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 Weather variability poses significant risks to rice production, leading to potential 

income losses for farmers and increased uncertainty in agricultural planning. 

This study integrates a Cobb–Douglas production function with Value at Risk 

(VaR) and Expected Shortfall (ES) measures to assess weather-driven 

production losses in Aceh Besar using secondary data on rainfall, temperature, 

and wind speed from 2010 to 2023. Rice production is first modeled to estimate 

output sensitivity to climatic factors, after which production losses are derived 

from forecast-based outcomes. Several candidate parametric probability 

distributions are fitted to the loss data, and the most suitable distribution is 

selected based on goodness-of-fit ranking. The results indicate that weather 

variables significantly reduce rice output and that the production process 

exhibits decreasing returns to scale. The selected distribution yields a potential 

loss of IDR 774,352 and an expected loss of IDR 940,160 per hectare at the 

95% confidence level. These findings provide a quantitative basis for weather-

based agricultural risk assessment and support evidence-based risk mitigation 

strategies for farmers and policymakers. 

Keywords: 

Cobb-Douglas;  

Expected Shortfall (ES); 

Rice;  

Risk;  

Value at Risk (VaR).  

This is an open access article under the CC BY-SA license. 

 

Corresponding Author 

Amelia,  

Mathematics Study Program, 

Universitas Samudra, Langsa, Indonesia 

Email: ameliamath@unsam.ac.id 

 

 

http://jurnal.uinsu.ac.id/index.php/zero/index
https://orcid.org/0000-0001-8821-2080
https://creativecommons.org/licenses/by-sa/4.0/
mailto:ameliamath@unsam.ac.id
http://orcid.org/0000-0002-3554-8792
http://orcid.org/0009-0008-3691-0758
http://orcid.org/0000-0002-7111-8917
https://orcid.org/0009-0008-9508-2251
https://orcid.org/0009-0008-4714-3558


                                                                                                   E-ISSN : 2580-5754; P-ISSN : 2580-569X 

Zero: Jurnal Sains, Matematika dan Terapan 

944 

1. INTRODUCTION 
The agricultural sector plays a crucial role in achieving the second Sustainable Development Goal (SDG), 

Zero Hunger, which emphasizes food security, improved nutrition, and sustainable agriculture. In Indonesia, 

agriculture is the second-largest contributor to national Gross Domestic Product (GDP), highlighting its 

importance for economic stability and rural livelihoods [1]. Rice farming, as a strategic subsector, is central to 

food security due to rice being the primary staple food for the population [2]. Consequently, maintaining stable 

rice production is essential, particularly in the context of population growth and increasing food demand [3]. 

Despite its importance, rice production in Indonesia remains highly vulnerable to weather variability. In 

Aceh Province, rice production declined by 7.68% in 2023 compared to the previous year, with significant 

reductions occurring in several major rice-producing districts [4]. Extreme weather events such as floods and 

droughts are among the main drivers of crop failure, directly affecting farmers’ productivity and income. Climate 

change is expected to intensify these risks by increasing temperature extremes, altering rainfall patterns, and 

raising the frequency of extreme events, all of which negatively affect crop growth and agricultural sustainability 

[5]–[8]. 

Previous studies have extensively examined the relationship between weather conditions and rice 

production. Research using production-function and stochastic approaches has shown that rainfall, temperature, 

and wind speed significantly influence rice yields [9] [11]. While these studies provide important insights into 

yield variability, they largely focus on biophysical production outcomes and do not explicitly quantify the financial 

losses faced by farmers under extreme weather conditions. As a result, the economic implications of weather-

induced production shocks remain insufficiently explored. Previous studies have identified drought and flood 

events as the dominant causes of rice crop failure, with drought consistently ranked as the primary driver of 

production losses, while prolonged climate variability has been shown to reduce farmers’ welfare and increase 

economic vulnerability [12] [13]. 

From a risk-management perspective, weather-induced crop failure represents a form of extreme loss that 

cannot be adequately captured by average yield analysis alone. Value at Risk (VaR) and Expected Shortfall (ES) 

are widely used risk measures designed to quantify tail risk, that is, the risk of rare but severe losses. Unlike VaR, 

which identifies a loss threshold at a given confidence level, ES measures the expected magnitude of losses 

exceeding that threshold and satisfies desirable mathematical properties such as subadditivity and convexity [14], 

[15]. However, applications of VaR–ES in agricultural contexts particularly those integrated with production-

function modeling remain limited, especially in Indonesia. 

This study addresses this gap by integrating a Cobb–Douglas production function with Value at Risk (VaR) 

and Expected Shortfall (ES) measures to quantify weather-driven rice production losses. Weather variables, 

including rainfall, temperature, and wind speed, are incorporated into the production function to capture output 

sensitivity to climatic conditions. To characterize the distribution of production losses and the associated financial 

risks, the study fits several candidate parametric probability distributions to forecast-based loss data and selects 

the most appropriate model based on goodness-of-fit criteria. By combining production modeling with 

distribution-based risk assessment, this study provides a quantitative framework for evaluating weather-related 

agricultural risk, offering insights that are directly relevant for farmers, policymakers, and agricultural risk 

management strategies. 

 

2. RESEARCH METHOD 
2.1 Data Source and Variables 

Data collected in this study are secondary data obtained from Aceh Besar Agricultural service and 

Climatology Station. The scope of this research is risk management of rice farming losses, especially in Aceh 

Besar, Aceh, Indonesia. it can be used for other regions that have similar weather. The variables of this study are 

the amount of rice production per growing season, rainfall, temperature, and wind speed. The data used are data 

from 2010 to 2023. Considering the weather data in Indonesia, especially Aceh Besar, is different every month, 

the presentation of the data is grouped by month, and calculated the average per growing season of rice. After 

data aggregation and preprocessing, the final dataset consists of 22 observations, representing seasonal rice 

production outcomes over the study period. The recorded data consist of rice productivity, wind speed, 

temperature, and rainfall data. The processed data were obtained over a period of approximately 13 years. In 

this paper, data analysis of weather variables on rice production (Y) is carried out as the dependent variable. 

Weather variables, which consist of wind speed (𝑋1), average temperature (𝑋2), and rainfall (𝑋3), then act as 

independent variables. These variables will be modeled using a linear regression model, followed by classical 

assumption tests, namely normality, multicollinearity, heteroscedasticity, and autocorrelation tests. 

 

2.2 Cobb–Douglas Production Function 

To analyze the relationship between weather variability and rice production, a Cobb–Douglas production 

function is employed. The Cobb–Douglas specification is appropriate because rice production depends 

multiplicatively on weather inputs, and output is assumed to approach zero when any essential climatic factor is 
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absent [11],[16]. The Cobb–Douglas production function is estimated in its log-linear form, which allows the 

model to be expressed as a linear regression with respect to the transformed variables and enables the application 

of standard classical assumption tests. The production function is expressed as equation (1) 

 

𝑌 = 𝛽0𝑋1
𝛽1𝑋2

𝛽2𝑋3
𝛽3     (1) 

 

Where 𝑌 denotes rice production, 𝑋1, 𝑋2 and 𝑋3 represent rainfall, temperature, and wind speed, 

respectively 𝛽0 is a scale parameter, 𝛽𝑖 are output elasticities, and 𝜇 is a stochastic error term. 

Taking natural logarithms yields the estimable linear form in equation (2). 

 

ln 𝑌̂ = ln 𝛽0 + 𝛽1 ln 𝑋1 + 𝛽2 ln 𝑋2 + 𝛽3 ln 𝑋3 + 𝜇   (2) 

 

The parameters are estimated using ordinary least squares (OLS). Classical assumption tests, including 

normality, multicollinearity, heteroskedasticity, and autocorrelation tests, are conducted to ensure the validity of 

the regression model. In this study, production loss is defined as the deviation of observed output from its 

estimated expected level, such that losses occur when realized production falls below the model-implied baseline 

due to adverse weather conditions. It should be noted that non-climatic production factors, such as land area, 

fertilizer use, and technological inputs, are not explicitly included in the model due to data limitations, which may 

introduce omitted variable bias into the estimated production relationships. The parameters 𝛽1, 𝛽2 and 𝛽3 as 

represent the elasticities of the input factors 𝑋₁, 𝑋₂, and 𝑋₃, respectively. The sum of these elasticity parameters 

reflects the production response to proportional changes in all inputs, which can be interpreted as returns to 

scale. The following conditions apply [11]: 

a. Constant returns to scale occur when ∑ 𝛼𝑖
3
𝑖=1 =  1. Under this condition, a proportional increase in 

all input factors results in an equivalent proportional increase in output. For example, doubling all 

inputs leads to a doubling of output. 

b. Increasing returns to scale occur when ∑ 𝛼𝑖
3
𝑖=1 > 1. In this case, a proportional increase in inputs 

results in a more than proportional increase in output. For instance, doubling the input factors may 

lead to output increasing by more than two times, such as tripling or quadrupling. 

c. Decreasing returns to scale occur when ∑ 𝛼𝑖
3
𝑖=1 < 1. Under this condition, a proportional increase in 

inputs results in a less than proportional increase in output. Thus, when all inputs are doubled, the 

resulting increase in output is smaller than double. 

 

2.3 Risk Analysis  

Production risk is analyzed by focusing on downside losses associated with adverse weather conditions. Rice 

production returns are defined as the logarithmic difference between observed production and its fitted value 

from the Cobb–Douglas model, capturing deviations attributable to extreme weather shocks. Negative returns 

correspond to production losses and are used for tail risk modeling. 

Value at Risk (VaR) and Expected Shortfall (ES) are employed to quantify the magnitude of extreme losses. 

The lower tail of the return distribution is modeled, as it represents unfavorable production outcomes. Let 𝑋 

denote the loss variable derived from negative production returns with cumulative distribution function 𝐹𝑋(𝑥). 

The Value at Risk at confidence level 𝛼 is defined as equation (3) 

 

𝑉𝑎𝑅𝛼(𝑋) = 𝐹𝑋
−1(𝛼) = 𝑥𝛼                 (3) 

 

ES means the amount of loss value that will be borne if there is a loss whose value exceedsVaR. ES can be 

written with the following mathematical equation (4): 

 

𝐸𝑆1−𝛼(𝑋) =
1

𝛼
∫ 𝑥𝑓(𝑥)𝑑𝑥

1

𝑉𝑎𝑅1−𝛼
=

1

𝛼
∫ 𝑉𝑎𝑅𝜇(𝑋)𝑑𝜇

1

1−𝛼
                     (4) 

 

Several candidate distributions, including the Generalized Extreme Value (GEV), Generalized Pareto, and 

Normal distributions, are fitted to the loss data. Distribution selection is based on goodness-of-fit statistics, namely 

the Kolmogorov–Smirnov, Anderson–Darling, and Chi-square tests, with priority given to tail-sensitive criteria. 

The selected distribution is subsequently used to estimate VaR and ES values and to compute potential financial 

losses faced by rice farmers. 

 

3. RESULT AND ANALYSIS 
In this paper, the risk value of rice is calculated based on changes in crop productivity results, with the 

Cobb-Douglas concept modified with the natural logarithm function by comparing the current production 

amount with the production amount of one previous period. To clarify the interpretation of production 
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sensitivity, the logarithmic transformation allows the estimated coefficients to be interpreted as elasticities, 

capturing proportional changes in rice production associated with weather variability. Deviations between 

observed and fitted production values are later used to quantify downside risk attributable to adverse weather 

conditions, rather than to evaluate predictive accuracy alone. The variable used is the amount of production Y. 

Based on the results of data analysis, the production function model is obtained with the equation:  

 

𝐿𝑛 𝑌̂ = 12.98938 − 0.080527 𝑙𝑛 𝑋1 − 0.263015 𝑙𝑛 𝑋2 − 0.097326 𝑙𝑛 𝑋3 

 

𝑌̂ = 𝑒𝑥𝑝 [12.98938 − 0.080527 𝑙𝑛 𝑋1 − 0.263015 𝑙𝑛 𝑋2 − 0.097326 𝑙𝑛 𝑋3] 
 

The value of ln 𝛽 = 12.98938 or 𝛽 = 𝑒𝑥𝑝 (12.98938) = 437739.82, meanwhile the value of 𝛼1 =
0.080527, 𝛼2 = −0.263015 and 𝛼3 = −0.097326, then rice  production function based on weather variability 

can be written as: 

 

𝑌̂ = 𝑒𝑥𝑝 [𝑙𝑛 437,739.82 𝑋1
−0.080527𝑋2

−0.263015 𝑋3
−0.097326] 

 

𝑌̂ = 437739.82 𝑋1
−0.080527𝑋2

−0.263015 𝑋3
−0.097326 

 

In this case ∑ 𝛼𝑖
3
𝑖=1 = −0.080527 − 0.263015 − 0.097326 = −0.440868 < 1, the function shows 

decreasing returns to scale, which means that an increase in input results in a disproportionate increase in output. 

In the context of weather variables, decreasing returns to scale indicate that unfavorable changes in climatic 

conditions can generate amplified negative effects on production. The negative elasticities should therefore be 

interpreted as reflecting production sensitivity to deviations from optimal weather conditions, rather than as linear 

marginal effects of increasing rainfall, temperature, or wind speed. In other words, if all inputs in the production 

process increase by a certain percentage, the output produced increases by a smaller percentage. Prob (F-statistic) 

= 0.004534 means simultaneously, weather variables affect rice production with a significance level of 0.05. 

From the regression model obtained, the forecasting value of rice production influenced by weather factors 

will be calculated. The comparison of forecasting results and actual data can be seen in Figure 1. 

 
Figure 1. Comparison of Forecasting Results and Actual Data 

 

Based on Figure 1, it can be seen that the MAPE value obtained is 0.873%, which means that the average 

error of the forecasting model against the actual data is only 0.87%. Although this low MAPE value suggests a 

strong in-sample fit, it should be interpreted with caution. The result may partly reflect the limited sample size 

and the use of in-sample estimation rather than out-of-sample validation; therefore, the MAPE is better viewed 

as an indicator of explanatory accuracy rather than predictive robustness. 

Next, distribution fitting will be done from the forecasting data. The purpose of this step is to identify a 

probability distribution capable of adequately capturing extreme deviations in production outcomes associated 

with adverse weather conditions. Since the analysis focuses on tail risk, particular attention is given to distributions 

that provide a good fit in the tails rather than only around the mean. The pattern of return data is plotted and 

fitted with a distribution from the exponential family using Easy Fit 5.5. the results are presented in table 1. 

Table 1. Plotting the results of rice yield return data. 

 

Distribution 

Kolmogorov 

Smirnov 

Anderson 

Darling 
Chi-Squared 

Statistic Rank Statistic Rank Statistic Rank 

1 Beta 0.28109 4 5.2675 4 N/A 

2 Exponential (2P) 0.31718 5 3.3216 3 14.768 3 

3 Gen. Extreme Value 0.16779 1 0.57512 1 9.2542 2 

4 Gen. Pareto 0.18255 2 7.973 5 N/A 

5 Normal 0.19151 3 0.58641 2 4.0238 1 

6 Exponential No fit      

7 Pareto No fit      

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&
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Table 1 shows that the General Extreme Value distribution was the first rank, General Pareto was the 

second rank, and the Normal distribution was the third rank. The selection of the Generalized Extreme Value 

(GEV) distribution is primarily justified by its superior performance under tail-sensitive goodness-of-fit tests, 

especially the Anderson–Darling statistic. Distributions categorized as “no fit” indicate that the corresponding 

goodness-of-fit tests failed to satisfy acceptable significance thresholds and were therefore excluded from 

subsequent risk estimation. The complete results of parameter estimation for each data distribution are presented 

in Table 2. 

Table 2. Parameter estimation results 

# Distribution Parameters 

1 Beta 
𝛼1 = 0.83908  𝛼2 = 0.77047 
𝑎 = −0.10552  𝑏 = 0.14165 

2 Exponential (2P) 𝜆 = 8.9813  𝛾 = −0.10427 

3 Gen. Extreme Value 𝑘 = −0.18035  𝜎 = 0.06346  𝜇 = −0.0198 

4 Gen. Pareto 𝑘 = −0.77671  𝜎 = 0.18842  𝜇 = −0.09897 

5 Normal 𝜎 = 0.06823  𝜇 = 0.00708 

6 Exponential No fit   

7 Pareto No fit 

 

Next, based on Table 2, we will calculate the VaR and ES values of the three distributions: the General 

Extreme Value, General Pareto, and Normal distribution presented in table 3.  

Table 3. The values of VaR and ES 

Distribution 𝛼 𝑉𝑎𝑅 𝐸𝑆 

General Extreme Value 

0.95 0.096794 0.11752 

0.99 0.13138 0.1451 

0.999 0.16654 0.15805 

General Pareto 

0.95 0.11994 0.1741 

0.99 0.13683 0.15235 

0.999 0.14248 0.14508 

Normal 

0.95 0.11931 0.14782 

0.99 0.16581 0.18893 

0.999 0.21793 0.23682 

 

From Table 3, the VaR value increases as the α value increases; the same thing happens to the ES value. 

This pattern reflects increasing exposure to extreme losses under higher confidence levels. Differences in VaR 

magnitude across distributions highlight the sensitivity of risk estimates to distributional assumptions, with the 

GEV distribution providing a tail-consistent representation of extreme production losses. 

Estimates of losses that can be suffered by rice farmers involving weather change factors can be calculated 

concerning the size of the risk of loss and the amount of capital spent. Based on BPS Aceh, farmers' average 

production cost per hectare per growing season is IDR 6,000,000 to IDR 8,000,000. Therefore, when referring 

to the average cost of rice production per hectare and planting period incurred by farmers of IDR 8,000,000 and 

the average income of farmers from production of IDR 15,000,000, the net profit is around IDR 7,000,000. 

Furthermore, the possibility of farmers' losses on production capital will be calculated based on the VaR 

and ES values in Table 10. If it is assumed that the fixed capital for rice production per hectare per planting 

period is IDR 8,000,000, the potential losses that may occur in capital can be seen in Table 4. 

 

Table 4. Value of risk of loss on capital. 

Distribution 𝛼 𝑉𝑎𝑅 (IDR) 𝐸𝑆 (IDR) 

General Extreme Value 

0.95 774,352 940,160 

0.99 1,051,040 1,160,800 

0.999 1,332,320 1,264,400 

General Pareto 

0.95 959,520 1,392,800 

0.99 1,094,640 1,218,800 

0.999 1,139,840 1,160,640 

Normal 

0.95 954,480 1,182,560 

0.99 1,326,480 1,511,440 

0.999 1,743,440 1,894,560 
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Table 4 shows that if we look at the General Extreme Value distribution approach for α = 95% the potential 

loss experienced by farmers is IDR 774,352 if the capital spent is IDR 8,000,000. In other words, in 95 out of 

100 growing seasons, farmers will experience a maximum loss of IDR 774,400 is the maximum value of losses 

that usually occur under normal conditions. While there is a 5% chance that the farmer's loss could be greater 

than IDR 774,400 means that in 5 out of 100 growing seasons the farmer is likely to be hit by a loss greater than 

IDR 774,400 due to adverse conditions such as natural disasters that cause greater losses. Meanwhile, the ES 

value of IDR 940,160 indicates the average loss that farmers may experience if losses exceed the VaR value. If 

the VaR value of IDR 774,400 is the maximum possible loss with a 95% confidence level, then the ES value of 

IDR 940,160 means that if there is a loss of more than IDR 774,400, the average loss that farmers face will be 

IDR 940,160. The ES value can help farmers who are exposed to risk in preparing themselves for the worst 

event. So, if a loss occurs that exceeds the VaR prediction, farmers should be prepared to face an average loss of 

IDR 940,160. These results translate statistical tail risk into economically meaningful measures, while also 

highlighting that estimated losses are conditional on model assumptions and may vary under alternative 

distributional or structural specifications. 

The results of this study indicate that weather variability has a substantial impact on rice production and 

causes measurable financial risks for farmers. These findings are consistent with broader patterns observed in 

related studies. For instance, Impact of Historical Climate Variability on Rice Production in Mainland Southeast 

Asia [19] reported that fluctuations in rainfall and temperature significantly affect rice yields across Southeast 

Asia. While that study focused on multi-scale climate impacts on productivity, the present research extends the 

analysis by translating weather-induced variability into quantified financial losses using the VaR–ES framework, 

thereby providing a risk-oriented perspective not explored in earlier work. 

Similarly, the study How Rice Responds to Temperature Changes and Defeats Heat Stress [20] found that 

temperature extremes contribute to reductions in rice productivity. However, unlike the [20] research which 

concentrates on physiological responses of rice to heat stress, this study incorporates climatic effects into a 

production-function model and evaluates the resulting economic risks faced by farmers. This offers a broader 

socioeconomic interpretation of how climate variability threatens farming livelihoods. 

In addition, findings from the [21] meta-analysis on future climate-change impacts on rice yield indicated 

consistent yield reductions under increased temperature and rainfall anomalies. Although the meta-analysis 

focuses on projecting biophysical yield changes, the present study advances the literature by providing a practical 

assessment of current loss distributions under observed weather patterns. This novel combination of Cobb–

Douglas modeling with VaR and ES strengthens the robustness of the analysis and contributes a methodological 

perspective that is increasingly relevant in agricultural risk studies. 

Overall, the consistency of this study’s findings with prior research supports the validity of the analysis. At 

the same time, the introduction of extreme-value-based financial risk measures offers new insights into how 

weather fluctuations translate into economic losses for rice farmers, which is essential for developing targeted 

risk-mitigation strategies and informing agricultural policy. 

 

4. CONCLUSION 
 This study proposes a quantitative framework for assessing weather-related risk in rice production by 

integrating a Cobb–Douglas production function with Value at Risk (VaR) and Expected Shortfall (ES) measures. 

Weather variables are incorporated into the production model to estimate output sensitivity, after which forecast-

based production outcomes are used to derive loss measures. Extreme production losses are characterized 

through parametric distribution fitting, with the most suitable probability distribution selected based on goodness-

of-fit criteria. The empirical results indicate that adverse weather conditions significantly reduce rice output, while 

the estimated VaR and ES values highlight the magnitude of potential downside risk faced by farmers. Although 

the analysis demonstrates strong in-sample explanatory performance, the findings should be interpreted with 

caution due to data limitations and distributional assumptions. Overall, the proposed framework offers a 

transparent and flexible approach for translating weather-induced production variability into economically 

meaningful risk measures, providing a methodological basis for agricultural risk assessment and supporting 

informed risk management and policy decisions. 
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