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 This study compares the performance of EGARCH-X and EGARCH-CJ 

models in forecasting financial market volatility using daily TOPIX data (2004–

2011). Model parameters were estimated using an efficient Bayesian MCMC 

framework. The results indicate that the EGARCH-CJ model, which 

decomposes volatility into continuous and jump components, provides a 

superior in-sample fit. More importantly, in out-of-sample forecasting, the 

EGARCH-CJ model demonstrates significantly better accuracy for medium- 

and long-term horizons (e.g., MSE reductions up to 30% at the 5-day horizon, 

with significant Diebold-Mariano statistics). In contrast, the standard EGARCH 

model remains more effective for short-term forecasts. These findings 

underscore the importance of explicitly modeling jump dynamics for medium-

term risk management in the Japanese stock market, offering valuable insights 

for financial modelers and risk managers. 
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1. INTRODUCTION 
Volatility reflects how much asset returns fluctuate over time and serves as a key indicator of market risk 

[1], [2]. Conditional heteroskedasticity models, particularly the EGARCH framework, are widely recognized for 

capturing nonlinear and asymmetric volatility dynamics [3], [4]. Its logarithmic variance specification ensures 

positivity and models the leverage effect [3], [5]. Recent findings further confirm that EGARCH-type models 

remain highly accurate and adaptable across various market conditions [6]. 

Advances in high-frequency data have encouraged extensions of EGARCH. Studies in [7], [8] developed 

the EGARCH-X model by incorporating an exogenous realized measure (X), such as Realized Volatility (RV), 

which improves model fit and forecasting performance. Building on this, [9] decomposed X into continuous (C) 

and jump (J) components, forming the EGARCH-CJ model, which enhanced volatility. However, [9] relied solely 

on 5-minute RV and a short Maximum Likelihood Estimation (MLE) based evaluation, leaving open questions 

regarding the model’s performance across alternative sampling frequencies and multi-horizon forecasts. 

This study addresses these gaps by: (1) comparing EGARCH-X and EGARCH-CJ using four realized 

measures 1-minute, 5-minute, 10-minute RV, and Realized Kernel (RK); (2) applying the Adaptive Random 

Walk Metropolis (ARWM) algorithm within a Bayesian Markov Chain Monte Carlo (MCMC) framework to 
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improve estimation efficiency over MLE, as used in [9]; and (3) evaluating volatility and Value-at-Risk (VaR) 

forecasts across multiple horizons. These contributions advance both the methodological development of 

EGARCH-type models and their practical relevance for volatility forecasting and financial risk management. 

By focusing on the Japanese TOPIX index, which encompasses a broad range of market conditions, 

including the 2008 Global Financial Crisis, this research offers insights into how the combination of continuous-

jump decomposition and data frequency affects volatility forecasting accuracy in a highly liquid market. Beyond 

its empirical focus, the study also addresses broader regulatory and practical stakes in financial risk management. 

Post-crisis reforms such as the Basel III accords have placed stronger emphasis on capital adequacy, stress testing, 

and accurate VaR estimation as core elements of financial stability frameworks [10], [11]. Recent studies have 

shown that volatility and VaR modeling based on GARCH-type frameworks remain essential for meeting Basel 

III risk-measurement standards [12]. Moreover, the growing relevance of jump modeling has been underscored 

by recent global shocks including COVID-19-induced volatility, geopolitical tensions, and rapid asset price swings 

highlighting the need for models capable of capturing abrupt market movements [13]. In this context, linking 

EGARCH-X and EGARCH-CJ models to regulatory requirements becomes increasingly important, as improved 

volatility and VaR forecasts support more accurate capital allocation, strengthen stress-testing procedures, and 

enhance compliance with Basel III backtesting thresholds. These practical implications make the adoption of 

jump-enhanced volatility models directly relevant for risk managers and supervisory institutions. These 

developments underscore the timeliness and significance of this study in developing volatility models that strike 

a balance between methodological rigor and regulatory applicability. 

 

2. RESEARCH METHOD 
2.1 Data and Sample 

This study examines the TOPIX data, an index comprising all domestic common stocks listed on the First 

Section of the Tokyo Stock Exchange [14]. This index was selected because it serves as a key benchmark that 

reflects the performance of the Japanese market. Its high liquidity is essential for ensuring the accuracy of the RV 

and RK measures calculated from tick-by-tick data, where the RK is implemented using the Parzen kernel (see 

[15]) with the optimal bandwidth selection procedure as proposed by [16]. These are essential parts of the 

EGARCH-X and EGARCH-CJ models. 

The sample for this case study includes daily TOPIX values from January 2004 to December 2011, totaling 

1962 daily observations. This period was chosen because it encompasses a full range of market conditions, 

including a time of pre-crisis stability, extreme volatility during the peak of the 2008–2009 Global Financial Crisis, 

and the subsequent recovery phase. This significant financial event creates a “natural laboratory” to test the 

models’ ability to capture jump components and volatility asymmetry effectively. However, the crisis period may 

introduce potential data quality issues such as temporary illiquidity, widened bid ask spreads, or increased noise 

in high-frequency prices that could affect the precision of realized measures. These conditions do not invalidate 

the dataset but highlight the importance of using robust estimators like RV and RK to mitigate distortions, 

particularly during turbulent episodes [17], [18]. 

The study applies purposive sampling to select the sample, and the index trades actively throughout the 

entire period. The purposive sampling method suits the analysis because the sample is intentionally chosen based 

on predefined criteria to meet the research objectives. In practice, the sampling process ensures that the data 

possess essential characteristics—such as high liquidity and the presence of a crisis period—needed to support a 

valid comparison between the EGARCH-X and EGARCH-CJ models. Nevertheless, this study focuses on a 

single index (TOPIX), a single country (Japan), and a single significant crisis period, which may limit the external 

validity of the findings. Future research is therefore encouraged to conduct cross-market validation by extending 

the analysis to multiple indices and countries with varying market structures, liquidity conditions, and regulatory 

environments, in order to test the robustness and broader applicability of the EGARCH-CJ framework. 

 

2.2 Model Specification 

This subsection details the econometric framework, including return definitions, realized measures, and the 

conditional variance equations for the compared models. 

2.2.1 Returns and Realized Measures 

Let 𝑃𝑡 be the financial asset value at time t (t = 1, ..., T). The daily log-return is defined as in Eq. (1) [19], 

[20]: 

 

 𝑅𝑡 = log 𝑃𝑡 − log 𝑃𝑡−1. (1) 

 

Given high-frequency intraday returns {𝑅𝑡,𝑖}𝑖=1

𝑁
, the RV for day t is computed as shown in Eq. (2): 

 

 𝑋𝑡
2 = ∑ 𝑅𝑡,𝑖

2𝑁
𝑖=1 . (2) 
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The analysis decomposes RV into continuous and jump components, following the method in [9]. First, the 

median RV estimator 𝑀𝑡 [21] and the jump test statistic 𝑍𝑡 are calculated using Eqs. (3) and (4), respectively: 

 

 𝑀𝑡 =
𝜋

6−4√3+𝜋
(

𝐾

𝐾−2
) × ∑ Med(|𝑅𝑡,𝑖−1|, |𝑅𝑡,𝑖|, |𝑅𝑡,𝑖+1|)

2𝑁−1
𝑖=2 , (3) 

 

 𝑍𝑡 =
(𝑋𝑡−𝐵𝑡)

𝑋𝑡√(0.25𝜋2+𝜋−5)𝐾−1 max(1,𝑄𝑡𝐵𝑡
−2)

, (4) 

 

where 𝐵𝑡  is the realized bipower variation [21] and 𝑄𝑡 is the realized tripower quarticity [22]. Subsequently, the 

continuous 𝐶𝑡 and jump 𝐽𝑡 components are defined by Eqs. (5) [9]: 

 

 𝐶𝑡 = 𝐼(𝑍𝑡 ≤ ∅𝛼)𝑋𝑡 + 𝐼(𝑍𝑡 > ∅𝛼)𝑀𝑡 and  𝐽𝑡 = 𝐼(𝑍𝑡 > ∅𝛼)(𝑋𝑡 − 𝑀𝑡), (5) 

 

where ∅𝛼 is the -quantile of the standard Normal distribution (𝛼 = 0.99 in this study). 

2.2.2 Volatility Models 

The mean equation for all models is 𝑅𝑡 = 𝜎𝑡𝜀𝑡, 𝜀𝑡~𝑁(0,1), where N(0,1) denotes the standard Normal 

distribution. The conditional variance ℎ𝑡 = log 𝜎𝑡
2 follows these specifications: 

a. EGARCH(1,1): The baseline model is given by Eq. (6): 
  

 ℎ𝑡  = 𝜔 + 𝛼1 |
𝑅𝑡−1

𝜎𝑡−1
| + 𝛼2

𝑅𝑡−1

𝜎𝑡−1
+ 𝛽ℎ𝑡−1. (6) 

 

b. EGARCH-X(1,1): This extension of EGARCH incorporates the lagged log realized measure log 𝑋𝑡−1, 

as shown in Eq. (7): 
  

 ℎ𝑡  = 𝜔 + 𝛼1 |
𝑅𝑡−1

𝜎𝑡−1
| + 𝛼2

𝑅𝑡−1

𝜎𝑡−1
+ 𝛽ℎ𝑡−1 + 𝜆 log 𝑋𝑡−1. (7) 

 

c. EGARCH-CJ(1,1): This model further decomposes the exogenous signal into continuous and jump 

parts, specified by Eq. (8): 
  

 ℎ𝑡  = 𝜔 + 𝛼1 |
𝑅𝑡−1

𝜎𝑡−1
| + 𝛼2

𝑅𝑡−1

𝜎𝑡−1
+ 𝛽ℎ𝑡−1 +  𝜆 log 𝐶𝑡−1 + 𝛾 log(𝐽𝑡−1 + 1). (8) 

 
2.3 Priors and MCMC Settings 

A Bayesian MCMC framework estimates all model parameters. The estimation employs the Adaptive 

Random Walk Metropolis (ARWM) algorithm, which dynamically adjusts the proposal distribution to improve 

sampling efficiency and accelerate convergence. ARWM dynamically adjusts proposal distributions, reduces 

chain autocorrelation, and accelerates convergence, outperforming traditional MLE, which often struggles with 

nonlinearity, asymmetry, and local optima, as demonstrated in [23]. The specification uses weakly informative 

normal priors for all parameters: 𝜃~𝑁(0,10), where θ represents any model parameter (𝜔, 𝛼1, 𝛼2, 𝛽, 𝜆, 𝛾), 

following standard Bayesian practices in volatility modeling (see [23], [24]). This prior centers at zero with a large 

variance, allowing the data to dominate the posterior. Recent Bayesian GARCH and stochastic process modeling 

studies commonly use such diffuse Normal priors to balance weak informativeness with computational tractability 

and convergence stability [25], [26]. Sensitivity analyses presented in Section 3.1 confirm the robustness of results 

to alternative prior choices (e.g., Beta, Uniform). The procedure runs 35,000 MCMC iterations for each model. 

The first 5,000 iterations serve as a burn-in period and are discarded. Initial parameter values are set according 

to Eq. (9): 

 

 𝜔(0) = 0.1, 𝛼1
(0)

= 0.1, 𝛼2
(0)

= 0.1, 𝛽(0) = 0.9, 𝜆(0) = 0.5, 𝛾(0) = 0.5. (9) 

 

Convergence assessment employs both visual and statistical diagnostics. Trace plots provide a visual check, where 

a dense, stationary fluctuation around the mean indicates that the Markov chain has reached its target distribution 

[27]. For a quantitative measure, the Integrated Autocorrelation Time (IACT) estimates convergence efficiency 

using the adaptive truncated periodogram estimator [25], [28]. 

 

2.4 Forecasting and Evaluation Metrics 

2.4.1 Volatility Forecasting 

The out-of-sample forecasting procedure splits the data into a training set (5 January 2004 to 30 December 

2008) for model fitting and a test set (5 January 2009 to 30 December 2011) for forecast evaluation. The 

forecasting procedure generates predictions recursively for horizons h = 1 (daily), 5 (weekly), 10 (biweekly), and 
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20 (monthly). For h = 1, the one-step-ahead conditional variance 𝜎̂𝑡+1
2  is computed directly. For h > 1, an iterative 

expectation-based approach replaces future shocks 𝜀𝑡+𝑘 and |𝜀𝑡+𝑘| with their unconditional means 0 and √1

2
𝜋, 

respectively. In the EGARCH-X and EGARCH-CJ models, future values of exogenous variables (𝑋𝑡 , 𝐶𝑡 , 𝐽𝑡) are 

set to their historical means for h > 1. The following is an illustration: 

 

Date h = 1 ⋯ h = 5 ⋯ h = 10 ⋯ h = 20 

5 Jan. 2009 𝜎̂𝑁+1,1
2   𝜎̂𝑁+1,5

2   𝜎̂𝑁+1,10
2   𝜎̂𝑁+1,20

2  

6 Jan. 2009 𝜎̂𝑁+2,1
2   𝜎̂𝑁+2,5

2   𝜎̂𝑁+2,10
2   𝜎̂𝑁+2,20

2  

7 Jan. 2009 𝜎̂𝑁+3,1
2   𝜎̂𝑁+3,5

2   𝜎̂𝑁+3,10
2   𝜎̂𝑁+3,20

2  

⋮        

Recent studies, such as [6] and [29], have widely adopted Mean Squared Error (MSE) as standard tools for 

measuring the predictive accuracy of volatility models. When the actual volatility process cannot be directly 

observed, a suitable exogenous variable serves as a true volatility 𝜎𝑡
2. The MSE evaluates forecasting accuracy as 

defined in Eq. (10): 

 

 MSE =
1

𝑁test

∑ (𝜎𝑡
2 − 𝜎̂𝑡

2)2𝑁test
𝑡=1 . (10) 

 

The Diebold-Mariano (DM) test provides formal statistical comparisons between models [30], as shown in Eq. 

(11): 

 𝐷𝑀 =
𝑑̅

√𝑆̂𝑑∙𝑁test
−1

, (11) 

 

where 𝑑𝑡 = 𝐿(𝑒1𝑡) − 𝐿(𝑒2𝑡) represents the loss differential between forecast errors 𝑒1𝑡 and 𝑒2𝑡 from models 1 

and 2, 𝑑̅ is the sample mean of 𝑑𝑡, and 𝑆̂𝑑 is a consistent estimator of the asymptotic variance of 𝑑̅. A significant 

DM statistic indicates a statistically significant difference in forecast accuracy between the two models. 

2.4.2 VaR Forecasting and Evaluation 

Among various risk indicators, VaR has become one of the most commonly used tools for measuring 

market risk exposure. According to [31], VaR calculates the maximum expected loss over a set holding period 

of t days, given a confidence level of (1−α) %. The -level VaR calculation uses Eq. (12): 

 

 VaR𝛼(𝑡) = 𝑁𝛼𝜎̂𝑡 , (12) 

 

where 𝑁𝛼 is the -quantile of standard Normal distribution.  

While statistical hypothesis-based approaches test whether VaR violations match the expected frequency, 

they offer limited insight for model comparison. In contrast, loss-function-based evaluations—specifically 

the Regulatory Quadratic Loss (RQL) and Failure Rate (FR)—examine both the frequency and severity of 

violations, enabling regulators and risk managers to identify models that minimize cumulative loss. This study 

employs both RQL and FR to evaluate VaR forecasts: 

a. Eq. (13) defines the RQL, see [32]: 

 

 RQL = {
1 + (VaR𝑡 − 𝑅𝑡)2 if 𝑅𝑡 < VaR𝑡,

0 if 𝑅𝑡 ≥ VaR𝑡.
 (13) 

 

A lower RQL value indicates a better-performing model that produces fewer or less severe losses beyond 

the predicted threshold. 

b. Eq. (14) defines the FR : 

 FR =
1

𝑛
∑ 𝐼(𝑅𝑡 < VaR𝑡)𝑛

𝑡=1 , (14) 

 

where I(⋅) is an indicator function. A well-calibrated model produces an FR close to the nominal 

significance level . 

 

2.5 Research Gap and Contributions 

Previous studies, such as [9], have demonstrated the potential of decomposing realized volatility into 

continuous and jump components within GARCH-type frameworks. However, their analysis relied solely on 5-

minute RV and was limited to estimation via MLE. This leaves several critical gaps in understanding the model’s 

performance under different data frequencies, estimation methods, and forecasting horizons. This study 

addresses these limitations and makes the following contributions: 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&
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1. Multi-Frequency Realized Measures: We extend the evaluation of EGARCH-X and EGARCH-CJ 

models by employing four distinct realized measures 1-minute, 5-minute, and 10-minute RV, along 

with the RK. This allows us to systematically assess how sampling frequency and noise robustness affect 

model fit and forecast accuracy, an aspect overlooked in prior work. 

2. Bayesian Estimation Framework: We implement an efficient Bayesian MCMC estimation procedure 

using the ARWM algorithm. This approach offers improved estimation efficiency and robustness for 

complex, nonlinear volatility models compared to traditional MLE, providing more reliable parameter 

estimates and uncertainty quantification. 

3. Comprehensive Multi-Horizon Forecast Evaluation: Moving beyond in-sample fit, we conduct a 

thorough out-of-sample forecasting exercise across short- to long-term horizons (1, 5, 10, and 20 days). 

The evaluation encompasses both volatility forecasts (using MSE and DM tests) and risk forecasts (VaR 

using RQL and FR), offering a holistic view of model performance for both risk modeling and 

regulatory applications. 

These contributions collectively advance the methodological development of jump-enhanced volatility 

models and provide empirical insights into their practical utility for financial forecasting and risk management in 

a major equity market. 

 

3. RESULT AND ANALYSIS 
3.1 Convergence of the Estimator 

A sensitivity analysis confirms the robustness of the Bayesian estimates to prior specification. Table 1 shows 

that posterior estimates for the EGARCH-CJ parameters remain stable across different prior distributions 

(Normal, Beta, Uniform), with minimal changes in posterior means, standard deviations (in brackets), and log-

likelihoods (LLs). This indicates that the data dominate the posterior, making the results insensitive to reasonable 

choices of priors. Prior transformations (e.g., 0.5(𝜃 + 1)~𝐵(∙,∙)) were applied where needed to maintain 

parameters within the empirical range of –1 to 1. 

Table 1. Posterior estimates of the GARCH-CJ model (10-minute) for various priors 

 Prior 

 N(0,1) N(0,10) B(5,6) B (3,4) U(–1,1) U(–10,10) 

 0 (1) 0 (3.16) –0.09 (0.29) –0.14 (0.35) 0 (0.33) 0 (33.33) 

 Posterior 

𝜔 0.353 (0.073) 0.352 (0.084) 0.258 (0.054) 0.358 (0.091) 0.335 (0.102) 0.345 (0.071) 

𝛼1 0.016 (0.045) 0.020 (0.041) 0.081 (0.028) 0.007 (0.086) 0.020 (0.045) 0.015 (0.044) 

𝛼2 –0.193 (0.026) –0.193 (0.027) –0.207 (0.027) –0.205 (0.027) –0.192 (0.027) –0.195 (0.026) 

𝛽 0.634 (0.043) 0.633 (0.049) 0.612 (0.040) 0.610 (0.058) 0.645 (0.055) 0.633 (0.048) 

𝜆 0.573 (0.067) 0.576 (0.084) 0.555 (0.064) 0.590 (0.074) 0.553 (0.102) 0.570 (0.075) 

𝛾 0.132 (0.163) 0.131 (0.131) 0.285 (0.097) 0.199 (0.259) 0.135 (0.190) 0.155 (0.171) 

LL –3104.85 –3105.38 –3106.84 –3106.59 –3105.26 –3104.85 

 

For instance, Figure 1 displays the trace plots of the estimated values for the EGARCH-CJ model using 10-

minute RV data. Each Markov chain visually appears to have converged/stabilized, as its graph fluctuates around 

the mean (red line). These diagnostics confirm that the estimation procedure generates stable parameter values 

and that both the prior distribution and the data’s log-likelihood function are selected appropriately. 

 
Figure 1. Trace plot of the estimated values for the EGARCH-CJ model for 10- minute RV data 

Convergence is assessed using the IACT and Effective Sample Size (ESS). The ESS, calculated as retained 

draws divided by IACT, indicated the number of effectively independent samples. While conservative thresholds 

(ESS  200–400) are often recommended [26], [33], [34], our design produces an ESS of approximately 100 

given the estimated IACT. This outcome meets a minimal benchmark but falls short of stricter targets, a noted 

limitation for transparency. 
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3.2 In sample Parameter Estimation and Model Diagnostics 

The in-sample analysis uses the complete observation period from 5 January 2004 to 30 December 2011 for 

model estimation and diagnostics. Due to space limitations, this study presents estimation results only for data 

involving 10-minute RVs, as shown in Table 2. SD denotes standard deviation, and * indicates parameter 

significance from a value of 0 based on a 95% Highest Posterior Density interval (see [24] for the estimation 

algorithm). In the EGARCH-X specification, the exogenous realized measure contributes meaningfully to 

volatility dynamics. In the EGARCH-CJ model, the continuous and jump components are both statistically 

significant, indicating that each plays an important role in explaining conditional variance. The parameter 

estimation results for all cases of realized measures indicate that the addition of exogenous variables does not 

affect changes in the asymmetric parameter 𝛼2. However, the negligible impact of exogenous variables on 

asymmetry parameter across all specifications contrasts with theories emphasizing the role of external shocks in 

amplifying leverage effects (e.g., [5]). This divergence may reflect TOPIX’s unique response to crises or 

limitations in the realized measures’ ability to capture asymmetric shock transmission. 

 

Table 2. Parameter estimates for models applied to 10-minute RV data 

Statistics 
Parameter 

𝜔 𝛼1 𝛼2 𝛽 λ γ 

EGARCH 

Mean  –0.168* 0.236* –0.123* 0.955* - - 

SD 0.023 0.030 0.016 0.008 - - 

EGARCH-X 

Mean  0.318* 0.022 –0.195* 0.628* 0.605* - 

SD 0.091 0.050 0.026 0.062 0.111 - 

EGARCH-CJ 

Mean  0.352* 0.020 –0.193* 0.633* 0.576* 0.131* 

SD 0.084 0.041 0.027 0.049 0.084 0.131 

Note: Asterisk * represents significance from a value of 0 

 

To select the model with the best data fit, this study uses four criteria: Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC), Adjusted BIC (ABIC), and Consistent AIC (CAIC) (see [35] for the 

formulas of these four criteria). The selection is based on criterion dominance because different criteria often 

support other models. For each criterion, a smaller value indicates a better-fitting model. Table 3 presents the 

criterion values for the EGARCH-X and EGARCH-CJ models across all realized measure cases. In all cases, 

AIC selects the EGARCH-CJ model as the best model. However, based on the dominance of the four criteria, 

the EGARCH-CJ model outperforms only for the 10-minute RV measure. 

 

Table 3. Information criteria for EGARCH-X and EGARCH-CJ across realized measures 

Model Criteria RV1 RV5 RV10 RK 

EGARCH-X AIC 6258.1 6226.8 6227.7 6220.2 

 ABIC 6270.2 6238.8 6239.8 6232.3 

 BIC 6286.0 6254.7 6255.6 6248.1 

 CAIC 6291.0 6259.7 6260.6 6253.1 

EGARCH-CJ AIC 6254.0 6224.9 6221.9 6219.7 

 ABIC 6274.4 6239.3 6236.4 6234.1 

 BIC 6293.5 6258.4 6255.4 6253.1 

 CAIC 6299.5 6264.4 6261.4 6259.1 

Note: The bold values indicate the minimum values of the error metric 

 

The EGARCH-CJ model provides superior in-sample fit over EGARCH-X when using 10-minute RV, as 

indicated by lower AIC, BIC, ABIC, and CAIC values. This aligns with evidence that decomposing volatility into 

jump and continuous components improves model fit [13], [36]. The finding that the 10-minute RV outperforms 

5-minute RV for Japan’s TOPIX suggests market-specific optimal sampling, where this coarser interval may better 

separate persistent volatility from jumps while reducing microstructure noise [37], highlighting the noise-

resolution trade-off in realized measure selection. 

 

3.3 Evaluation of Volatility Forecasting 

Table 4 summarizes the out-of-sample volatility forecasting evaluation across all models. For short-term 

forecasts (h = 1), the standard EGARCH model without exogenous inputs gives the lowest or similar MSE values 

across most realized measures. This suggests that recent historical volatility adequately captures short-term market 

dynamics without needing additional realized variables. In contrast, for medium- to long-term horizons (h = 5, 
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10, and 20), the EGARCH-CJ model typically produces smaller MSE values than both the EGARCH and 

EGARCH-X models. This benefit is clear across almost all realized measures.  

Using the simpler model as the benchmark, the DM tests in Table 5 show that for short-term forecasts (h 

= 1), the statistics are negative or insignificant, confirming that the standard EGARCH benchmark is superior. 

However, for medium- and long-term horizons, the tests reveal a consistent and significant superiority of the 

EGARCH-CJ model, as indicated by large positive t-statistics (e.g., 7.91, 16.52, 17.08 for 1-min RV), confirming 

that the EGARCH-CJ model’s forecasting advantage is not only empirical but also statistically robust. More 

importantly, the magnitude and consistency of these positive statistics across multiple realized measures and 

horizons demonstrate that the improvement is systematic rather than sample-specific, providing strong formal 

evidence that incorporating continuous and jump components materially enhances multi-step volatility 

forecasting accuracy. 

 

Table 4. Out-of-sample volatility forecasting evaluated by the MSE measure 

X Model h = 1 h = 5 h = 10 h = 20 

1-min RV EGARCH 4.38 3.79 2.86 2.31 

 EGARCH-X 6.43 2.03 1.16 2.23 

 EGARCH-CJ 6.81 1.83 1.98 2.04 

5-min RV EGARCH 4.18 4.21 3.34 2.87 

 EGARCH-X 4.74 2.68 2.83 2.88 

 EGARCH-CJ 4.18 2.58 2.74 2.81 

10-min RV EGARCH 5.42 6.48 5.64 5.28 

 EGARCH-X 6.06 5.07 5.25 5.31 

 EGARCH-CJ 6.34 4.99 5.17 5.23 

RK EGARCH 4.67 5.09 4.23 3.81 

 EGARCH-X 4.96 3.61 3.77 3.81 

 EGARCH-CJ 7.40 3.37 3.49 3.52 

RV(5) EGARCH 7.69 5.23 3.91 2.99 

 EGARCH-X 6.86 3.29 2.83 2.83 

 EGARCH-CJ 4.09 2.56 2.73 2.79 

Note: The bold values indicate the minimum values of the error metric 

 

Table 5. Out-of-sample evaluation of the volatility forecasts: DM test 

X 
Benchmark 

Model 

Alternative EGARCH Model 

h = 1 h = 5 h = 10 h = 20 

X CJ X CJ X CJ X CJ 

1-min 

RV 

EGARCH –1.07 –1.06 1.40 1.40 1.49 1.57 1.13 1.89 

EGARCH-X  –1.06  7.91*  16.52*  17.08* 

5-min 

RV 

EGARCH –1.01 –0.98 1.34 1.34 1.33 1.34 0.70 0.83 

EGARCH-X  1.07  3.83*  8.80*  9.93* 

10-min 

RV 

EGARCH –1.05 –1.02 1.31 1.32 1.25 1.30 0.60 0.84 

EGARCH-X  1.25  2.35*  7.69*  8.02* 

RK 
EGARCH –1.00 –1.06 1.32 1.37 1.30 1.49 0.76 1.86 

EGARCH-X  –1.06  8.97*  9.45*  9.81* 

RV
(5)

 
EGARCH –1.06 –1.03 1.41 1.37 1.41 1.35 0.89 0.57 

EGARCH-X  –1.01  –3.17*  –14.4*  –17.2* 

Note: t-statistics for volatility forecasts; |t| > 1.96 indicates 5% significance, and * denotes significance 

 

A comparison across different models and exogenous data frequencies also indicates that the best daily 

volatility forecasts come from the standard EGARCH model using the 5-minute RV measure. Meanwhile, the 

most accurate forecasts for longer horizons come from the EGARCH-CJ model, which utilizes the 1-minute RV 

measure. This indicates that high-frequency realized measures enhance the model’s responsiveness in multi-step 

forecasting. In contrast, moderate-frequency realized inputs, such as the 5-minute RV, provide greater stability 

and valuable insights for short-term daily volatility dynamics.  

The degradation of 1-minute RV in short-term forecasts, contrasting with its long-term improvement, signals 

microstructure noise contamination from effects like bid-ask bounce [38]. This noise fades over longer horizons 

as persistent volatility dominates. Pre-averaging RV
(5)

—applied here via the 5-minute RV measure—mitigates this 
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by smoothing high-frequency data [38]. Table 4 shows RV
(5)

 yields more stable and accurate forecasts, especially 

at h = 1, confirming that noise-robust techniques balance high-frequency detail with noise reduction. 

The findings in this study match those in [9]. They showed that adding jump components to realized-based 

volatility models significantly improves forecasting accuracy, especially over medium-term periods. Similar to the 

results in [9], the EGARCH-CJ model in this study does well by clearly modeling the continuous and jump parts. 

This captures both smooth market trends and sudden changes from extreme events. This consistency, now 

reinforced by rigorous DM testing, supports the idea that considering breaks in volatility processes strengthens 

the reliability and consistency of multi-step forecasts, particularly when using high-frequency realized measures. 

In summary, the EGARCH model is best for short-term forecasts, especially when using moderate-

frequency realized inputs like the 5-minute RV. The EGARCH-CJ specification gives the most accurate volatility 

predictions for medium and longer terms, particularly when backed by high-frequency (1-minute) realized 

measures—a conclusion firmly supported by both lower MSE values and statistically significant DM test results. 

This result shows a trade-off between immediate forecast accuracy and long-term stability, underscoring that 

including continuous and jump components is key to improving predictive performance during persistent 

volatility patterns. 

 

3.4 Evaluation of VaR Forecasting 

Based on the results in Table 6, the EGARCH-CJ model usually shows lower RQL values for realized 

volatility measures using return sampling intervals of 1-minute, 5-minutes, and 10-minutes, especially at short and 

long horizons (h = 1, 10, and 20). This means that modeling continuous and jump components helps the model 

better capture sudden changes in volatility in the short term and maintain forecasting accuracy over longer 

periods. However, when using the RK measure, the standard EGARCH model shows the lowest RQL values, 

particularly at longer horizons (h = 10 and 20). This suggests that the RK estimator’s inherent strength against 

market microstructure noise and its ability to handle discontinuities reduce the benefits of modeling jumps 

explicitly. Therefore, while the EGARCH-CJ model is highly effective for realized measures affected by 

microstructure noise, the EGARCH model performs better with smoother, noise-resistant inputs, such as RK. 

 

Table 6. Out-of-sample VaR forecasting evaluated by RQL measure with α = 5% 

X Model h = 1 h = 5 h = 10 h = 20 

1-min RV EGARCH 30.55 70.85 28.05 62.56 

 EGARCH-X 29.87 39.82 30.16 70.08 

 EGARCH-CJ 26.05 37.83 29.50 62.09 

5-min RV EGARCH 30.51 70.72 27.58 62.51 

 EGARCH-X 29.18 59.09 31.69 71.05 

 EGARCH-CJ 28.02 60.46 30.34 70.09 

10-min RV EGARCH 30.47 70.53 28.02 62.50 

 EGARCH-X 27.94 56.95 31.67 70.83 

 EGARCH-CJ 27.01 60.96 30.79 70.29 

RK EGARCH 30.54 70.82 28.04 62.53 

 EGARCH-X 25.94 54.92 31.68 70.99 

 EGARCH-CJ 25.51 53.50 29.22 65.21 

RV(5) EGARCH 30.60 71.10 28.08 62.65 

 EGARCH-X 29.52 61.52 29.07 58.32 

 EGARCH-CJ 25.20 53.33 31.54 70.45 

Note: The bold values indicate the minimum values of the loss metric 

 

Across the realized measures, the EGARCH-CJ model with the RK input delivers the strongest overall 

forecasting performance at h = 1. At longer horizons (h = 5 and h = 20), the EGARCH-CJ model using the 1-

minute RV produces the best results. At the intermediate horizon (h = 10), the standard EGARCH model 

combined with the RK input yields the lowest RQL value. These findings indicate that high-frequency realized 

measures enhance EGARCH-CJ’s responsiveness to short- and long-horizon risk, whereas the RK measure 

complements the simpler EGARCH framework for medium-term forecasts where volatility dynamics are 

smoother and less influenced by sudden jumps. 

Table 7 presents the out-of-sample VaR forecasting results assessed using the FR criterion at the 5% 

confidence level. The FR measures how well the proportion of VaR violations matches the nominal rate. Values 

nearest to 5% indicate the best calibration performance. Across all forecast horizons, the standard EGARCH 
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model consistently achieves FR values closest to the nominal 5%. This suggests strong calibration and reliability. 

Specifically, for the 10-minute RV and RK, EGARCH demonstrates the best alignment at h = 1, 5, and 20, with 

FR values ranging from 4.77% to 5.82%. This shows the model’s stability in maintaining a consistent exceedance 

frequency across both short and long horizons. 

Failure Rate (FR) results show varying optimal calibration across models and realized measures. For 

instance, Table 7 indicates that EGARCH and EGARCH-X tie for the 1-minute RV at h = 1, while EGARCH 

performs best at h = 5 and EGARCH-X leads at h = 10 and h = 20. With 5-minute RV, EGARCH-X is best at h 

= 1, and EGARCH-CJ provides the best alignment at h = 5, 10, 20. Overall, mid-frequency measures (e.g., 5-

minute RV) offer the most balanced calibration, whereas high-frequency data (1-minute RV) combined with 

exogenous terms benefits longer horizons. 

 

Table 7. Out-of-sample VaR forecasting evaluated by FR measure 

X Model h = 1 h = 5 h = 10 h = 20 

1-min RV EGARCH 4.77% 4.91% 4.50% 5.32% 

 EGARCH-X 4.77% 4.77% 4.91% 4.91% 

 EGARCH-CJ 6.14% 5.32% 5.59% 5.46% 

5-min RV EGARCH 4.77% 4.91% 4.64% 5.32% 

 EGARCH-X 5.18% 4.37% 4.64% 4.64% 

 EGARCH-CJ 5.45% 5.05% 4.91% 4.91% 

10-min RV EGARCH 4.77% 4.91% 4.50% 5.32% 

 EGARCH-X 5.59% 4.23% 4.64% 4.64% 

 EGARCH-CJ 5.87% 4.77% 4.64% 4.64% 

RK EGARCH 4.77% 4.91% 4.50% 5.32% 

 EGARCH-X 6.00% 4.77% 4.64% 4.64% 

 EGARCH-CJ 6.14% 5.46% 5.59% 5.59% 

RV(5) EGARCH 4.78% 4.92% 4.51% 5.33% 

 EGARCH-X 4.92% 4.64% 4.92% 4.92% 

 EGARCH-CJ 6.42% 4.92% 4.64% 4.78% 

Note: The bold values indicate the closest values to the 5% VaR-level 

 

As shown in Table 6, no single model universally dominates VaR forecasting. The standard EGARCH 

model with RK often excels at short horizons (h = 1) and occasionally at longer ones, while the EGARCH-CJ 

model generally provides superior tail-risk forecasts (lower RQL) at medium and long horizons (h = 5, 10, 20), 

especially with 1-minute RV. This horizon-dependent performance underscores that the advantage of explicit 

jump modeling is contingent on both the forecast horizon and the chosen realized measure. 

Therefore, EGARCH-CJ is most valuable for medium- to long-term risk forecasting in jump-prone settings, 

whereas simpler EGARCH specifications paired with robust measures like RK remain competitive for short-

term and calibration-focused applications. 

These forecasting results carry direct relevance for regulatory risk management. Under frameworks such as 

Basel III, accurate VaR estimation is critical for determining capital requirements and passing backtesting 

standards. The observed superiority of the EGARCH-CJ model in reducing tail losses (lower RQL) suggests its 

potential for improving economic capital allocation, while the consistent calibration of the standard EGARCH 

model—particularly with RK and mid-frequency RV—supports its reliability in meeting strict regulatory coverage 

thresholds. Further regulatory implications of these findings are elaborated in the Discussion. 

Optimal model selection depends on forecast horizon, performance metric, and realized measure. Table 

8 summarizes the best model for each key objective—volatility accuracy (MSE), tail-risk (RQL), and regulatory 

calibration (5% FR)—across short, medium, and long horizons, highlighting the horizon-dependent trade-off 

between EGARCH and EGARCH-CJ. 

 

Table 8. Summary of optimal model selection by forecast horizon 

Horizon 
Best for 

volatility 

DM test 

significant? 

Best for tail risk 

(RQL) 

Best for 

regulatory 

(5% FR) 

Key insight 

Short 

(h = 1) 

EGARCH 

(5-min RV) 

No EGARCH-CJ 

(1-min RV/RK) 

EGARCH 

(10-min 

RV/RK) 

EGARCH excels for short-

term volatility; EGARCH-CJ 

better for immediate tail risk 
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Medium 

(h = 5, 10) 

EGARCH-CJ 

(all RVs) 

Yes EGARCH-CJ 

(most RVs) 

EGARCH 

(RK) 

EGARCH-CJ dominates 

forecasting 

Long 

(h = 20) 

EGARCH-CJ 

(all RVs) 

Yes EGARCH-CJ 

(1-min RV) or 

EGARCH (RK) 

EGARCH 

(RK) 

EGARCH-CJ best for long-

term predictions, but 

EGARCH with RK remains 

robust for regulatory VaR 

 

3.5 Discussion 

The empirical results reveal a nuanced landscape where model superiority is conditional on forecast 

horizon, the choice of realized measure, and the specific risk management objective. This discussion synthesizes 

these findings into four key thematic insights, interprets their implications, and highlights the study’s contributions 

relative to the existing literature. 

3.5.1 Horizon-Dependent Model Performance 

The empirical results demonstrate that the performance of the EGARCH-CJ model is conditionally 

superior, with its advantages being particularly dependent on the forecast horizon. The standard EGARCH 

model consistently offers the most accurate short-term volatility forecasts and the most reliable VaR calibration 

(closest to the 5% failure rate). In contrast, the EGARCH-CJ model provides the best volatility forecasts and 

lower tail losses (RQL) at medium- and long-term horizons. The Diebold-Mariano test results in Table 5 

statistically validate this pattern, showing the EGARCH-CJ model’s significant superiority at medium and long 

horizons while confirming no significant advantage at the one-day horizon. 

3.5.2 The Critical Role of Realized Measures and Sampling Frequency 

Model performance is critically moderated by the choice and intraday frequency of the realized volatility 

measure. The observed degradation of 1-minute RV in short-term forecasts contrasting with its long-horizon 

benefits signals contamination by microstructure noise such as bid-ask bounce. This noise diminishes over longer 

horizons where persistent volatility dominates. Robust estimators like the RK or coarser sampling (e.g., 10-minute 

RV) mitigate this noise and often enable the standard EGARCH model to perform competitively, particularly 

for VaR calibration where stable inputs are valued. This evidence underscores a market-specific noise-resolution 

trade-off, where the optimal sampling interval (10-minute for TOPIX) balances high-frequency information with 

noise resilience. This granular analysis across multiple frequencies extends prior work that relied on a single 

sampling scheme. 

3.5.3 Implications for Risk Management and Basel Regulation 

These findings carry direct consequences for financial risk management, particularly within post-crisis 

regulatory frameworks like Basel III that emphasize accurate VaR estimation and backtesting.  The EGARCH-

CJ model’s strength in reducing tail losses (lower RQL) makes it valuable for internal economic capital allocation 

and stress testing, where capturing extreme movements is paramount. However, the standard EGARCH model, 

especially when paired with robust measures like RK, provides more consistent calibration (FR closest to the 5% 

nominal level), a critical feature for regulatory compliance and capital reporting. This divergence suggests 

institutions might strategically employ a dual-model approach: EGARCH-CJ for internal risk modeling and the 

standard EGARCH for regulatory submissions, thereby addressing both economic and regulatory objectives 

effectively. 

3.5.4 Limitations and Avenues for Future Research 

From a methodological standpoint, stable estimation results and low IACT values confirm the robustness 

of the ARWM algorithm, consistent with previous findings [23]. The minimal impact of exogenous shocks on 

the asymmetry parameter suggests that market-wide dynamics during stressful periods may overshadow leverage 

effects captured by external variables. These models exhibit limitations in calmer market environments where 

jump components contribute little additional information, and performance can weaken when volatility dynamics 

are dominated by smooth, low-amplitude fluctuations. Future research should extend this framework to diverse 

markets and investigate macroeconomic drivers of jump components [39]. 

3.5.5 Alignment with Recent Advances 

These findings align with recent advances in volatility forecasting. Studies have shown that incorporating 

realized volatility into CAViaR-type models improves VaR forecasting [40], and that decomposing continuous 

and jump components enhances multi-step forecast performance [39]. Our DM test results provide formal 

statistical confirmation of this enhancement for EGARCH-type models. Mid-frequency realized measures enable 

stable calibration [41], and realized-based GARCH frameworks remain competitive when data frequency and 

horizon align well [6]. 

The evidence indicates a clear trade-off: EGARCH-CJ provides better forecasting for medium-to-long 

horizons and jump-driven markets, whereas EGARCH remains superior for short-term forecasting and 

regulatory calibration. Model selection should be guided by specific risk management objectives—whether 

prioritizing tail-risk reduction, nominal coverage accuracy, or leveraging robust realized measures. 
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4. CONCLUSION 
This study evaluates the performance of EGARCH-X and EGARCH-CJ models in forecasting volatility for 

the Japanese TOPIX index using multiple realized measures within a Bayesian MCMC framework. The findings 

reveal a clear, horizon-dependent trade-off: while the standard EGARCH model remains optimal for short-term 

forecasting and regulatory VaR calibration, the EGARCH-CJ model provides statistically superior accuracy for 

medium- and long-term horizons by explicitly capturing jump-driven risk. The choice of realized measure—

particularly the trade-off between high-frequency information and microstructure noise—critically influences 

model performance. 

Practically, the results support a dual-model approach in financial risk management: EGARCH-CJ is 

recommended for internal capital allocation and stress testing where tail-risk accuracy is paramount, whereas the 

standard EGARCH model, especially with robust measures like the RK, is better suited for regulatory reporting 

under frameworks such as Basel III. Future research should extend this framework to a Realized EGARCH-CJ 

specification, validate findings across diverse markets and asset classes, and investigate the macroeconomic drivers 

of jump components to enhance model interpretability and forecasting robustness. 
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