for either data imputation or removal throughout the analysis. Even 

though things like mistakes in how wind speed was measured at particular spots or differences in the environment 

from place to place can have an impact on the specific wind speed numbers, the way we grouped the data focused 

more on how the wind changed over time relative to other locations; this approach lessened the effect of minor, 

local data problems. Next, use the Elbow Method criterion to identify the most suitable range of cluster. Figure 

1 below presents the results of the cluster number identification.  

Figure 1. Elbow Method Plot 

 

 According to Figure 1, indicates a clear elbow at k = 2, while the second derivative of WSS suggests a 

plausible range of k = 2–5. This interval was therefore used as the search domain for the BSO optimization stage. 

 Next, the range cluster is then entered into the BSO implementation in AHC to produce the best coefficient 

value, best distance and the best number of clusters as well as the best distance weight after several iterations. 

Table 3 below shows the best distance using Silhouette Coefficient. 

 

  Table 3. Result Distance with Silhouette Coefficient 

Distance Silhouette Coefficient 

Dyanmic Time Warping 0.5300564 

Autocorrelation Function 0.3228557 

Short Time Series 0.4145011 
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 Table 3 shows that distance metrics for short time-series data: Dynamic Time Warping (DTW), Auto-

Correlation Function (ACF), and Short Time Series (STS) were evaluated using the Agglomerative Hierarchical 

Clustering (AHC) method combined with the Silhouette coefficient. The evaluation results show that Dynamic 

Time Warping obtained the highest Silhouette value, namely 0.5300564. Meanwhile, the Autocorrelation 

Function metric produced a value of 0.3228557 and Short Time Sseries produced a value of 0.4145011. These 

values confirm that Dynamic Time Warping has the best ability to form cohesive clusters (intra-cluster 

compactness) while being optimally separated from other clusters (inter-cluster separation). Therefore, Dynamic 

Time Warping is identified as the best distance metric among the alternatives tested. 

 At the end of the optimization process, the best configuration was obtained with best Silhouette = 0.5292 

and best k = 2. The combination of final distance weights produced by BSO shows the dominance of DTW 

contribution, with DTW weight value = 0.9983, ACF weight ≈ 1×10⁻⁴, and STS weight = 0.0017. These findings 

indicate that DTW is the main factor in the best clustering structure found by BSO, while ACF and STS only 

make minor contributions.  

 After BSO found the best weight and k, the final clustering was built using the Agglomerative Hierarchical 

Clustering (AHC) method with the Average Linkage scheme based on the weighted combined distance matrix 

resulting from BSO. The resulting clusters consisted of two groups of provincial clusters, which represented the 

most optimal pattern of monthly wind speed similarity according to the algorithmic evaluation performed. 

Cluster-level descriptive statistics in Table 4 indicate that Cluster 1 exhibits higher mean wind speeds with lower 

variability compared to Cluster 2, which shows lower averages and wider dispersion. These differences 

quantitatively support the interpretation of more stable wind regimes in Cluster 1. 

 

Table 4. Cluster-Level Descriptive Statistics 

Cluster Mean  Standart Dev. Min Max 

1 2.01296 0.42749 1.24444 3.42528 

2 1.27569 0.34424 0.50038 2.51612 

  

 The results from the AHC-BSO clustering suggest that Cluster 1 exhibits a wind pattern that is comparatively 

stronger and more consistent, potentially making it suitable for evaluations of large renewable energy projects 

under different conditions, especially when paired with examinations of technical practicality, financial viability, 

and ecological impact. This pattern is supported by the characteristics of several provinces included in this cluster, 

such as South Sulawesi, Bali, and South Kalimantan. All of them of which have wind power plants. For example, 

South Sulawesi has the Sidrap wind power plant with a capacity of 70 MW and 30 Wind Turbine Generators 

(WTGs) [50]. Meanwhile, Bali has the Nusa Penida wind power plant with 80 kW with 9 units [51]. South 

Kalimantan has Tanah Laut wind power plant project with a capacity of 70 MW and 10 MW/10 MWh battery 

storage in the Kalimantan Electricity Grid. The Tanah Laut wind power plant project reaffirms Indonesia's 

commitment to achieving net zero emissions by 2060 [52]. This condition reinforces the interpretation that the 

provinces in Cluster 1 are suitable locations for wind power plants supported by advanced electricity grid 

integration and energy storage systems. In addition, from a scenario-based perspective, robust wind infrastructure 

in these regions could potentially be designed to support broader early warning and resilience strategies. 

However, such applications would require further integration with severe weather observations, tornado 

occurrence records, and convective environment indicators. The implementation of predictive wind monitoring 

from turbine networks can also contribute to the identification of local tornado risks and improve adaptive 

disaster mitigation planning. 

 On the contrary, Cluster 2 describes areas with lower or more fluctuating wind speeds, require strategic 

interventions through hybrid renewable energy systems. This pattern is supported by the characteristics of several 

provinces included in this cluster, such as West Kalimantan and North Sulawesi, both of which have hybrid 

renewable energy systems. For example, West Kalimantan has undergone an energy transition in Temajok 

Village through the implementation of a hybrid solar-diesel power plant system, with solar power plant 

performance in 2024 showing stability with a total production of 200,528 kWh, a significant increase compared 

to 37,497 kWh at the end of 2023 [53]. Meanwhile, North Sulawesi has Kawaluso island, is one of the outhermost 

islands in northern Sulawesi Electricty in Kawaluso island depends from Diesel energy and it has 12 hour 

operation. with a distance of 68 KM from the city of Tahuna With the cost of generation up to Rp. 10.360/kWh, 

its important to find the alternative energy to make lower cost of generation than diesel generator [54].  This 

condition reinforces the interpretation that provinces in Cluster 2 are better prepared for energy diversification 

and optimal site selection to improve wind capture efficiency. These examples are presented for contextual 

illustration only and do not constitute a systematic statistical validation of the relationship between cluster 

membership and existing wind energy infrastructure. From an analytical perspective, the clustering outcomes 

provide a structured summary of regional wind variability patterns, which may inform subsequent applied studies 

on energy planning and hazard-related infrastructure design. It should be emphasized that the clustering is derived 

solely from wind speed similarity patterns. Therefore, any implication related to tornado hazards should be 
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interpreted as a hypothesis rather than a confirmed finding. The identified clusters might serve as one component 

in a broader multi-hazard framework, conditional on further integration with severe convective weather indicators 

and documented tornado occurrence data. 

Figure 2. Dendrogram Result of AHC-BSO 

The dendrogram above shows the result of Agglomerative Average Linkage clustering with Brain Storm 

Optimization generated in RStudio, with Cluster 1 marked in green and Cluster 2 in red. The result AHC-BSO 

Clustering shown in Table 5 below. 

 

Table 5. Result AHC-BSO Clustering 

Cluster Provinces Number of 

Members 

Cluster 1 Aceh, Bengkulu, Kepulauan Bangka Belitung, Kepulauan 

Riau, DKI Jakarta, Jawa Tengah, DI Yogyakarta, Jawa 

Timur, Bali, Nusa Tenggara Barat, Nusa Tenggara Timur, 

Kalimantan Selatan, Sulawesi Selatan, Maluku, Maluku 

Utara, Papua Barat, and Papua. 

17 

Cluster 2 Sumatera Utara, Sumatera Barat, Riau, Jambi, Sumatera 

Selatan, Lampung, Jawa Barat, Banten, Kalimantan Barat, 

Kalimantan Tengah, Kalimantan Timur, Kalimantan 

Utara, Sulawesi Utara, Sulawesi Tengah, Sulawesi 

Tenggara, Gorontalo, Sulawesi Barat. 

17 

 

 To assess the robustness of the identified clustering structure, a comparative analysis using alternative 

linkage criteria was conducted. Using the same Dynamic Time Warping (DTW) distance and the optimal 

number of clusters obtained from the BSO optimization, agglomerative hierarchical clustering was re-applied 

with Ward and complete linkage methods. The results show that the average linkage (BSO-based) and Ward 

linkage yield identical Silhouette Coefficient values of 0.5301, while the complete linkage produces a slightly 

lower value of 0.5246. This consistency across different linkage methods indicates that the two-cluster solution is 

stable and not sensitive to the choice of linkage criterion. Therefore, the selected clustering configuration reliably 

captures the underlying wind speed pattern structure across Indonesian provinces. It should be emphasized that 

all hazard- and policy-related interpretations in this study are scenario-based and exploratory, derived from wind 

speed similarity patterns rather than from direct tornado occurrence data or severe convective environment 

indicators. Further validation shows that the average pairwise distance within clusters is substantially lower than 

between clusters, confirming good intra-cluster compactness in Appendix B. In addition, province-level silhouette 

in Figure 3 below scores are predominantly positive across both clusters, indicating consistent membership 

assignment. 

 
Figure 3. Distribution of Silhouette Score by Cluster 
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 A leave-one-month-out stability analysis in Appendix C was performed to assess the robustness of the 

clustering structure against temporal perturbations. In this analysis, one month was sequentially removed from 

the monthly wind speed time series, and the clustering procedure was re-applied using the same optimal 

configuration obtained from the AHC–BSO framework. The agreement rate between the perturbed clustering 

results and the baseline clustering was then calculated for each iteration. The results show that the agreement rate 

ranges from 0.7647 to 1.0000 across all months, with an average stability value of 0.9314. Several months (B24, 

C24, D24, F24, and J24) exhibit perfect agreement, indicating no change in cluster membership. Even in the 

least stable cases, more than 76% of provinces remain consistently assigned to the same clusters. These findings 

demonstrate that the identified two-cluster solution is highly stable and not dominated by any single monthly 

observation, confirming the robustness of the wind speed clustering results. 

 It should be noted that the results presented in this section are subject to several limitations. The analysis 

relies on monthly wind speed data from a single year (2024), which may not fully represent long-term wind 

variability. In addition, the relatively short time series and the use of a single variable (wind speed) constrain the 

interpretation of atmospheric dynamics. Moreover, no direct tornado occurrence data or severe weather indices 

are incorporated; therefore, any discussion related to tornado risk should be interpreted as inferential and 

conditional on further integration with multi-variable meteorological and hazard datasets. 

 Based on these findings, region-specific policy recommendations can be formulated according to the wind 

speed characteristics of each cluster. Cluster 1 provinces, which exhibit relatively higher and more stable wind 

profiles, can prioritize the development of large-scale renewable energy projects, particularly wind farm 

deployment supported by advanced grid integration and energy storage systems. Meanwhile, Cluster 2 provinces, 

characterized by lower or more fluctuating wind speeds, require strategic interventions through hybrid renewable 

energy systems, localized energy diversification, and optimization of site selection to improve energy capture 

efficiency. The regional wind behaviors that have been discovered offer a useful substitute for guiding tornado-

vulnerable infrastructure design and disaster readiness approaches, even if the clusters are created using wind-

speed similarities instead of precise tornado occurrence data. 

 

4. CONCLUSION 

 Based on wind speed clustering results across Indonesian provinces in 2024, the BSO-guided framework 

identified Dynamic Time Warping (DTW) as the most representative distance metric, yielding the highest 

Silhouette Coefficient (0.5301) and an optimal two-cluster configuration (global Silhouette = 0.5292). Beyond 

supporting region-specific wind energy planning, these clusters provide insights relevant to infrastructure 

resilience and wind-related hazard assessment, conditional on further integration with severe weather indicators 

and explicit tornado occurrence data. Provinces in Cluster 1, characterized by relatively stable and higher wind 

speeds, are suitable for large-scale wind power development under controlled engineering standards, where 

predictable wind regimes allow for optimized turbine design and grid integration with lower exposure to abrupt 

wind hazards. In contrast, Cluster 2 provinces, which exhibit more fluctuating wind patterns associated with 

convective variability, require tornado-adaptive infrastructure strategies, including reinforced turbine structures, 

flexible foundation systems, and spatial zoning that avoids high-exposure corridors. 

 From a policy perspective, the clustering outcomes support risk-informed disaster management, enabling 

authorities to prioritize early-warning integration, infrastructure strengthening, and land-use regulation in tornado-

prone regions. This study thus contributes a data-driven bridge between wind climatology, disaster risk mitigation, 

and renewable energy infrastructure planning, offering practical guidance for resilient development in Indonesia. 

From an applied mathematics perspective, future research may extend this framework to multivariate spatio-

temporal clustering by incorporating additional atmospheric variables and spatial dependencies. Further work is 

also needed to establish theoretical guarantees or bounds for BSO-based distance weighting and to compare its 

performance with alternative optimization schemes, such as genetic algorithms or Bayesian model selection 

approaches. 
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