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Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a graph, and let 𝑖(𝐺) denote the number of 

independent sets of 𝐺, commonly known as the Fibonacci number of the graph. 

This paper investigates the Fibonacci numbers of two graph families, namely 

broom graphs and double star graphs, which naturally generalize the classical 

path and star graphs. By employing a combinatorial approach based on the 

systematic enumeration of independent sets, we establish recurrence relations 

governing these invariants. In particular, the Fibonacci number of the broom 

graph 𝐵𝑛,𝑚 satisfies 𝑖(𝐵𝑛,𝑚) = 𝑖(𝐵𝑛−1,𝑚) + 𝑖(𝐵𝑛−2,𝑚) under appropriate 

initial conditions, while the Fibonacci number of the double star graph 𝑆𝑛,𝑚 

satisfies 𝑖(𝑆𝑛,𝑚) = 𝑖(𝑆𝑛−1,𝑚) + 2 𝑛−1 × 𝑖(𝑆0,𝑚). Solving these recurrences 

yields explicit closed-form expressions for both graph families. To the best of 

our knowledge, such unified recurrence-based characterizations and closed 

formulas for the Fibonacci numbers of broom and double star graphs have not 

been previously reported. These results clarify how the structural features of 

these graphs influence the growth behavior of their Fibonacci numbers and 

enrich the study of Fibonacci type invariants in graph theory. 
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1. INTRODUCTION 

The Fibonacci sequence 𝐹𝑛 is a classical recursive sequence defined by 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 for 𝑛 ≥ 2, with 

initial values 𝐹0 = 0 and 𝐹1 = 1 [1], [2]. Beyond its simple algebraic definition, the Fibonacci sequence arises 

naturally in a wide range of growth phenomena and recursive processes, and it has long served as a fundamental 

model in mathematics and combinatorics [3], [4]. A graph 𝐺 is defined as an ordered pair (𝑉(𝐺), 𝐸(𝐺)), where 

𝑉(𝐺) is a nonempty set of vertices and 𝐸(𝐺) is a (possibly empty) set of edges, each consisting of an unordered 

pair of distinct vertices in 𝑉(𝐺) [5], [6], [7], [8], [9], [10], [11]. The connection between Fibonacci numbers and 
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graph theory was formally introduced in [12] through the notion of the Fibonacci number of a graph 𝐺, denoted 

by 𝑖(𝐺) = |𝐼(𝐺)|, where 𝐼(𝐺) represents the collection of all independent vertex sets of 𝐺. Since then, this 

invariant has been widely studied as a means of capturing combinatorial and structural properties of graphs, with 

applications in enumeration problems, network modeling, and algorithmic analysis. 

A substantial body of research has focused on determining Fibonacci numbers for various graph classes, 

including run graphs, cubic graphs, and tricyclic graphs [13], [14], [15], [16], [17], [18], [19], [20], [21]. In addition, 

explicit formulas have been obtained for several fundamental graph families. In particular, it was shown in [22] 

that 𝐹𝑛+2 coincides with the Fibonacci number of the path graph 𝑃𝑛, while [23] established that the Fibonacci 

number of the star graph 𝑆𝑚 equals 2𝑚+1. These classical results demonstrate how simple graph topologies give 

rise to transparent independent set structures and closed-form expressions. 

More recently, attention has shifted toward composite and hybrid graph families formed by combining basic 

components, such as paths, cycles, and stars. Examples include tadpole graphs, lollipop graphs, and other 

unicyclic or bicyclic extensions, for which Fibonacci type invariants have been partially characterized [24], [25], 

[26], [27]. Within this context, broom graphs and double star graphs arise as natural yet structurally distinct 

generalizations. The broom graph 𝐵𝑛,𝑚 is obtained by attaching the pendant vertex of a path graph 𝑃𝑛 to the 

central vertex of a star graph 𝑆𝑚 [28], while the double star graph 𝑆𝑛,𝑚 is formed by connecting the centers of 

two star graphs 𝑆𝑛 and 𝑆𝑚 [29], [30]. Unlike other composite graphs, these families simultaneously exhibit 

elongated path components and pronounced branching structures, leading to more intricate interactions among 

independent sets. 

Although the structural and spectral properties of broom and double star graphs have been investigated in 

previous studies, their Fibonacci numbers have not yet been fully characterized. In contrast to path and star 

graphs, whose independent set configurations admit well-known closed formulas, broom and double star graphs 

display more complex combinatorial behavior due to the interplay between linear and branching substructures. 

As a result, explicit recurrence relations and closed-form expressions describing the growth of independent sets 

in these graphs remain incomplete in the existing literature. 

Motivated by the lack of a comprehensive characterization, the present study provides a systematic 

characterization of the Fibonacci numbers associated with the broom graph 𝐵𝑛,𝑚 and the double star graph 𝑆𝑛,𝑚. 

By analyzing how independent sets propagate across path and star components, we derive explicit recurrence 

relations governing 𝑖(𝐵𝑛,𝑚) and 𝑖(𝑆𝑛,𝑚), and subsequently obtain corresponding closed-form formulas. In 

particular, it is shown that the Fibonacci number of 𝐵𝑛,𝑚 satisfies a second order Fibonacci type recurrence, while 

the Fibonacci number of 𝑆𝑛,𝑚 obeys a recurrence involving both linear and exponential terms. These results 

extend classical findings for path and star graphs to more complex hybrid structures and contribute to a deeper 

understanding of Fibonacci type graph invariants, which are relevant to combinatorial theory, graph algorithms, 

and the modeling of hierarchical and branching networks. 

The remainder of this paper is organized as follows. Section 2 describes the theoretical framework and 

combinatorial methodology used to enumerate independent sets and derive recurrence relations. Section 3 

presents the main results, including the derivation and verification of recurrence relations and closed-form 

expressions for the Fibonacci numbers of 𝐵𝑛,𝑚 and 𝑆𝑛,𝑚. Section 4 concludes the paper and outlines directions 

for future research. References are listed in Section 5. 

 

2. RESEARCH METHOD 
This study is purely theoretical and is conducted within a combinatorial framework in graph theory to 

determine the Fibonacci numbers of the broom graph 𝐵𝑛,𝑚 and the double star graph 𝑆𝑛,𝑚. No empirical data 

collection is involved. The analysis is based on the systematic enumeration of independent sets and the 

identification of recursive structures induced by graph topology. 

Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a finite simple graph with |𝑉(𝐺)| = 𝑘. Each independent set of 𝐺 can be 

represented by a binary string 𝑥 = 𝑥1𝑥2 ⋯ 𝑥𝑘, 𝑥𝑖 ∈ {0,1} where the 𝑖-th entry corresponds to the vertex 𝑣𝑖 ∈
𝑉(𝐺). The entry 𝑥𝑖 = 1 indicates that the vertex 𝑣𝑖 is included in the independent set, while 𝑥𝑖 = 0 indicates 

that 𝑣𝑖 is excluded. A binary string is said to be admissible if no two entries equal to 1 correspond to adjacent 

vertices in 𝐺. The collection of all admissible binary strings representing independent sets of 𝐺 is denoted by 

𝑁𝑏(𝐺). Consequently, the Fibonacci number of the graph 𝐺 is given by 𝑖(𝐺) = |𝑁𝑏(𝐺)| = |𝐼(𝐺)|. This binary 

representation provides a structured and transparent framework for partitioning independent sets and identifying 

recursive patterns across related graph families. 

The binary encoding framework is first applied to the path graph 𝑃𝑛 and the star graph 𝑆𝑚, which serve as 

fundamental components for the graph families under consideration. For the broom graph 𝐵𝑛,𝑚, independent 

sets are analyzed by explicitly partitioning cases according to the terminal vertex of the path component. Assume 

first that this terminal vertex is excluded. In this case, the admissible binary strings are in bijective correspondence 

with those in 𝑁𝑏(𝐵𝑛−1,𝑚). Alternatively, assume that the terminal vertex is included. Then its adjacent vertex 
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must be excluded, and the remaining admissible configurations correspond bijectively to those in 𝑁𝑏(𝐵𝑛−2,𝑚). 

This explicit case distinction leads directly to a second order recurrence relation governing 𝑖(𝐵𝑛,𝑚), reflecting the 

recursive structure inherited from the path component together with the branching contribution of the star 

component. 

For the double star graph 𝑆𝑛,𝑚, independent sets are similarly examined by partitioning admissible binary 

strings according to the inclusion or exclusion of the central vertices. Assume first that a central vertex is excluded; 

the resulting admissible configurations correspond to those of a reduced double star graph. Assume next that a 

central vertex is included. In this case, all adjacent leaves must be excluded, and the remaining choices yield an 

exponential contribution determined by the independent sets of the opposite star component. By explicitly stating 

these assumptions at the outset of each case, a recurrence relation combining linear and exponential terms is 

obtained, capturing the interaction between the two branching structures. 

The derived recurrence relations are solved using standard techniques for linear recurrences, with initial 

conditions obtained from small graph instances. Explicit computations for selected values of 𝑛 and 𝑚 are carried 

out to verify that the proposed recurrences and closed-form formulas agree with direct enumeration, thereby 

confirming the internal consistency and correctness of the theoretical framework. 

 

3. RESULT AND ANALYSIS 

An independent set of a graph 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) is a subset 𝑆(𝐺) ⊆ 𝑉(𝐺) such that no two vertices in 

𝑆(𝐺) are adjacent. The collection of all independent sets of a graph 𝐺 is denoted by 𝐼(𝐺). The empty set ∅ is 

also included in this collection, which can be expressed as ∅ ∈ 𝐼(𝐺) [31]. The cardinality of the collection of 

independent sets of a graph 𝐺 is represented by |𝐼(𝐺)|. Consequently, the Fibonacci number of a graph 𝐺 is 

defined as 𝑖(𝐺) = |𝐼(𝐺)|, where 𝐼(𝐺) denotes the collection of all independent sets of 𝐺 [24]. 

3.1 Fibonacci Numbers of Path Graph 𝑷𝒏 and Star Graph 𝑺𝒎 

The collection of all independent sets in the path graph 𝐼(𝑃𝑛) and the collection of all independent sets in 

the star graph 𝐼(𝑆𝑚) can be represented in a binary numbers 0 and 1 [31], binary number 0 represents adjacent 

nodes while a binary number 1 represents non-adjacent nodes, then the number of binary numbers in a set will 

be equal to the graph nodes. Furthermore, the set 𝐼(𝑃𝑛) in binary form can be written as 𝑁𝑏(𝑃𝑛) and the set 

𝐼(𝑆𝑚) in binary form can be written as 𝑁𝑏(𝑆𝑚).  

Example 1 Given a path graph 𝑃𝑛 represented as in Figure 1 

 
 Figure 𝟏. Path graph 𝑃2 with |𝑉(𝑃2)| = 2 and |𝐸(𝑃2)| = 1 

 

Based on Figure 1, the collection of all independent sets of path graph 𝑃2 is 𝐼(𝑃2) = {∅, {𝑙1}, {𝑙2}}. By 

encoding each independent set in binary form, we obtain ∅ = 00, {𝑙1} = 10, and {𝑙2} = 01. Hence, the binary 

representation of 𝐼(𝑃2) is 𝑁𝑏(𝑃2) = {00,10,01}. 

Lemma 1 The collection number of all independent sets on a path graph in binary form is |𝑁𝑏(𝑃𝑛)| =
|𝑁𝑏(𝑃𝑛−1)| + |𝑁𝑏(𝑃𝑛−2)|.  
Proof. Consider the set 𝑁𝑏(𝑃𝑛), which can be partitioned into two subsets: 𝑁0(𝑃𝑛), consisting of all binary strings 

whose last digit is 0, and 𝑁1(𝑃𝑛), consisting of all binary strings whose last digit is 1. Thus, 

𝑁𝑏(𝑃𝑛) = 𝑁0(𝑃𝑛) ∪ 𝑁1(𝑃𝑛). 
 

For each 𝑥 ∈ 𝑁0(𝑃𝑛), the ending digit of 𝑥 is 0. Removing this digit produces a shorter string 𝑥′ ∈ 𝑁𝑏(𝑃 𝑛−1). 

Conversely, attaching a final digit 0 to every element of 𝑁𝑏(𝑃 𝑛−1) generates every element of 𝑁0(𝑃𝑛). Hence, 

 

|𝑁0(𝑃𝑛)| = |𝑁𝑏(𝑃 𝑛−1)|. 
 

Similarly, every 𝑥 ∈ 𝑁1(𝑃𝑛) ends with the digit 1. Eliminating the last position produces a string 𝑥′ ∈
𝑁𝑏(𝑃 𝑛−2), and attaching 1 at the end of each element of 𝑁𝑏(𝑃 𝑛−2) generates exactly the strings in 𝑁1(𝑃𝑛). 

Therefore, 

 

|𝑁1(𝑃𝑛)| = |𝑁𝑏(𝑃 𝑛−2)|. 
Since 

 

𝑁𝑏(𝑃𝑛) = 𝑁0(𝑃𝑛) ∪ 𝑁1(𝑃𝑛), 
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we obtain the recurrence 

 

|𝑁𝑏(𝑃𝑛)| = |𝑁𝑏(𝑃 𝑛−1)| + |𝑁𝑏(𝑃 𝑛−2)|. 

Theorem 1 [22] Let 𝑃𝑛 be a path graph, then 𝑖(𝑃𝑛) = 𝐹𝑛+2. 

Proof. Based on Lemma 1, the Fibonacci number of the path graph 𝑃𝑛 is 

𝑖(𝑃𝑛) 

 

= |𝐼(𝑃𝑛)| 
= |𝑁𝑏(𝑃𝑛)| 

= 𝑖(𝑁𝑏(𝑃𝑛−1)) + 𝑖(𝑁𝑏(𝑃𝑛−2)) 

= 𝐹(𝑛−1)+2 + 𝐹(𝑛−2)+2 

= 𝐹𝑛+1 + 𝐹𝑛 

= 𝐹𝑛+2. 

Hence, it is proved that the Fibonacci number of the path graph 𝑃𝑛 is 𝑖(𝑃𝑛) = 𝐹𝑛+2. 
Based on Example 1 and Theorem 1, as follows 

𝑖(𝑃2) = |𝐼(𝑃2)| 
= 𝐹2+2    

= 𝐹4 

= 𝐹3 + 𝐹2 

= 2 + 1 

= 3. 

Example 2 Given a star graph 𝑆2 represented as Figure 2. 

 
Figure 𝟐. Star graph S2 with |𝑉(𝑆2)| = 3 and |𝐸(𝑆2)| = 2 

 

Based on Figure 2 the collection of all independent sets in the star graph 𝑆2 is 𝐼(𝑆2) =

{∅, {𝑏}, {𝑏1}, {𝑏2}, {𝑏1, 𝑏2}}, then the set 𝐼(𝑆2) in binary form is 𝑁𝑏(𝑆2) = {000,100,010,001,011}. 

The collection of all independent sets on a star graph in binary form 𝑁𝑏(𝑆𝑚) can be partitioned into several sets, 

we given 

𝑁0(𝑆𝑚) = {000 … 0} 

𝑁1(𝑆𝑚) = {100 … 0, … ,000 … 01} 

𝑁2(𝑆𝑚) = {0110 … 0, … ,000 … 011} 

𝑁3(𝑆𝑚) = {01110 … 0, … ,000 … 0111} 

               ⋮ 
𝑁𝑚(𝑆𝑚) = {0111 … 1} 

 

 

such that the set 𝑁0(𝑆𝑚) ∪ 𝑁1(𝑆𝑚) ∪ 𝑁2(𝑆𝑚) ∪ 𝑁3(𝑆𝑚) ∪, … ,∪ 𝑁𝑚(𝑆𝑚) = 𝑁𝑏(𝑆𝑚).  

The set 𝑁0(𝑆𝑚) consists of elements that are represented solely by the binary digit 0. On the other hand, the sets 

 

𝑁1(𝑆𝑚), 𝑁2(𝑆𝑚), 𝑁3(𝑆𝑚), … , 𝑁𝑚(𝑆𝑚) 

 

contain elements represented using binary digits 0 and 1. By enumerating the elements belonging to each of the 

sets 𝑁1(𝑆𝑚), 𝑁2(𝑆𝑚), … , 𝑁𝑚(𝑆𝑚), their cardinalities can be determined explicitly and expressed in terms of 

binomial coefficients as follows 

|𝑁0(𝑆𝑚)| = 𝐶(𝑚, 0) 

|𝑁1(𝑆𝑚)| = 𝐶(𝑚, 1) + 1 

|𝑁2(𝑆𝑚)| = 𝐶(𝑚, 2) 

|𝑁3(𝑆𝑚)| = 𝐶(𝑚, 3) 

            ⋮ 

|𝑁𝑚(𝑆𝑚)| = 𝐶(𝑚, 𝑚).  
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Furthermore, since the set ⋃ 𝑁𝑖(𝑆𝑚)𝑚
𝑖=0 = 𝑁𝑏(𝑆𝑚), then by adding the number of each set 𝑁𝑖(𝑆𝑚), 𝑖 =

1,2, … , 𝑚 is obtained 

 

|𝑁𝑏(𝑆𝑚)| = ∑|𝑁𝑖(𝑆𝑚)|

𝑚

𝑖=0

 

= 𝐶(𝑚, 0) + 𝐶(𝑚, 1) + 1 + 𝐶(𝑚, 2) + 𝐶(𝑚, 3) + ⋯ + 𝐶(𝑚, 𝑚) 

= (𝐶(𝑚, 0) + 𝐶(𝑚, 1) + 𝐶(𝑚, 2) + 𝐶(𝑚, 3) + ⋯ + 𝐶(𝑚, 𝑚)) + 1 

= (∑ 𝐶(𝑚, 𝑖)

𝑚

𝑖=0

) + 1 

= 2𝑚 + 1. 

Hence, the number of sets 𝑁𝑏(𝑆𝑚) is |𝑁𝑏(𝑆𝑚)| = 2𝑚 + 1. 

Theorem 2 [23] Given 𝑆𝑚 be a star graph, then 𝑖(𝑆𝑚) = 2𝑚 + 1. 

Proof. The Fibonacci number of a graph is the number of collections of all independent sets in the graph, then 

the Fibonacci number of the star graph 𝑖(𝑆𝑚) is 

𝑖(𝑆𝑚) = |𝐼(𝑆𝑚)| 

= |𝑁𝑏(𝑆𝑚)| 

= 2𝑚 + 1.  

Hence, it is proved that the Fibonacci number of the star graph 𝑆𝑚 is 𝑖(𝑆𝑚) = 2𝑚 + 1. 
Based on Example 2 and Theorem 2, 𝑖(𝑆2) can be obtained, as follows 

𝑖(𝑆2) = |𝐼(𝑆2)| 

= 22 + 1 

= 5. 

 

3.2 Fibonacci Numbers on Broom Graph 𝑩𝒏,𝒎 

The Fibonacci number associated with a broom graph, denoted 𝑖(𝐵𝑛,𝑚), is determined by analyzing the 

structural characteristics of 𝐵𝑛,𝑚 in order to derive a closed form formula for |𝐼(𝐵𝑛,𝑚)|. Once this expression is 

established, the value of 𝑖(𝐵𝑛,𝑚) follows as a direct consequence. To initiate the derivation of |𝐼(𝐵𝑛,𝑚)|, we 

consider the fundamental case of the broom graph 𝐵0,𝑚, where 𝑛 = 0 and 𝑚 ≥ 2. Further see subsection 3.2.1. 

3.2.1 Broom Graph 𝑩𝟎,𝒎 

The broom graph 𝐵0,𝑚 corresponds to the case where 𝑛 = 0 and 𝑚 ≥ 2. As an illustration of this 

base structure, the graph 𝐵0,2 is presented in Figure 3. 

 

 
Figure 3. Broom graph 𝐵0,2 

 

Based on Figure 3 the broom graph 𝐵0,2 ≅ 𝑆2 consequently |𝐼(𝐵0,2)| = |𝐼(𝑆2)| so the Fibonacci 

number of the broom graph 𝐵0,2 is 𝑖(𝐵0,2) = 22 + 1 = 5. 

Consequently, applying this procedure for computing |𝐼(𝐵0,𝑚)| yields the Fibonacci number of the 

broom graph 𝐵0,𝑚, expressed as 𝑖(𝐵0,𝑚) = 2𝑚 + 1. 

3.2.2 Broom Graph 𝑩𝟏,𝒎 

For the case 𝑛 = 1 and 𝑚 ≥ 2, the resulting broom graph is denoted by 𝐵1,𝑚. An example of this 

structure, 𝐵1,2 is depicted in Figure 4. 
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Figure 𝟒. Broom graph 𝐵1,2 

 

Based on Figure 4 the broom graph 𝐵1,2 ≅ 𝑆2+1 consequently |𝐼(𝐵1,2)| = |𝐼(𝑆2+1)|, then the Fibonacci 

number of the broom graph 𝐵1,2 is 𝑖(𝐵1,2) = 22+1 + 1 = 9. 

By applying the same method to find each |𝐼(𝐵1,𝑚)|, the Fibonacci number of broom graph 𝐵1,𝑚 is 

𝑖(𝐵1,𝑚) = 2𝑚+1 + 1. 

3.2.3 Broom Graph 𝑩𝟐,𝒎 

For 𝑛 = 2 and 𝑚 ≥ 2, the corresponding structure is referred to as the broom graph 𝐵2,𝑚. For 

illustrative purposes, the specific instance 𝐵2,2 is presented in Figure 5. 

 
Figure 𝟓. Broom graph 𝐵2,2 

 

Based on Figure 5, the collection of all independent sets in the broom graph 𝐵2,2 is 𝐼(𝐵2,2) = 𝐼(𝐵1,2) ∪

{{𝑙2}, {𝑙2, 𝑏}, {𝑙2, 𝑏1}, {𝑙2, 𝑏2, }, {𝑙2, 𝑏1, 𝑏2}}, then that many sets of 𝐼(𝐵2,2) can be obtained 

|𝐼(𝐵2,2)| 
 

= |𝐼(𝐵1,2)| + 𝐶(2,0) + 1 + 𝐶(2,1) + 𝐶(2,2) 

= 9 + 1 + 1 + 2 + 1 

= 14. 

 

By applying the same method to find each |𝐼(𝐵2,𝑚)|, the broom graph pattern of 𝐵2,𝑚 is obtained which 

forms a formula, namely 

|𝐼(𝐵2,𝑚)| 
 

= |𝐼(𝐵1,𝑚)| + 𝐶(𝑚, 0) + 1 + 𝐶(𝑚, 1) + 𝐶(𝑚, 2) + ⋯ + 𝐶(𝑚, 𝑚) 

= 2𝑚+1 + 1 + (𝐶(𝑚, 0) + 𝐶(𝑚, 1) + 𝐶(𝑚, 2) + ⋯ + 𝐶(𝑚, 𝑚)) + 1 

= 2𝑚+1 + 1 + (∑ 𝐶(𝑚, 𝑖)

𝑚

𝑖=0

) + 1  

= 2𝑚+1 + 1 + 2𝑚 + 1. 

 

From the formula |𝐵2,𝑚|, we can obtain the Fibonacci number of the graph 𝐵2,𝑚, 

𝑖(𝐵2,𝑚) 

 

= |𝐼(𝐵1,𝑚)|  

= 2𝑚+1 + 1 + 2𝑚 + 1 

= 𝑖(𝐵1,𝑚) + 𝑖(𝐵0,𝑚). 

 

Hence, the Fibonacci number of broom graph 𝐵2,𝑚 is 𝑖(𝐵2,𝑚) = 𝑖(𝐵1,𝑚) + 𝑖(𝐵0,𝑚). 

3.2.4 Broom Graph 𝑩𝟑,𝒎 

Let 𝑛 = 3 and 𝑚 ≥ 2. The resulting broom graph is denoted by 𝐵3,𝑚, with 𝐵3,2 depicted in Figure 

6 as a representative example. 

 
Figure 𝟔. Broom graph 𝐵3,2 
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Based on Figure 6, the collection of all independent sets in the broom graph 𝐵3,2, is 𝐼(𝐵3,2) = 𝐼(𝐵2,2) ∪

{{𝑙3}, {𝑙3, 𝑙1}, {𝑙3, 𝑏}, {𝑙3, 𝑏1}, {𝑙3, 𝑏2}, {𝑙3, 𝑙1, 𝑏1}, {𝑙3, 𝑙1, 𝑏2}, {𝑙3, 𝑏1, 𝑏2}, {𝑙3, 𝑙1, 𝑏1, 𝑏2}} thus, the 

collection of all independent sets of 𝐼(𝐵3,2) is obtained as follows 

|𝐼(𝐵3,2)| 
 

= |𝐼(𝐵2,2)| + 𝐶(3,0) + 𝐶(3,1) + 1 + 𝐶(3,2) + 𝐶(3,3) 

= 14 + 1 + 3 + 1 + 3 + 1 

= 23. 

 

Through the analogous computation of |𝐼(𝐵3,𝑚)|, the combinatorial structure of 𝐵3,𝑚 can be captured 

by the formula 

|𝐼(𝐵3,𝑚)| 
 

= |𝐼(𝐵2,𝑚)| + 𝐶(𝑚 + 1,0) + 𝐶(𝑚 + 1,1) + 1 + 𝐶(𝑚 + 1,2) + ⋯ + 𝐶(𝑚 + 1, 𝑚 + 1) 

= |𝐼(𝐵2,𝑚)| + (𝐶(𝑚 + 1,0) + 𝐶(𝑚 + 1,1) + 𝐶(𝑚 + 1,2) + ⋯ + 𝐶(𝑚 + 1, 𝑚 + 1)) + 1 

= |𝐼(𝐵2,𝑚)| + ( ∑ 𝐶(𝑚 + 1, 𝑖)

𝑚+1

𝑖=0

) + 1 

= 2𝑚(3) + 2 + 2𝑚+1 + 1 

= 2𝑚(3) + 2 + 2𝑚+1 + 1. 

 

Furthermore, from the formula |𝐼(𝐵3,𝑚)|, we can obtain the Fibonacci number on the graph 𝐵3,𝑚 as 

follows 

𝑖(𝐵3,𝑚) 

 

= |𝐼(𝐵3,𝑚)|  

= 2𝑚(3) + 2 + 2𝑚+1 + 1 

= 𝑖(𝐵2,𝑚) + 𝑖(𝐵1,𝑚). 

Hence, the Fibonacci number of broom graph 𝐵3,𝑚 is 𝑖(𝐵3,𝑚) = 𝑖(𝐵2,𝑚) + 𝑖(𝐵1,𝑚). 

Using the same procedure to compute |𝐼(𝐵𝑛,𝑚)|, the Fibonacci numbers of the broom graphs 𝐵𝑛,𝑚 are 

summarized in Table 1. 

 

Table 𝟏. Formula of |𝐼(𝐵𝑛,𝑚)|, with 𝑛 ≥ 0 and 𝑚 ≥ 2 

No Type of Graph 𝑖(𝐵𝑛,𝑚) 

1.  

2.  

3. 

 

⋮ 
 

𝑛. 

𝐵0,𝑚                                  

𝐵1,𝑚  

𝐵2,𝑚  

 

⋮ 
 

𝐵𝑛,𝑚 

𝑖(𝑆𝑚)                              

𝑖(𝑆𝑚+1) 

𝑖(𝐵1,𝑚) + 𝑖(𝐵0,𝑚) 

 

⋮ 
 

𝑖(𝐵𝑛−1,𝑚) + 𝑖(𝐵𝑛−2,𝑚) 

Theorem 3 Let 𝐵𝑛,𝑚 be a broom graph, then 𝑖(𝐵𝑛,𝑚) = 𝑖(𝐵𝑛−1,𝑚) + 𝑖(𝐵𝑛−2,𝑚). 

Proof. Let 𝑁𝑏(𝐵𝑛,𝑚) denote the collection of all independent sets of a broom graph represented in binary 

form. This set can be partitioned into two subsets: 𝑁0(𝐵𝑛,𝑚), whose elements begin with 0, and 𝑁1(𝐵𝑛,𝑚), 

whose elements begin with 1, such that 𝑁0(𝐵𝑛,𝑚) ∪ 𝑁1(𝐵𝑛,𝑚) = 𝑁𝑏(𝐵𝑛,𝑚). For any 𝑥 ∈ 𝑁0(𝐵𝑛,𝑚), its 

binary representation begin with 0. Removing this first bit produces a string 𝑥′ ∈ 𝑁𝑏(𝐵𝑛−1,𝑚). Conversely, 

appending 0 to every element of 𝑁𝑏(𝐵𝑛−1,𝑚) yields exactly the elements of 𝑁0(𝐵𝑛,𝑚). Thus, 

|𝑁0(𝐵𝑛,𝑚)| = 𝑖(𝐵𝑛−1,𝑚). Similarly, for any 𝑥 ∈ 𝑁1(𝐵𝑛,𝑚), its binary representation begin with 10. By 

deleting this first two bit, we obtain 𝑥′ ∈ 𝑁𝑏(𝐵𝑛−2,𝑚). Conversely, appending 10 to each element of 

𝑁𝑏(𝐵𝑛−2,𝑚) generates all elements of 𝑁1(𝐵𝑛,𝑚). Hence, |𝑁1(𝐵𝑛,𝑚)| = 𝑖(𝐵𝑛−2,𝑚). Since 

𝑁0(𝐵𝑛,𝑚) ∪ 𝑁1(𝐵𝑛,𝑚) = 𝑁𝑏(𝐵𝑛,𝑚), 
it follows that 

𝑖(𝐵𝑛,𝑚) = 𝑖(𝐵𝑛−1,𝑚) + 𝑖(𝐵𝑛−2,𝑚). 
Therefore, the recurrence relation 

𝑖(𝐵𝑛,𝑚) = 𝑖(𝐵𝑛−1,𝑚) + 𝑖(𝐵𝑛−2,𝑚) 
is established.  

Corollary 1 Given 𝐵𝑛,𝑚 be a broom graph, then   

𝑖(𝐵𝑛,𝑚) =
(2𝑚×√5+3×2𝑚+√5+1)(1+√5)

𝑛
+(2𝑚×√5−3×2𝑚+√5−1)(1−√5)

𝑛

2𝑛+1×√5
. 
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Proof. Given the recursive relation for the Fibonacci sequence 

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2, 
assume that 𝐹𝑛 = 𝑖(𝐵𝑛,𝑚). Then the characteristic equation associated with 

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 

is 

𝑟2 − 𝑟 − 1 = 0. 
Thus, the characteristic equation has two distinct roots: 

𝑟1 =
1 + √5

2
, 𝑟2 =

1 − √5

2
. 

Since the roots differ, the general homogeneous solution can be expressed as 

𝐹𝑛 = 𝐶1(
1 + √5

2
)𝑛 + 𝐶2(

1 − √5

2
)𝑛 . 

Next, using the initial conditions 

𝐹0 = 𝑖(𝐵0,𝑚) = 2𝑚 + 1, 

𝐹1 = 𝑖(𝐵1,𝑚) = 2𝑚+1 + 1 = 2 ⋅ 2𝑚 + 1, 
we obtain the following system: 

 

𝑖(𝐵0,𝑚) = 𝐶1(
1 + √5

2
)0 + 𝐶2(

1 − √5

2
)0 ⇒ 2𝑚 + 1 = 𝐶1 + 𝐶2,                                           (1) 

 

𝑖(𝐵1,𝑚) = 𝐶1(
1 + √5

2
) + 𝐶2(

1 − √5

2
) ⇒ 2 ⋅ 2𝑚 + 1 =

𝐶1 + 𝐶2

2
+

√5

2
(𝐶1 − 𝐶2).                (2) 

 

Solving equations (1) and (2) yields: 

𝐶1 = 2𝑚−1 +
3 ⋅ 2𝑚−2

√5
+

1

2
+

1

2√5
, 𝐶2 = 2𝑚−1 −

3 ⋅ 2𝑚−2

√5
+

1

2
−

1

2√5
. 

Since 𝐹𝑛 = 𝑖(𝐵𝑛,𝑚), we deduce the general solution: 

𝑖(𝐵𝑛,𝑚) = 𝐶1(
1 + √5

2
)𝑛 + 𝐶2(

1 − √5

2
)𝑛 . 

Hence, 

𝑖(𝐵𝑛,𝑚) =
(2𝑚√5 + 3 ⋅ 2𝑚 + √5 + 1)(1 + √5)𝑛 + (2𝑚√5 − 3 ⋅ 2𝑚 + √5 − 1)(1 − √5)𝑛

2 𝑛+1√5
. ∎ 

 

3.3 Fibonacci Numbers on Double Star Graph 𝑺𝒏,𝒎 

The Fibonacci number of the double star graph 𝑖(𝑆𝑛,𝑚) can be obtained by analyzing the structural 

pattern of the double star graph 𝑆𝑛,𝑚, followed by establishing the formula for |𝐼(𝑆𝑛,𝑚)|. From this 

formula, the value of 𝑖(𝑆𝑛,𝑚) is then determined. As an initial step in deriving the formula for |𝐼(𝑆𝑛,𝑚)|, 

we begin by considering the double star graph 𝑆0,𝑚. Further explanation regarding this case is presented 

in Section 3.3.1. 

3.3.1 Double Star Graph 𝑺𝟎,𝒎 

The double star graph 𝑆0,2 is obtained by combining the star graph 𝑆𝑛 with 𝑛 = 0 and the star graph 

𝑆𝑚 with 𝑚 = 2. In particular, the double star 𝑆0,2 is shown in Figure 7. 

 
Figure 𝟕. Double star graph 𝑆0,2 

 

Based on Figure 7 the double star graph 𝑆0,2 ≅ 𝑆2 consequently |𝐼(𝑆0,2)| = |𝐼(𝑆2)| so the Fibonacci 

number of the double star graph 𝑆0,2 is 𝑖(𝑆0,2) = 22 + 1. 

By applying the same method to find each 𝐼(𝑆0,𝑚) the Fibonacci number of the double star graph 𝑆0,𝑚 is 

obtained, 𝑖(𝑆0,𝑚) = 2𝑚 + 1. 
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3.3.2 Double Star Graph 𝑺𝟏,𝒎 

The double star graph 𝑆1,2 is the graph constructed by the star graph 𝑆𝑛 with 𝑛 = 1 and the star 

graph 𝑆𝑚 with 𝑚 = 2, so we can give the double star graph 𝑆1,2 represented as Figure 8. 

 
Figure 𝟖. Double star graph 𝑆1,2 

 

Based on Figure 8 the double star graph 𝑆1,2 ≅ 𝐵2,2 consequently |𝐼(𝑆1,2)| = |𝐼(𝐵2,2)| so the Fibonacci 

number of the double star graph 𝑆1,2 is 𝑖(𝑆1,2) = 22+1 + 1 + 22 + 1=14. 

By applying the same method to find each 𝐼(𝑆1,𝑚) the Fibonacci number of the double star graph 𝑆1,𝑚 is 

obtained, 𝑖(𝑆1,𝑚) = 𝑖(𝐵2,𝑚) =  𝑖(𝐵1,𝑚) + 𝑖(𝐵0,𝑚) = 2𝑚+1 + 1 + 2𝑚 + 1 = 3(2𝑚 + 1) − 1. 

3.3.3 Double Star Graph 𝑺𝟐,𝒎 

The double star graph 𝑆2,2 is the graph constructed by the star graph 𝑆𝑛 with 𝑛 = 2 and the star 

graph 𝑆𝑚 with 𝑚 = 2, so we can give the double star graph 𝑆2,2 represented as Figure 9. 

 
Figure 𝟗. Double star graph 𝑆2,2 

 

Based on Figure 9 the collection of all independent sets on the double star graph 𝑆2,2 is 𝐼(𝑆2,2) =

𝐼(𝑆1,2) ∪  {{𝑎2}, {𝑎2, 𝑏}, {𝑎2, 𝑏1}, {𝑎2, 𝑏2}, {𝑎2, 𝑏1, 𝑏2}, {𝑎1, 𝑎2}, {𝑎1, 𝑎2, 𝑏}, {𝑎1, 𝑎2, 𝑏1}, {𝑎1, 𝑎2, 𝑏2}, 

{𝑎1, 𝑎2, 𝑏1, 𝑏2}} so that many collections of all sets 𝐼(𝑆2,2) can be obtained 

|𝐼(𝑆2,2)| 
 

= |𝐼(𝑆1,2)| + (𝐶(2,0) + 𝐶(2,1) + 1 + 𝐶(2,2)) + (𝐶(2,0) + 𝐶(2,1) + 1 + 𝐶(2,2)) 

= 14 + 1 + 3 + 1 + 1 + 3 + 1 

= 24. 

By applying the same method to find each 𝐼(𝑆2,𝑚) of the Fibonacci numbers of the double star graph 

𝑆2,𝑚 is obtained. Let 𝑋2 = {𝑎1} and let 𝑋2
′  denote the set whose elements are obtained by combining each 

subset of 𝑋2 with {𝑎2}. Consequently, the cardinality of 𝑋2
′  satisfies ∣ 𝑋2

′ ∣= 2∣𝑋2∣. 

|𝐼(𝑆2,𝑚)| 
 

= |𝐼(𝑆1,𝑚)| + |{𝑎2} ∪ 𝐼(𝑆0,𝑚)| + |{𝑎2, 𝑎1} ∪ 𝐼(𝑆0,𝑚)| 

= |𝐼(𝑆1,𝑚)| + |𝑋′||𝐼(𝑆0,𝑚)| 

= |𝐼(𝑆1,𝑚)| + 2|𝑋2||𝐼(𝑆0,𝑚)| 

= 𝑖(𝑆1,𝑚) + 2𝑖(𝑆0,𝑚). 

From the formula |𝐼(𝑆2,𝑚)| it can be found that the Fibonacci number of the double star graph 𝑆2,𝑚 is 

𝑖(𝑆2,𝑚) = 𝑖(𝑆1,𝑚) + 2𝑖(𝑆0,𝑚). 

In the same way to find each |𝐼(𝑆𝑛,𝑚)| the Fibonacci numbers of the double star graph 𝑆𝑛,𝑚 are presented 

in Table 2. 

Table 𝟐. Formula |𝐼(𝑆𝑛,𝑚)| with 𝑛 ≥ 1 and 𝑚 ≥ 1 

No Type of Graph 𝑖(𝑆𝑛,𝑚) 

1.  𝑆0,𝑚                                  𝑖(𝑆𝑚)                              

2.  𝑆1,𝑚  3 × 𝑖(𝑆0,𝑚) − 1 

3. 𝑆2,𝑚  𝑖(𝑆1,𝑚) + 2 × 𝑖(𝑆0,𝑚) 

4. 𝑆3,𝑚  𝑖(𝑆2,𝑚) + 22 × 𝑖(𝑆0,𝑚) 

⋮ ⋮ ⋮ 

𝑛. 𝑆𝑛,𝑚 𝑖(𝑆𝑛−1,𝑚) + 2𝑛−1 × 𝑖(𝑆𝟎,𝑚) 
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Theorem 𝟒 Let 𝑆𝑛,𝑚 be a double star graph, then 𝑖(𝑆𝑛,𝑚) = 𝑖(𝑆𝑛−1,𝑚) + 2𝑛−1 × 𝑖(𝑆0,𝑚). 

Proof. Based on Table 2, we obtain 𝑖(𝑆1,𝑚) = 3(2𝑚) − 1. Let 𝑁𝑏(𝑆𝑛,𝑚) denote the set of all independent sets 

of the double star graph 𝑆𝑛,𝑚 written in binary form. This set can be partitioned into 𝑛 subsets, denoted by 

𝑁0(𝑆𝑛,𝑚), 𝑁1, … , 𝑁𝑛−1 

where each subset is defined according to the pattern of leading digits in the binary representation. Consider the 

vertex set 𝑉(𝑆 𝑛−1,𝑚) ∪ {𝑎𝑛}, where (𝑎𝑛 , 𝑎) ∈ 𝐸(𝑆𝑛,𝑚). For any 𝑥 ∈ 𝑁0(𝑆𝑛,𝑚), the first digit of 𝑥 is 0, which 

indicates that 𝑎𝑛 does not appear in the independent set. Removing this initial digit yields a shorter binary string 

𝑥′ ∈ 𝑁𝑏(𝑆 𝑛−1,𝑚). Conversely, appending a 0 to each string in 𝑁𝑏(𝑆 𝑛−1,𝑚) generates all members of 𝑁0(𝑆𝑛,𝑚). 

Therefore, 

∣ 𝑁0(𝑆𝑛,𝑚) ∣= 𝑖(𝑆 𝑛−1,𝑚). 

Next, define the subsets 𝑁0, 𝑁1, … , 𝑁𝑗 as follows, where each ∗ denotes an element of {0,1}: 

𝑁0 = {00 ⋯ 0 ∗∗ ⋯ ∗} with the first 𝑛 digits equal to 0, 
𝑁1 = {00 ⋯ 01 ∗∗ ⋯ ∗} with the 𝑛-th digit equal to 1, 
𝑁2 = {00 ⋯ 011 ∗∗ ⋯ ∗} with the 𝑛-th and (𝑛 − 1)-th  digit equal to 1, 
⋮ 
𝑁𝑗 = {00 ⋯ 011 ⋯ 1 ∗∗ ⋯ ∗} with digits (𝑛 − 𝑗 + 1) through 𝑛 equal to 1 

Thus, 

𝑁𝑏(𝑆𝑛,𝑚) = 𝑁0(𝑆𝑛,𝑚) ∪ ⋃ 𝑁𝑖

𝑛−1

𝑖=1

. 

Furthermore, 

|𝑁0| = 𝑖(𝑆0,𝑚) 

|𝑁1| = 𝐶((𝑛 − 1), 0). 𝑖(𝑆0,𝑚) 

|𝑁2| = 𝐶((𝑛 − 1), 1). 𝑖(𝑆0,𝑚) 

⋮ 

|𝑁𝑗| = 𝐶((𝑛 − 1), (𝑗 − 1)). 𝑖(𝑆0,𝑚). 

Hence, 

|⋃ 𝑁𝑖

𝑛−1

𝑖=1

| = ∑ 𝐶((𝑛 − 1), (𝑗 − 1)). (𝑖(𝑆0,𝑚))

𝑛−1

𝑗=1

= 2𝑛−1(𝑖(𝑆0,𝑚)) 

 

Combining these results, we arrive at the recurrence relation 

 

𝑖(𝑆𝑛,𝑚) = 𝑖(𝑆𝑛−1,𝑚) + 2𝑛−1 × 𝑖(𝑆0,𝑚). 

This completes the proof. 

Corollary 2 Given 𝑆𝑛,𝑚 be a double star graph, then 

𝑖(𝑆0,𝑚) = 2𝑚 + 1 

and 

𝑖(𝑆𝑛,𝑚) = (2𝑛 + 1)(2𝑚 + 1) − 1 

for 𝑛, 𝑚 ≥ 1. 

Proof.  Let 𝑎𝑛 = 𝑖(𝑆𝑛,𝑚), then we have a recurrence relation, 𝑎𝑛 = 𝑎𝑛−1 + 2𝑛−1𝑎0. 

Then the corresponding characteristic equation of 

𝑎𝑛 − 𝑎𝑛−1 = 0 

is 

𝑟 − 1 = 0. 
Solving this equation yields, 

𝑟 = 1. 

Since the roots are different, the general homogeneous solution can be written as, 

𝑎𝑛
(ℎ)

= 𝐶. 
The particular solution can be written as, 

𝑎𝑛
(𝑝)

= 2𝑛𝑎0 

𝑎𝑛 = 𝐶 + 2𝑛𝑎0. 

Next, we use the initial values: 

𝑎1 = 3(2𝑚) + 2. 
Thus, we obtain the following system: 

3(2m) + 2 = C + 2a0 

𝐶 = 3(2m) + 2 − 2𝑎0 
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Since 𝑎𝑛 = 𝑖(𝑆𝑛,𝑚), we obtain 

𝑖(𝑆𝑛,𝑚) = C + 2n(2𝑚 + 1) 

Therefore, 

𝑖(𝑆𝑛,𝑚) = (2𝑛 + 1)(2𝑚 + 1) − 1. 
 

4. CONCLUSION 
Through a detailed combinatorial analysis, this paper derives explicit recurrence relations together with 

closed-form expressions for the Fibonacci numbers associated with the broom graph 𝐵𝑛,𝑚 and the double star 

graph 𝑆𝑛,𝑚. It is shown that the Fibonacci number of 𝐵𝑛,𝑚 satisfies a second order recurrence of Fibonacci type, 

while the corresponding sequence for 𝑆𝑛,𝑚 is described by a recurrence that incorporates both linear and 

exponential terms. These findings clarify the role played by the underlying graph structure in shaping the growth 

of independent sets, highlighting the contrasting effects of path extension and star like branching. From a 

structural perspective, the recurrence relation for 𝐵𝑛,𝑚 arises naturally from the incremental expansion of its path 

component and is closely related to decomposition principles known for path graphs. In contrast, the recurrence 

for 𝑆𝑛,𝑚 reflects the combinatorial contributions of independent selections within the star component once the 

central vertex is specified. In addition to their theoretical interest, the explicit formulas obtained provide a 

practical tool for the efficient enumeration of independent configurations, with potential applications in areas 

such as network reliability and chemical graph theory. Moreover, the combinatorial approach developed here 

can be extended in a natural way to broader classes of broom like graphs with multiple attached paths, as well as 

to generalized double star graphs under additional structural constraints, thereby opening several avenues for 

further investigation of Fibonacci type invariants in graph theory. 

 

  



                                                                                                 E-ISSN : 2580-5754; P-ISSN : 2580-569X 

Zero: Jurnal Sains, Matematika dan Terapan 

1096 

5. REFERENCES 
[1] G. Chitra and V. Mohanapriya, ‘Fibonacci Antimagic Labeling of Some Special Graphs’, International 

Journal of Emerging Technologies and Innovative Research, vol. 5, no. 6, pp. 750–753, 2018, [Online]. 

Available: https://www.jetir.org/view?paper=JETIR1806796 

[2] N. Y. Sari, E. Noviani, and F. Fran, ‘Pelabelan Fibonacci Prima Ke-K Pada Graf H dan Graf Ulat H_n’, 

Jurnal Publikasi Ilmiah Matematika (KUBIK), vol. 8, no. 2, pp. 89–98, 2023, doi: 

10.15575/kubik.v8i2.29290. 

[3] D. S. Permatasari and P. Agung, ‘Bilangan Fibonacci dalam Perkembangbiakan Lebah Madu’, Jurnal 

Equation: Teori dan Penelitian Pendidikan Matematika, vol. 5, no. 1, pp. 103–115, Mar. 2022, doi: 

10.29300/equation.v5i1.5442. 

[4] J. R. Chasnov, Fibonacci Numbers and the Golden Ratio. The Hong Kong University of Science and 

Technology, 2016. [Online]. Available: https://www.math.hkust.edu.hk/~machas/fibonacci.pdf 

[5] D. Grinberg, ‘An Introduction to Graph Theory’, Jun. 10, 2025, arXiv: arXiv:2308.04512. doi: 

10.48550/arXiv.2308.04512. 

[6] F. Susanto, R. Simanjuntak, and E. T. Baskoro, ‘Further Results on the Total Vertex Irregularity Strength 

of Trees’, Electronic Journal of Graph Theory and Applications, vol. 13, no. 1, pp. 123–140, Apr. 2025, 

doi: 10.5614/ejgta.2025.13.1.9. 

[7] K. R. Saoub, Graph Theory: An Introduction to Proofs, Algorithms, and Applications, 1st ed. in Textbooks 

in mathematics. Boca Raton London New York: CRC Press, 2021. doi: 10.1201/9781138361416. 

[8] I. Gutman, V. R. Kulli, and I. R. zepovic, ‘Irregularity Sombor Index’, Bulletin of the Academy of Sciences 

and Arts of the Republic of Serbia, Class of Mathematical and Natural Sciences, vol. 156, pp. 31–37, 2023, 

doi: 10.5281/zenodo.18005956. 

[9] V. Zverovich, Modern Applications of Graph Theory, 1st ed. Oxford: Oxford University Press, 2021. doi: 

10.1093/oso/9780198856740.001.0001. 

[10] G. Ali, M. Bača, M. Lascsáková, A. Semaničová-Feňovčíková, A. ALoqaily, and N. Mlaiki, ‘Modular Total 

Vertex Irregularity Strength of Graphs’, AIMS Mathematics, vol. 8, no. 4, pp. 7662–7671, 2023, doi: 

10.3934/math.2023384. 

[11] S. D. Pasham, ‘Using Graph Theory to Improve Communication Protocols in AI-Powered IoT Networks’, 

Research and Analysis Journal, vol. 7, no. 02, pp. 01–32, Feb. 2024, doi: 10.18535/raj.v7i02.390. 

[12] H. Prodinger and R. F. Tichy, ‘Fibonacci Numbers of Graphs’, The Fibonacci Quarterly, vol. 20, no. 1, 

pp. 16–21, Feb. 1982, doi: 10.1080/00150517.1982.12430021. 

[13] Ö. Eğecioğlu and V. Iršič, ‘Fibonacci-Run Graphs I: Basic Properties’, Discrete Applied Mathematics, vol. 

295, pp. 70–84, May 2021, doi: 10.1016/j.dam.2021.02.025. 

[14] G. Perarnau and W. Perkins, ‘Counting Independent Sets in Cubic Graphs of Given Girth’, Journal of 

Combinatorial Theory, Series B, vol. 133, pp. 211–242, Nov. 2018, doi: 10.1016/j.jctb.2018.04.009. 

[15] D. S. Taletskii, ‘On The Number of Independent and K-Dominating Sets in Graphs with Average Vertex 

Degree at Most K’, Sbornik: Mathematics, vol. 214, no. 11, pp. 1627–1650, 2023, doi: 10.4213/sm9870e. 

[16] I. Sason, ‘A Generalized Information-Theoretic Approach for Bounding the Number of Independent Sets 

in Bipartite Graphs’, Entropy, vol. 23, no. 3, p. 270, Feb. 2021, doi: 10.3390/e23030270. 

[17] E. Cohen, W. Perkins, M. Sarantis, and P. Tetali, ‘On the Number of Independent Sets in Uniform, 

Regular, Linear Hypergraphs’, European Journal of Combinatorics, vol. 99, p. 103401, Jan. 2022, doi: 

10.1016/j.ejc.2021.103401. 

[18] F. Ignatius and S. Kaspar, ‘A New Graph Labeling with Tribonacci, Fibonacci and Triangular Numbers’, 

Discover Sustainability, vol. 5, no. 1, p. 130, Jun. 2024, doi: 10.1007/s43621-024-00325-z. 

[19] O. Sikhwal and A. Rastogi, ‘Domination, Independence and Fibonacci Numbers in Graphs Containing 

Disjoint Cycles’, International Journal of Computational and Applied Mathematics & Computer Science, 

vol. 2, pp. 65–68, Sep. 2022, doi: 10.37394/232028.2022.2.12. 

[20] K. U. Sreeja, P. B. Vinodkumar, and P. B. Ramkumar, ‘Independence Polynomial and Z Counting 

Polynomial of a Fibonacci Tree’, Turkic World Mathematical Society Journal of Applied and Engineering 

Mathematics, vol. 21, no. 3, pp. 1569–1577, 2022, doi: 10.47748/twmsjaem.2022.21.3.006. 

[21] S. Mitra, A. Pritchard, and S. Bhoumik, ‘On Fibonacci Cordial Labeling of Some Planar Graphs’, Turkic 

World Mathematical Society Journal of Applied and Engineering Mathematics, vol. 15, no. 5, pp. 1153–

1163, 2025, doi: 10.5281/zenodo.18006093. 

[22] J. DeMaio and J. Jacobson, ‘Fibonacci Number of the Tadpole Graph’, Electronic Journal of Graph 

Theory and Applications, vol. 2, no. 2, pp. 129–138, 2014, doi: 10.5614/ejgta.2014.2.2.5. 

[23] A. Knopfmacher, R. F. Tichy, S. Wagner, and V. Ziegler, ‘Graphs, Partitions and Fibonacci Numbers’, 

Discrete Applied Mathematics, vol. 155, no. 10, pp. 1175–1187, May 2007, doi: 

10.1016/j.dam.2006.10.010. 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&


Zero: Jurnal Sains, Matematika dan Terapan  

                                                                   Closed-Form Formulas for Fibonacci Numbers of Broom and Double Star Graphs (Yudhi)  

1097 

[24] L. A. Dosal-Trujillo and H. Galeana-Sánchez, ‘The Fibonacci Numbers of Certain Subgraphs of Circulant 

Graphs’, AKCE International Journal of Graphs and Combinatorics, vol. 12, no. 2–3, pp. 94–103, Nov. 

2015, doi: 10.1016/j.akcej.2015.11.002. 

[25] L. A. Dosal-Trujillo and H. Galeana-Sánchez, ‘On the Fibonacci Numbers of the Composition of Graphs’, 

Discrete Applied Mathematics, vol. 266, pp. 213–218, Aug. 2019, doi: 10.1016/j.dam.2019.02.047. 

[26] J. Seibert and L. Koudela, ‘The Fibonacci Numbers for The Molecular Graphs of Linear Phenylenes’, 

International Journal of Pure and Apllied Mathematics, vol. 106, no. 1, Feb. 2016, doi: 

10.12732/ijpam.v106i1.25. 

[27] M. M. N. Bangkit and B. Rahadjeng, ‘Dekomposisi Graf Bintang, Graf Bintang Ganda, dan Graf Sapu’, 

MATHunesa: Jurnal Ilmiah Matematika, vol. 10, no. 1, pp. 218–225, Apr. 2022, doi: 

10.26740/mathunesa.v10n1.p218-225. 

[28] M. Ghorbani and M. Dehmer, ‘On the Roots of the Modified Orbit Polynomial of a Graph’, Symmetry, 

vol. 13, no. 6, p. 972, May 2021, doi: 10.3390/sym13060972. 

[29] E. Győri, R. Wang, and S. Woolfson, ‘Extremal Problems of Double Stars’, Discrete Mathematics & 

Theoretical Computer Science, vol. 24, no. 2, p. 8499, Apr. 2023, doi: 10.46298/dmtcs.8499. 

[30] N. Kusumastuti, Raventino, and F. Fran, ‘The Diachromatic Number of Double Star Graph’, Journal of 

Physics: Conference Series, vol. 2106, no. 1, p. 012024, Nov. 2021, doi: 10.1088/1742-

6596/2106/1/012024. 

[31] A. Yurttas Gunes, S. Delen, M. Demirci, A. S. Cevik, and I. N. Cangul, ‘Fibonacci Graphs’, Symmetry, 

vol. 12, no. 9, p. 1383, Aug. 2020, doi: 10.3390/sym12091383. 

 

 

 

 

 


