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‘Weather variability poses significant risks to rice production, leading to potential
income losses for farmers and increased uncertainty in agricultural planning.
This study integrates a Cobb-Douglas production function with Value at Risk
(VaR) and Expected Shortfall (ES) measures to assess weather-driven
production losses in Aceh Besar using secondary data on rainfall, temperature,
and wind speed from 2010 to 2023. Rice production is first modeled to estimate
output sensitivity to climatic factors, after which production losses are derived
from forecast-based outcomes. Several candidate parametric probability
distributions are fitted to the loss data, and the most suitable distribution is
selected based on goodness-of-fit ranking. The results indicate that weather
variables significantly reduce rice output and that the production process
exhibits decreasing returns to scale. The selected distribution yields a potential
loss of IDR 774,352 and an expected loss of IDR 940,160 per hectare at the
95% confidence level. These findings provide a quantitative basis for weather-
based agricultural risk assessment and support evidence-based risk mitigation
strategies for farmers and policymakers.
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1. INTRODUCTION

The agricultural sector plays a crucial role in achieving the second Sustainable Development Goal (SDG),
Zero Hunger, which emphasizes food security, improved nutrition, and sustainable agriculture. In Indonesia,
agriculture is the second-largest contributor to national Gross Domestic Product (GDP), highlighting its
importance for economic stability and rural livelihoods [1]. Rice farming, as a strategic subsector, 1s central to
food security due to rice being the primary staple food for the population [2]. Consequently, maintaining stable
rice production is essential, particularly in the context of population growth and increasing food demand [3].

Despite its importance, rice production in Indonesia remains highly vulnerable to weather variability. In
Aceh Province, rice production declined by 7.68% in 2023 compared to the previous year, with significant
reductions occurring in several major rice-producing districts [4]. Extreme weather events such as floods and
droughts are among the main drivers of crop failure, directly affecting farmers’ productivity and income. Climate
change 1s expected to intensify these risks by increasing temperature extremes, altering rainfall patterns, and
raising the frequency of extreme events, all of which negatively affect crop growth and agricultural sustainability
[51-18].

Previous studies have extensively examined the relationship between weather conditions and rice
production. Research using production-function and stochastic approaches has shown that rainfall, temperature,
and wind speed significantly influence rice yields [9] [11]. While these studies provide important insights into
yield variability, they largely focus on biophysical production outcomes and do not explicitly quantify the financial
losses faced by farmers under extreme weather conditions. As a result, the economic implications of weather-
induced production shocks remain insufficiently explored. Previous studies have identified drought and flood
events as the dominant causes of rice crop failure, with drought consistently ranked as the primary driver of
production losses, while prolonged climate variability has been shown to reduce farmers’ welfare and increase
economic vulnerability [12] [13].

From a risk-management perspective, weather-induced crop failure represents a form of extreme loss that
cannot be adequately captured by average yield analysis alone. Value at Risk (VaR) and Expected Shortfall (ES)
are widely used risk measures designed to quantify tail risk, that is, the risk of rare but severe losses. Unlike VaR,
which identifies a loss threshold at a given confidence level, ES measures the expected magnitude of losses
exceeding that threshold and satisfies desirable mathematical properties such as subadditivity and convexity [14],
[15]. However, applications of VaR-ES in agricultural contexts particularly those integrated with production-
function modeling remain limited, especially in Indonesia.

This study addresses this gap by integrating a Cobb-Douglas production function with Value at Risk (VaR)
and Expected Shortfall (ES) measures to quantify weather-driven rice production losses. Weather variables,
including rainfall, temperature, and wind speed, are incorporated into the production function to capture output
sensitivity to climatic conditions. To characterize the distribution of production losses and the associated financial
risks, the study fits several candidate parametric probability distributions to forecast-based loss data and selects
the most appropriate model based on goodness-of-fit criteria. By combining production modeling with
distribution-based risk assessment, this study provides a quantitative framework for evaluating weather-related
agricultural risk, offering insights that are directly relevant for farmers, policymakers, and agricultural risk
management strategies.

2. RESEARCH METHOD
2.1 Data Source and Variables

Data collected in this study are secondary data obtained from Aceh Besar Agricultural service and
Climatology Station. The scope of this research 1s risk management of rice farming losses, especially in Aceh
Besar, Aceh, Indonesia. it can be used for other regions that have similar weather. The variables of this study are
the amount of rice production per growing season, rainfall, temperature, and wind speed. The data used are data
from 2010 to 2023. Considering the weather data in Indonesia, especially Aceh Besar, is different every month,
the presentation of the data is grouped by month, and calculated the average per growing season of rice. After
data aggregation and preprocessing, the final dataset consists of 22 observations, representing seasonal rice
production outcomes over the study period. The recorded data consist of rice productivity, wind speed,
temperature, and rainfall data. The processed data were obtained over a period of approximately 13 years. In
this paper, data analysis of weather variables on rice production (Y) is carried out as the dependent variable.
‘Weather variables, which consist of wind speed (X;), average temperature (X,), and rainfall (X3), then act as
independent variables. These variables will be modeled using a linear regression model, followed by classical
assumption tests, namely normality, multicollinearity, heteroscedasticity, and autocorrelation tests.

2.2 Cobb-Douglas Production Function

To analyze the relationship between weather variability and rice production, a Cobb-Douglas production
function 1s employed. The Cobb-Douglas specification is appropriate because rice production depends
multiplicatively on weather inputs, and output is assumed to approach zero when any essential climatic factor 1s
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absent [11],[16]. The Cobb-Douglas production function is estimated in its log-linear form, which allows the
model to be expressed as a linear regression with respect to the transformed variables and enables the application
of standard classical assumption tests. The production function is expressed as equation (1)

Y = BoxP1xbexPs (1)

Where Y denotes rice production, X;,X, and X3 represent rainfall, temperature, and wind speed,
respectively 8, 1s a scale parameter, f§; are output elasticities, and g is a stochastic error term.
Taking natural logarithms yields the estimable linear form in equation (2).

ll’l?zll’lﬁo-l-ﬁllnXl +ﬁ21nX2 +ﬁ3lnX3 +,u (2)

The parameters are estimated using ordinary least squares (OLS). Classical assumption tests, including
normality, multicollinearity, heteroskedasticity, and autocorrelation tests, are conducted to ensure the validity of
the regression model. In this study, production loss is defined as the deviation of observed output from its
estimated expected level, such that losses occur when realized production falls below the model-implied baseline
due to adverse weather conditions. It should be noted that non-climatic production factors, such as land area,
fertilizer use, and technological inputs, are not explicitly included in the model due to data limitations, which may
introduce omitted variable bias imnto the estimated production relationships. The parameters By, f and B3 as
represent the elasticities of the mput factors X4, X5, and X3, respectively. The sum of these elasticity parameters
reflects the production response to proportional changes in all inputs, which can be interpreted as returns to
scale. The following conditions apply [11]:

a.  Constant returns to scale occur when Yi_; @; = 1. Under this condition, a proportional increase in
all input factors results in an equivalent proportional increase in output. For example, doubling all
mputs leads to a doubling of output.

b. Increasing returns to scale occur when Y3_; @; > 1. In this case, a proportional increase in inputs
results in a more than proportional increase in output. For instance, doubling the mput factors may
lead to output increasing by more than two times, such as tripling or quadrupling.

¢.  Decreasing returns to scale occur when Z?ﬂ a; < 1. Under this condition, a proportional increase in
mputs results in a less than proportional increase in output. Thus, when all inputs are doubled, the
resulting increase in output is smaller than double.

2.3 Risk Analysis

Production risk 1s analyzed by focusing on downside losses associated with adverse weather conditions. Rice
production returns are defined as the logarithmic difference between observed production and its fitted value
from the Cobb-Douglas model, capturing deviations attributable to extreme weather shocks. Negative returns
correspond to production losses and are used for tail risk modeling.

Value at Risk (VaR) and Expected Shortfall (ES) are employed to quantify the magnitude of extreme losses.
The lower tail of the return distribution 1s modeled, as it represents unfavorable production outcomes. Let X
denote the loss variable derived from negative production returns with cumulative distribution function Fy(x).
The Value at Risk at confidence level a is defined as equation (3)

VaR,(X) = Fyl(a) = x, )

ES means the amount of loss value that will be borne if there is a loss whose value exceeds VaR. ES can be
written with the following mathematical equation (4):

1,1
a“VaRi—q

ESi_o(X) = xf()dx = = [ VaR,(X)du (1)

Several candidate distributions, including the Generalized Extreme Value (GEV), Generalized Pareto, and
Normal distributions, are fitted to the loss data. Distribution selection 1s based on goodness-of-fit statistics, namely
the Kolmogorov-Smirnov, Anderson-Darling, and Chi-square tests, with priority given to tail-sensitive criteria.
The selected distribution is subsequently used to estimate VaR and ES values and to compute potential financial
losses faced by rice farmers.

3. RESULT AND ANALYSIS

In this paper, the risk value of rice is calculated based on changes in crop productivity results, with the
Cobb-Douglas concept modified with the natural logarithm function by comparing the current production
amount with the production amount of one previous period. To clarify the interpretation of production
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sensitivity, the logarithmic transformation allows the estimated coefficients to be interpreted as elasticities,
capturing proportional changes in rice production associated with weather variability. Deviations between
observed and fitted production values are later used to quantify downside risk attributable to adverse weather
conditions, rather than to evaluate predictive accuracy alone. The variable used is the amount of production Y.
Based on the results of data analysis, the production function model is obtained with the equation:

LnY = 12.98938 — 0.080527 In X, — 0.263015 In X, — 0.097326 In X,
Y = exp [12.98938 — 0.080527 In X, — 0.263015 In X, — 0.097326 In X;]

The value of Inf = 12.98938 or = exp (12.98938) = 437739.82, meanwhile the value of a; =
0.080527, a, = —0.263015 and a3 = —0.097326, then rice production function based on weather variability
can be written as:

? = exp [ln 437,73982 X1—0.080527X2—0.263015 X3—0.097326]
? = 437739.82 X1—0.080527X2—0.263015 X3—0.097326

In this case Y5, a; = —0.080527 — 0.263015 — 0.097326 = —0.440868 < 1, the function shows
decreasing returns to scale, which means that an increase in input results in a disproportionate increase in output.
In the context of weather variables, decreasing returns to scale indicate that unfavorable changes in climatic
conditions can generate amplified negative effects on production. The negative elasticities should therefore be
mterpreted as reflecting production sensitivity to deviations from optimal weather conditions, rather than as linear
marginal effects of increasing rainfall, temperature, or wind speed. In other words, if all inputs in the production
process increase by a certain percentage, the output produced increases by a smaller percentage. Prob (F-statistic)
= 0.004534 means simultaneously, weather variables affect rice production with a significance level of 0.05.

From the regression model obtained, the forecasting value of rice production influenced by weather factors

will be calculated. The comparison of forecasting results and actual data can be seen in Figure 1.

12.0
Forecast: YF

Actual: Y
Forecast sample: 122
i Adjusted sample: 2 22
o \ Included observations: 21
/ 3 ST N \ s Root Mean Squared Error  0.119040,
\ T A Mean Absolute Error 0101149
14 /\/’\/ \/\/ Mean Abs. Percent Error 0873034,

Theil Inequality Coef. 0.005179

1.2 Bias Proportion 0382779
Variance Proportion 0.276257
it Covariance Proportion 0340964
2 4 6 8 10 12 14 16 18 20 2 Theil U2 Coefficient 1.101524
Symmetric MAPE 0.877483

e YF Actuals 225S.E.

Figure 1. Comparison of Forecasting Results and Actual Data

Based on Figure 1, it can be seen that the MAPE value obtained is 0.873%, which means that the average
error of the forecasting model against the actual data is only 0.87%. Although this low MAPE value suggests a
strong in-sample fit, it should be interpreted with caution. The result may partly reflect the limited sample size
and the use of in-sample estimation rather than out-of-sample validation; therefore, the MAPE is better viewed
as an indicator of explanatory accuracy rather than predictive robustness.

Next, distribution fitting will be done from the forecasting data. The purpose of this step is to identify a
probability distribution capable of adequately capturing extreme deviations in production outcomes associated
with adverse weather conditions. Since the analysis focuses on tail risk, particular attention 1s given to distributions
that provide a good fit in the tails rather than only around the mean. The pattern of return data is plotted and
fitted with a distribution from the exponential family using Easy Fit 5.5. the results are presented in table 1.

Table 1. Plotting the results of rice yield return data.

Kolmogorov Anderson .
Distribution Smirnov Darling Chi-Squared
Statistic Rank Statistic Rank Statistic Rank
1 Beta 0.28109 4 5.2675 4 N/A
2 Exponential (2P) 0.31718 5 3.3216 & 14.768 3
3 Gen. Extreme Value 0.16779 1 0.57512 1 9.2542 2
4 Gen. Pareto 0.18255 2 7.973 5 N/A
5 Normal 0.19151 3 0.58641 2 4.0238 1
6 Exponential No fit
7 Pareto No fit
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Table 1 shows that the General Extreme Value distribution was the first rank, General Pareto was the
second rank, and the Normal distribution was the third rank. The selection of the Generalized Extreme Value
(GEV) distribution is primarily justified by its superior performance under tail-sensitive goodness-of-fit tests,
especially the Anderson-Darling statistic. Distributions categorized as “no fit” indicate that the corresponding
goodness-of-fit tests failed to satisty acceptable significance thresholds and were therefore excluded from
subsequent risk estimation. The complete results of parameter estimation for each data distribution are presented
in Table 2.

Table 2. Parameter estimation results

# Distribution Parameters

a, = 0.83908 a, = 0.77047

! Beta a=—010552 b = 0.14165

2 Exponential (2P) A1 =89813 y = —0.10427

3 Gen. Extreme Value k =-0.18035 ¢ = 0.06346 u = —0.0198
4 Gen. Pareto k=-0.77671 ¢ = 0.18842 u = —0.09897
5 Normal o =0.06823 u = 0.00708

6 Exponential No fit

7 Parcto No fit

Next, based on Table 2, we will calculate the VaR and ES values of the three distributions: the General
Extreme Value, General Pareto, and Normal distribution presented in table 3.
Table 3. The values of VaR and ES

Distribution a VaR ES
0.95 0.096794 0.11752
General Extreme Value 0.99 0.13138 0.1451
0.999 0.16654 0.15805
0.95 0.11994 0.1741
General Pareto 0.99 0.13683 0.15235
0.999 0.14248 0.14508
0.95 0.11931 0.14782
Normal 0.99 0.16581 0.18893
0.999 0.21793 0.23682

From Table 3, the VaR value increases as the a value increases; the same thing happens to the £S5 value.
This pattern reflects increasing exposure to extreme losses under higher confidence levels. Differences in VaR
magnitude across distributions highlight the sensitivity of risk estimates to distributional assumptions, with the
GEV distribution providing a tail-consistent representation of extreme production losses.

Estimates of losses that can be suffered by rice farmers involving weather change factors can be calculated
concerning the size of the risk of loss and the amount of capital spent. Based on BPS Aceh, farmers' average
production cost per hectare per growing season is IDR 6,000,000 to IDR 8,000,000. Therefore, when referring
to the average cost of rice production per hectare and planting period incurred by farmers of IDR 8,000,000 and
the average income of farmers from production of IDR 15,000,000, the net profit 1s around IDR 7,000,000.

Furthermore, the possibility of farmers' losses on production capital will be calculated based on the VaR
and LS values in Table 10. If it 1s assumed that the fixed capital for rice production per hectare per planting
period 1s IDR 8,000,000, the potential losses that may occur in capital can be seen in Table 4.

Table 4. Value of risk of loss on capital.

Distribution a VaR (IDR) ES (IDR)

0.95 774,352 940,160
General Extreme Value 0.99 1,051,040 1,160,800
0.999 1,332,320 1,264,400
0.95 959,520 1,392,800
General Pareto 0.99 1,094,640 1,218,800
0.999 1,139,840 1,160,640
0.95 954,480 1,182,560
Normal 0.99 1,326,480 1,511,440
0.999 1,743,440 1,894,560
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Table 4 shows that if we look at the General Extreme Value distribution approach for a = 95% the potential
loss experienced by farmers is IDR 774,352 if the capital spent is IDR 8,000,000. In other words, in 95 out of
100 growing seasons, farmers will experience a maximum loss of IDR 774,400 1s the maximum value of losses
that usually occur under normal conditions. While there is a 5% chance that the farmer's loss could be greater
than IDR 774,400 means that in 5 out of 100 growing seasons the farmer is likely to be hit by a loss greater than
IDR 774,400 due to adverse conditions such as natural disasters that cause greater losses. Meanwhile, the ES
value of IDR 940,160 indicates the average loss that farmers may experience if losses exceed the VaR value. If
the VaR value of IDR 774,400 is the maximum possible loss with a 95% confidence level, then the ES value of
IDR 940,160 means that if there is a loss of more than IDR 774,400, the average loss that farmers face will be
IDR 940,160. The ES value can help farmers who are exposed to risk in preparing themselves for the worst
event. So, if a loss occurs that exceeds the VaR prediction, farmers should be prepared to face an average loss of
IDR 940,160. These results translate statistical tail risk into economically meaningful measures, while also
highlighting that estimated losses are conditional on model assumptions and may vary under alternative
distributional or structural specifications.

The results of this study indicate that weather variability has a substantial impact on rice production and
causes measurable financial risks for farmers. These findings are consistent with broader patterns observed in
related studies. For instance, Impact of Historical Climate Variability on Rice Production in Mainland Southeast
Asia [19] reported that fluctuations in rainfall and temperature significantly affect rice yields across Southeast
Asia. While that study focused on multi-scale climate impacts on productivity, the present research extends the
analysis by translating weather-induced variability into quantified financial losses using the VaR-ES framework,
thereby providing a risk-oriented perspective not explored in earlier work.

Similarly, the study How Rice Responds to Temperature Changes and Defeats Heat Stress [20] found that
temperature extremes contribute to reductions in rice productivity. However, unlike the [20] research which
concentrates on physiological responses of rice to heat stress, this study incorporates climatic effects into a
production-function model and evaluates the resulting economic risks faced by farmers. This offers a broader
socloeconomic interpretation of how climate variability threatens farming livelihoods.

In addition, findings from the [21] meta-analysis on future climate-change impacts on rice yield indicated
consistent yield reductions under increased temperature and rainfall anomalies. Although the meta-analysis
focuses on projecting biophysical yield changes, the present study advances the literature by providing a practical
assessment of current loss distributions under observed weather patterns. This novel combination of Cobb-
Douglas modeling with VaR and ES strengthens the robustness of the analysis and contributes a methodological
perspective that 1s increasingly relevant in agricultural risk studies.

Opverall, the consistency of this study’s findings with prior research supports the validity of the analysis. At
the same time, the introduction of extreme-value-based financial risk measures offers new insights into how
weather fluctuations translate into economic losses for rice farmers, which 1s essential for developing targeted
risk-mitigation strategies and informing agricultural policy.

4. CONCLUSION

This study proposes a quantitative framework for assessing weather-related risk in rice production by
mtegrating a Cobb-Douglas production function with Value at Risk (VaR) and Expected Shortfall (ES) measures.
‘Weather variables are incorporated into the production model to estimate output sensitivity, after which forecast-
based production outcomes are used to derive loss measures. Fxtreme production losses are characterized
through parametric distribution fitting, with the most suitable probability distribution selected based on goodness-
of-fit criteria. The empirical results indicate that adverse weather conditions significantly reduce rice output, while
the estimated VaR and ES values highlight the magnitude of potential downside risk faced by farmers. Although
the analysis demonstrates strong in-sample explanatory performance, the findings should be mterpreted with
caution due to data limitations and distributional assumptions. Overall, the proposed framework offers a
transparent and flexible approach for translating weather-induced production variability into economically
meaningful risk measures, providing a methodological basis for agricultural risk assessment and supporting
informed risk management and policy decisions.
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