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1. INTRODUCTION

Volatility reflects how much asset returns fluctuate over time and serves as a key indicator of market risk
[1], [2]. Conditional heteroskedasticity models, particularly the EGARCH framework, are widely recognized for
capturing nonlinear and asymmetric volatility dynamics [3], [4]. Its logarithmic variance specification ensures
positivity and models the leverage effect [3], [5]. Recent findings further confirm that EGARCH-type models
remain highly accurate and adaptable across various market conditions [6].

Advances in high-frequency data have encouraged extensions of EGARCH. Studies in [7], [8] developed
the EGARCH-X model by incorporating an exogenous realized measure (X), such as Realized Volatility (RV),
which improves model fit and forecasting performance. Building on this, [9] decomposed X into continuous (C)
and jump (J) components, forming the EGARCH-CJ model, which enhanced volatility. However, [9] relied solely
on S-minute RV and a short Maximum Likelihood Estimation (MLE) based evaluation, leaving open questions
regarding the model’s performance across alternative sampling frequencies and multi-horizon forecasts.

This study addresses these gaps by: (1) comparing EGARCH-X and EGARCH-CJ using four realized
measures 1-minute, 5-minute, 10-minute RV, and Realized Kernel (RK); (2) applying the Adaptive Random
Walk Metropolis (ARWM) algorithm within a Bayesian Markov Chain Monte Carlo (MCMC) framework to
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improve estimation efficiency over MLE, as used in [9]; and (8) evaluating volatility and Value-at-Risk (VaR)
forecasts across multiple horizons. These contributions advance both the methodological development of
EGARCH-type models and their practical relevance for volatility forecasting and financial risk management.

By focusing on the Japanese TOPIX index, which encompasses a broad range of market conditions,
including the 2008 Global Financial Crisis, this research offers insights into how the combination of continuous-
jump decomposition and data frequency affects volatility forecasting accuracy in a highly liquid market. Beyond
its empirical focus, the study also addresses broader regulatory and practical stakes in financial risk management.
Post-crisis reforms such as the Basel IIT accords have placed stronger emphasis on capital adequacy, stress testing,
and accurate VaR estimation as core elements of financial stability frameworks [10], [11]. Recent studies have
shown that volatility and VaR modeling based on GARCH-type frameworks remain essential for meeting Basel
III risk-measurement standards [12]. Moreover, the growing relevance of jump modeling has been underscored
by recent global shocks including COVID-19-induced volatility, geopolitical tensions, and rapid asset price swings
highlighting the need for models capable of capturing abrupt market movements [13]. In this context, linking
EGARCH-X and EGARCH-CJ models to regulatory requirements becomes increasingly important, as improved
volatility and VaR forecasts support more accurate capital allocation, strengthen stress-testing procedures, and
enhance compliance with Basel III backtesting thresholds. These practical implications make the adoption of
Jjump-enhanced volatility models directly relevant for risk managers and supervisory institutions. These
developments underscore the timeliness and significance of this study in developing volatility models that strike
a balance between methodological rigor and regulatory applicability.

2. RESEARCH METHOD
2.1 Data and Sample

This study examines the TOPIX data, an index comprising all domestic common stocks listed on the First
Section of the Tokyo Stock Exchange [14]. This index was selected because it serves as a key benchmark that
reflects the performance of the Japanese market. Its high liquidity is essential for ensuring the accuracy of the RV
and RK measures calculated from tick-by-tick data, where the RK is implemented using the Parzen kernel (see
[15]) with the optimal bandwidth selection procedure as proposed by [16]. These are essential parts of the
EGARCH-X and EGARCH-CJ models.

The sample for this case study includes daily TOPIX values from January 2004 to December 2011, totaling
1962 daily observations. This period was chosen because 1t encompasses a full range of market conditions,
including a time of pre-crisis stability, extreme volatility during the peak of the 2008-2009 Global Financial Crisis,
and the subsequent recovery phase. This significant financial event creates a “natural laboratory” to test the
models’ ability to capture jump components and volatility asymmetry effectively. However, the crisis period may
mtroduce potential data quality 1ssues such as temporary illiquidity, widened bid ask spreads, or increased noise
in high-frequency prices that could affect the precision of realized measures. These conditions do not invalidate
the dataset but highlight the importance of using robust estimators like RV and RK to mitigate distortions,
particularly during turbulent episodes [17], [18].

The study applies purposive sampling to select the sample, and the index trades actively throughout the
entire period. The purposive sampling method suits the analysis because the sample is intentionally chosen based
on predefined criteria to meet the research objectives. In practice, the sampling process ensures that the data
possess essential characteristics—such as high liquidity and the presence of a crisis period—needed to support a
valid comparison between the EGARCH-X and EGARCH-CJ models. Nevertheless, this study focuses on a
single index (TOPIX), a single country (Japan), and a single significant crisis period, which may limit the external
validity of the findings. Future research is therefore encouraged to conduct cross-market validation by extending
the analysis to multiple indices and countries with varying market structures, liquidity conditions, and regulatory
environments, in order to test the robustness and broader applicability of the EGARCH-CJ framework.

2.2  Model Specification

This subsection details the econometric framework, including return definitions, realized measures, and the
conditional variance equations for the compared models.
2.2.1 Returns and Realized Measures

Let P; be the financial asset value at time ¢ (¢= 1, ..., 7). The daily log-return 1s defined as in Eq. (1) [19],

[20]:
R, =logP, —log P;_;. (1
Given high-frequency intraday returns {Rt‘i}livzl, the RV for day ¢is computed as shown in Eq. (2):

X¢ =X\, R, ©
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The analysis decomposes RV into continuous and jump components, following the method in [9]. First, the
median RV estimator M, [21] and the jump test statistic Z; are calculated using Eqs. (3) and (4), respectively:

_ 2 c
M, = ﬁ(é) X 2?’:21 MEd(|Rt,i—1|: |Rt,i|' |Rt,i+1|) ) 3)

(Xe—Br)

Zt = "y (4)

Xt\/(().257'r2+rr—5)K‘1 max(1,Q:B; %)
where By 1s the realized bipower variation [21] and Q; 1s the realized tripower quarticity [22]. Subsequently, the
continuous C; and jump J; components are defined by Egs. (5) [9]:

Co =1(Z Q)X + 1(Ze > De)Mp and Jo = 1(Z, > Do) (X, — My), ()

where @, is the a-quantile of the standard Normal distribution (@ = 0.99 in this study).
2.2.2 Volatility Models

The mean equation for all models is R; = ay&;, €~N(0,1), where M0,1) denotes the standard Normal
distribution. The conditional variance h, = log a2 follows these specifications:

a. EGARCH(1,1): The baseline model is given by Eq. (6):

t-1 Re—y

R
Ot-1

he =w+a; +a, + Bhe_q. 6)

Ot-1

b. EGARCH-X(L,1): This extension of EGARCH incorporates the lagged log realized measure log X;_4,
as shown in Eq. (7):

R

t-1
Ot-1

ht =(1J+a1

+a2%f+ﬁhhl+lnghr @)

¢. EGARCH-CJ(1,1): This model further decomposes the exogenous signal into continuous and jump
parts, specified by Eq. (8):

Req

he =w+ay +a, + Bhi_q + AlogCi_y +ylog(Je—q + 1). ®)

Req
Ot—1

Ot—1

2.3 Priors and MCMC Settings

A Bayesian MCMC framework estimates all model parameters. The estimation employs the Adaptive
Random Walk Metropolis (ARWM) algorithm, which dynamically adjusts the proposal distribution to improve
sampling efficiency and accelerate convergence. ARWM dynamically adjusts proposal distributions, reduces
chain autocorrelation, and accelerates convergence, outperforming traditional MLE, which often struggles with
nonlinearity, asymmetry, and local optima, as demonstrated in [23]. The specification uses weakly informative
normal priors for all parameters: 8~N(0,10), where 0 represents any model parameter (w, aq, @5, 5, 4,7),
following standard Bayesian practices in volatility modeling (see [23], [24]). This prior centers at zero with a large
variance, allowing the data to dominate the posterior. Recent Bayesian GARCH and stochastic process modeling
studies commonly use such diffuse Normal priors to balance weak informativeness with computational tractability
and convergence stability [25], [26]. Sensitivity analyses presented in Section 3.1 confirm the robustness of results
to alternative prior choices (e.g., Beta, Uniform). The procedure runs 35,000 MCMC iterations for each model.
The first 5,000 iterations serve as a burn-in period and are discarded. Initial parameter values are set according
to Eq. (9):

0@ =01,a? =01,a” =0.1,® = 09,1 = 0.5,y® = 05. ©)

Convergence assessment employs both visual and statistical diagnostics. Trace plots provide a visual check, where
a dense, stationary fluctuation around the mean indicates that the Markov chain has reached its target distribution
[27]. For a quantitative measure, the Integrated Autocorrelation Time (IACT) estimates convergence efficiency
using the adaptive truncated periodogram estimator [25], [28].

2.4 Forecasting and Evaluation Metrics
2.4.1 Volatility Forecasting

The out-of-sample forecasting procedure splits the data into a training set (5 January 2004 to 30 December
2008) for model fitting and a test set (5 January 2009 to 30 December 2011) for forecast evaluation. The
forecasting procedure generates predictions recursively for horizons =1 (daily), 5 (weekly), 10 (biweekly), and
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20 (monthly). For /2= 1, the one-step-ahead conditional variance 62 ; is computed directly. For 4> 1, an iterative
expectation-based approach replaces future shocks €;,p and |&;4| with their unconditional means 0 and ’%T[,

respectively. In the EGARCH-X and EGARCH-CJ models, future values of exogenous variables (X;, C, J;) are

set to their historical means for 4> 1. The following 1s an illustration:

Date h=1 h=5 h=10 h=20
5 Jan. 2009 515+1,1 613+1,5 61%+1.1o 51\2/+1,20
6 Jan. 2009 613+2,1 5'15+2,5 51\21+2,10 51\21+2,20
7 Jan. 2009 613+3,1 5'15+3,5 51\21+3,10 51\21+3,20

Recent studies, such as [6] and [29], have widely adopted Mean Squared Error (MSE) as standard tools for
measuring the predictive accuracy of volatility models. When the actual volatility process cannot be directly
observed, a suitable exogenous variable serves as a true volatility 2. The MSE evaluates forecasting accuracy as
defined in Eq. (10):

MSE = ﬁ}:?’ﬁ‘(of - 62)2. (10)

The Diebold-Mariano (DM) test provides formal statistical comparisons between models [30], as shown in Eq.
(11):
d
DM = —— (11)

)
é =1
J9d Neest

where d; = L(e;;) — L(ey;) represents the loss differential between forecast errors e;; and e,; from models 1
and 2, d is the sample mean of d, and S is a consistent estimator of the asymptotic variance of d. A significant
DM statistic indicates a statistically significant difference in forecast accuracy between the two models.
2.4.2 VaR Forecasting and Evaluation

Among various risk indicators, VaR has become one of the most commonly used tools for measuring
market risk exposure. According to [31], VaR calculates the maximum expected loss over a set holding period
of tdays, given a confidence level of (1—a) %. The arlevel VaR calculation uses Eq. (12):

VaR,(t) = N,6;, (12)

where N, 1s the a~quantile of standard Normal distribution.

‘While statistical hypothesis-based approaches test whether VaR violations match the expected frequency,
they offer limited insight for model comparison. In contrast, loss-function-based evaluations—specifically
the Regulatory Quadratic Loss (RQL) and Failure Rate (FR)—examine both the frequency and severity of
violations, enabling regulators and risk managers to 1dentify models that minimize cumulative loss. This study
employs both RQL and FR to evaluate VaR forecasts:

a. LEq. (13) defines the RQL, see [32]:

_ (14 (VaR,—R.)? ifR, < VaR,, ‘
RQL = { 0 if R, = VaR,. (13)
A lower RQL value indicates a better-performing model that produces fewer or less severe losses beyond

the predicted threshold.

b. Eq. (14) defines the FR :
FR =31, I(R, < VaR), (14)

where /(*) is an indicator function. A well-calibrated model produces an FR close to the nominal
significance level a.

2.5 Research Gap and Contributions

Previous studies, such as [9], have demonstrated the potential of decomposing realized volatility into
continuous and jump components within GARCH-type frameworks. However, their analysis relied solely on 5-
minute RV and was limited to estimation via MLE. This leaves several critical gaps in understanding the model’s
performance under different data frequencies, estimation methods, and forecasting horizons. This study
addresses these limitations and makes the following contributions:
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I.  Multi-Frequency Realized Measures: We extend the evaluation of EGARCH-X and EGARCH-C]J
models by employing four distinct realized measures 1-minute, 5-minute, and 10-minute RV, along
with the RK. This allows us to systematically assess how sampling frequency and noise robustness affect
model fit and forecast accuracy, an aspect overlooked in prior work.

2. Bayesian Estimation Framework: We implement an efticient Bayesian MCMC estimation procedure
using the ARWM algorithm. This approach offers improved estimation efficiency and robustness for
complex, nonlinear volatility models compared to traditional MLE, providing more reliable parameter
estimates and uncertainty quantification.

3.  Comprehensive Multi-Horizon Forecast Evaluation: Moving beyond in-sample fit, we conduct a
thorough out-of-sample forecasting exercise across short- to long-term horizons (1, 5, 10, and 20 days).
The evaluation encompasses both volatility forecasts (using MSE and DM tests) and risk forecasts (VaR
using RQL and FR), offering a holistic view of model performance for both risk modeling and
regulatory applications.

These contributions collectively advance the methodological development of jump-enhanced volatility

models and provide empirical insights into their practical utility for financial forecasting and risk management in
a major equity market.

3. RESULT AND ANALYSIS
3.1 Convergence of the Estimator

A sensitivity analysis confirms the robustness of the Bayesian estimates to prior specification. Table 1 shows
that posterior estimates for the EGARCH-CJ] parameters remain stable across different prior distributions
(Normal, Beta, Uniform), with minimal changes in posterior means, standard deviations (in brackets), and log-
likelihoods (LLLs). This indicates that the data dominate the posterior, making the results insensitive to reasonable
choices of priors. Prior transformations (e.g., 0.5(6 + 1)~B(,)) were applied where needed to maintain
parameters within the empirical range of -1 to 1.

Table 1. Posterior estimates of the GARCH-CJ model (10-minute) for various priors

Prior
MO,1) MO0,10) B(5,6) B (3,4) U-1,1) [(-10,10)
0 (1) 0 (3.16) -0.09 (0.29) -0.14.(0.35) 0 (0.33) 0 (33.33)
Posterior

w 0.353 (0.073)  0.352 (0.084)  0.258 (0.054)  0.358 (0.091)  0.335 (0.102)  0.345 (0.071)
a 0.016 (0.045)  0.020 (0.041)  0.081 (0.028)  0.007 (0.086)  0.020 (0.045)  0.015 (0.044)
a, -0.193(0.026) -0.193(0.027) -0.207 (0.027) -0.205 (0.027) -0.192 (0.027) -0.195 (0.026)
B 0.634 (0.043)  0.633 (0.049)  0.612 (0.040)  0.610 (0.058)  0.645 (0.055)  0.633 (0.048)
y 0.573 (0.067)  0.576 (0.084)  0.555 (0.064)  0.590 (0.074)  0.553 (0.102)  0.570 (0.075)
y 0.132 (0.163)  0.131 (0.131)  0.285 (0.097)  0.199 (0.259)  0.135 (0.190)  0.155 (0.171)
LL -3104.85 -3105.38 -3106.84 -3106.59 -3105.26 -3104.85

For instance, Figure 1 displays the trace plots of the estimated values for the EGARCH-CJ model using 10-
minute RV data. Each Markov chain visually appears to have converged/stabilized, as its graph fluctuates around
the mean (red line). These diagnostics confirm that the estimation procedure generates stable parameter values

and that both the prior distribution and the data’s log-likelihood function are selected appropriately.
w IACT = 267 a, ,IACT=113 a, IACT=8

0.2

06l < -0.1
0.4
0 -0.2)
0.2
0 0.2 -0.3!

0 10,000 20,000 30,000 0 10,000 20,000 30,000 0 10,000 20,000 30,000

B ,IACT = 206 A L IACT =267 7 L IACT =143
0 10,000 20,000 30,000 10,000 20,000 30, 000 0 10,000 20,000 30,000

Figure 1. Trace plot of the estimated \'dlll(,b for the EGARCH-CJ model for 10- minute RV data
Convergence is assessed using the IACT and Effective Sample Size (ESS). The ESS, calculated as retained
draws divided by IACT, indicated the number of effectively independent samples. While conservative thresholds
(ESS > 200-400) are often recommended [26], [33], [34], our design produces an ESS of approximately 100
given the estimated IACT. This outcome meets a minimal benchmark but falls short of stricter targets, a noted
limitation for transparency.
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3.2 In sample Parameter Estimation and Model Diagnostics

The in-sample analysis uses the complete observation period from 5 January 2004 to 30 December 2011 for
model estimation and diagnostics. Due to space limitations, this study presents estimation results only for data
nvolving 10-minute RVs, as shown in Table 2. SD denotes standard deviation, and * indicates parameter
significance from a value of 0 based on a 95% Highest Posterior Density interval (see [24] for the estimation
algorithm). In the EGARCH-X specification, the exogenous realized measure contributes meaningfully to
volatility dynamics. In the EGARCH-CJ model, the continuous and jump components are both statistically
significant, indicating that each plays an important role in explaining conditional variance. The parameter
estimation results for all cases of realized measures indicate that the addition of exogenous variables does not
affect changes in the asymmetric parameter a,. However, the negligible impact of exogenous variables on
asymmetry parameter across all specifications contrasts with theories emphasizing the role of external shocks in
amplifying leverage effects (e.g., [5]). This divergence may reflect TOPIX’s unique response to crises or
limitations in the realized measures’ ability to capture asymmetric shock transmission.

Table 2. Parameter estimates for models applied to 10-minute RV data

.. Parameter
Statistics o o, 8 2 v
EGARCH

Mean -0.168* 0.236* -0.123* 0.955* - -
SD 0.023 0.030 0.016 0.008 - -

EGARCH-X
Mean 0.318* 0.022 -0.195* 0.628* 0.605* -
SD 0.091 0.050 0.026 0.062 0.111 -

EGARCH-CJ
Mean 0.352* 0.020 -0.193*  0.633" 0.576* 0.131*
SD 0.084 0.041 0.027 0.049 0.084 0.131
Note: Asterisk * represents significance from a value of ()

To select the model with the best data fit, this study uses four criteria: Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), Adjusted BIC (ABIC), and Consistent AIC (CAIC) (see [35] for the
formulas of these four criteria). The selection 1s based on criterion dominance because different criteria often
support other models. For each criterion, a smaller value indicates a better-fitting model. Table 3 presents the
criterion values for the EGARCH-X and EGARCH-CJ models across all realized measure cases. In all cases,
AIC selects the EGARCH-CJ model as the best model. However, based on the dominance of the four criteria,
the EGARCH-CJ model outperforms only for the 10-minute RV measure.

Table 3. Information criteria for EGARCH-X and EGARCH-C]J across realized measures

Model Criteria RV1 RV5 RV10 RK
EGARCH-X AIC 6258.1 6226.8 6227.7 6220.2
ABIC 6270.2 6238.8 6239.8 6232.3
BIC 6286.0 6254.7 6255.6 6248.1
CAIC 6291.0 6259.7 6260.6 6253.1
EGARCH-C] AIC 6254.0 6224.9 6221.9 6219.7
ABIC 6274.4 6239.3 6236.4 6234.1
BIC 6293.5 6258.4 6255.4 6253.1
CAIC 6299.5 6264.4 6261.4 6259.1

Note: The bold values indicate the minimum values of the error metric

The EGARCH-CJ model provides superior in-sample fit over EGARCH-X when using 10-minute RV, as
indicated by lower AIC, BIC, ABIC, and CAIC values. This aligns with evidence that decomposing volatility into
Jjump and continuous components improves model fit [13], [36]. The finding that the 10-minute RV outperforms
S-minute RV for Japan’s TOPIX suggests market-specific optimal sampling, where this coarser interval may better
separate persistent volatility from jumps while reducing microstructure noise [37], highlighting the noise-
resolution trade-off in realized measure selection.

3.3 Evaluation of Volatility Forecasting

Table 4 summarizes the out-of-sample volatility forecasting evaluation across all models. For short-term
forecasts (A= 1), the standard EGARCH model without exogenous inputs gives the lowest or similar MSE values
across most realized measures. This suggests that recent historical volatility adequately captures short-term market
dynamics without needing additional realized variables. In contrast, for medium- to long-term horizons (/1 = 5,
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10, and 20), the EGARCH-CJ model typically produces smaller MSE values than both the EGARCH and
EGARCH-X models. This benefit is clear across almost all realized measures.

Using the simpler model as the benchmark, the DM tests in Table 5 show that for short-term forecasts (/2
= 1), the statistics are negative or insignificant, confirming that the standard EGARCH benchmark is superior.
However, for medium- and long-term horizons, the tests reveal a consistent and significant superiority of the
EGARCH-C]J model, as indicated by large positive £statistics (e.g., 7.91, 16.52, 17.08 for 1-min RV), confirming
that the EGARCH-CJ model’s forecasting advantage 1s not only empirical but also statistically robust. More
importantly, the magnitude and consistency of these positive statistics across multiple realized measures and
horizons demonstrate that the improvement 1s systematic rather than sample-specific, providing strong formal
evidence that incorporating continuous and jump components materially enhances multi-step volatility
forecasting accuracy.

Table 4. Out-of-sample volatility forecasting evaluated by the MSE measure

X Model h=1 h=5 h=10 h=20
I-min RV EGARCH 4.38 3.79 2.86 2.31
EGARCH-X 6.43 2.03 1.16 2.23
EGARCH-C] 6.81 1.83 1.98 2.04
5-min RV EGARCH 4.18 4.21 3.34 2.87
EGARCH-X 4.74 2.68 2.83 2.88
EGARCH-C] 4.18 2.58 2.74 2.81
10-min RV EGARCH 5.42 6.48 5.64 5.28
EGARCH-X 6.06 5.07 5.25 5.31
EGARCH-C] 6.34 4.99 5.17 5.23
RK EGARCH 4.67 5.09 4.23 3.81
EGARCH-X 4.96 3.61 3.77 3.81
EGARCH-C] 7.40 3.37 3.49 3.52
RV® EGARCH 7.69 5.23 3.91 2.99
EGARCH-X 6.86 3.29 2.83 2.83
EGARCH-CJ] 4.09 2.56 2.73 2.79

Note: The bold values indicate the minimum values of the error metric

Table 5. Out-of-sample evaluation of the volatility forecasts: DM test

Benchmark Alternative EGARCH Model
X Model h=1 h=5 h=10 h=20

X dJ X q X g X d

1-min EGARCH -1.07 -1.06 1.40 1.40 1.49 1.57 1.13 1.89
RV EGARCH-X -1.06 791~ 16.52* 17.08*
S-min EGARCH -1.01 -0.98 1.34 1.34 1.33 1.34 0.70 0.83
RV EGARCH-X 1.07 3.83* 8.80* 9.93*
10-min EGARCH -1.05 -1.02 1.31 1.32 1.25 1.30 0.60 0.84
RV EGARCH-X 1.25 2.35* 7.69* 8.02*
RK EGARCH -1.00 -1.06 1.82 1.7 1.80 1.49 0.76 1.86
EGARCH-X -1.06 8.97* 9.45* 9.81°*

RV® EGARCH -1.06 -1.03 1.41 1.37 1.41 1.35 0.89 0.57
EGARCH-X -1.01 -3.177 -14.4~ -17.27

Note: #statistics for volatility forecasts; | ¢ > 1.96 indicates 5% significance, and * denotes significance

A comparison across different models and exogenous data frequencies also indicates that the best daily
volatility forecasts come from the standard EGARCH model using the 5-minute RV measure. Meanwhile, the
most accurate forecasts for longer horizons come from the EGARCH-CJ model, which utilizes the 1-minute RV
measure. This indicates that high-frequency realized measures enhance the model’s responsiveness in multi-step
forecasting. In contrast, moderate-frequency realized inputs, such as the 5-minute RV, provide greater stability
and valuable insights for short-term daily volatility dynamics.

The degradation of 1-minute RV in short-term forecasts, contrasting with its long-term improvement, signals
microstructure noise contamination from effects like bid-ask bounce [38]. This noise fades over longer horizons
as persistent volatility dominates. Pre-averaging RV"—applied here via the 5-minute RV measure—mitigates this
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by smoothing high-frequency data [38]. Table 4 shows RV* yields more stable and accurate forecasts, especially
at 2= 1, confirming that noise-robust techniques balance high-frequency detail with noise reduction.

The findings in this study match those in [9]. They showed that adding jump components to realized-based
volatility models significantly improves forecasting accuracy, especially over medium-term periods. Similar to the
results in [9], the EGARCH-CJ model in this study does well by clearly modeling the continuous and jump parts.
This captures both smooth market trends and sudden changes from extreme events. This consistency, now
reinforced by rigorous DM testing, supports the idea that considering breaks in volatility processes strengthens
the reliability and consistency of multi-step forecasts, particularly when using high-frequency realized measures.

In summary, the EGARCH model 1s best for short-term forecasts, especially when using moderate-
frequency realized inputs like the 5-minute RV. The EGARCH-C]J specification gives the most accurate volatility
predictions for medium and longer terms, particularly when backed by high-frequency (I-minute) realized
measures—a conclusion firmly supported by both lower MSE values and statistically significant DM test results.
This result shows a trade-off between immediate forecast accuracy and long-term stability, underscoring that
including continuous and jump components is key to improving predictive performance during persistent
volatility patterns.

3.4 Evaluation of VaR Forecasting

Based on the results in Table 6, the EGARCH-CJ model usually shows lower RQL values for realized
volatility measures using return sampling intervals of 1-minute, 5-minutes, and 10-minutes, especially at short and
long horizons (4= 1, 10, and 20). This means that modeling continuous and jump components helps the model
better capture sudden changes in volatility in the short term and maintain forecasting accuracy over longer
periods. However, when using the RK measure, the standard EGARCH model shows the lowest RQL values,
particularly at longer horizons (A = 10 and 20). This suggests that the RK estimator’s inherent strength against
market microstructure noise and its ability to handle discontinuities reduce the benefits of modeling jumps
explicitly. Therefore, while the EGARCH-CJ model is highly effective for realized measures affected by
microstructure noise, the EGARCH model performs better with smoother, noise-resistant inputs, such as RK.

Table 6. Out-of-sample VaR forecasting evaluated by RQL measure with a = 5%
X Model h=1 h=5 h=10 h=20

1-min RV EGARCH 30.55 70.85 28.05 62.56
EGARCH-X 29.87 39.82 30.16 70.08

EGARCH-C] 26.05 37.83 29.50 62.09

5-min RV EGARCH 30.51 70.72 27.58 62.51
EGARCH-X 29.18 59.09 31.69 71.05

EGARCH-C] 28.02 60.46 30.34 70.09

10-min RV EGARCH 30.47 70.53 28.02 62.50
EGARCH-X 27.94 56.95 31.67 70.83

EGARCH-C] 27.01 60.96 30.79 70.29

RK EGARCH 30.54 70.82 28.04 62.53
EGARCH-X 25.94 54.92 31.68 70.99

EGARCH-C] 25.51 53.50 29.22 65.21

RV® EGARCH 30.60 71.10 28.08 62.65
EGARCH-X 29.52 61.52 29.07 58.32

EGARCH-C]J 25.20 53.33 31.54 70.45

Note: The bold values indicate the minimum values of the loss metric

Across the realized measures, the EGARCH-CJ] model with the RK input delivers the strongest overall
forecasting performance at 4= 1. At longer horizons (4 =5 and A = 20), the EGARCH-CJ model using the 1-
minute RV produces the best results. At the intermediate horizon (4 = 10), the standard EGARCH model
combined with the RK input yields the lowest RQL value. These findings indicate that high-frequency realized
measures enhance EGARCH-CJ’s responsiveness to short- and long-horizon risk, whereas the RK measure
complements the simpler EGARCH framework for medium-term forecasts where volatility dynamics are
smoother and less influenced by sudden jumps.

Table 7 presents the out-of-sample VaR forecasting results assessed using the FR criterion at the 5%
confidence level. The FR measures how well the proportion of VaR violations matches the nominal rate. Values
nearest to 5% indicate the best calibration performance. Across all forecast horizons, the standard EGARCH
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model consistently achieves FR values closest to the nominal 5%. This suggests strong calibration and reliability.
Specifically, for the 10-minute RV and RK, EGARCH demonstrates the best alignment at 2= 1, 5, and 20, with
FR values ranging from 4.77% to 5.82%. This shows the model’s stability in maintaining a consistent exceedance
frequency across both short and long horizons.

Failure Rate (FR) results show varying optimal calibration across models and realized measures. For
mstance, Table 7 indicates that EGARCH and EGARCH-X tie for the 1-minute RV at /2 = 1, while EGARCH
performs best at 1= 5 and EGARCH-X leads at 2= 10 and A= 20. With 5-minute RV, EGARCH-X is best at A
= 1, and EGARCH-C]J provides the best alignment at /2 = 5, 10, 20. Overall, mid-frequency measures (e.g., 5-
minute RV) offer the most balanced calibration, whereas high-frequency data (I-minute RV) combined with
exogenous terms benefits longer horizons.

Table 7. Out-of-sample VaR forecasting evaluated by FR measure

X Model h=1 h=5 h=10 h=20
I-min RV EGARCH 4.77% 4.919% 4.50% 5.32%

EGARCH-X 4.77% 4.77% 4.919% 4.91%

EGARCH-C] 6.149% 5.32% 5.59% 5.46%

5-min RV EGARCH 4.77% 4.91% 4.64% 5.32%
EGARCH-X 5.18% 4.37% 4.64% 4.649%

EGARCH-C]J 5.45% 5.05% 4.91% 4.91%

10-min RV EGARCH 4.77% 4.91% 4.509% 5.32%
EGARCH-X 5.59% 4.23% 4.64% 4.649%

EGARCH-C]J 5.87% 4.77% 4.64% 4.64%

RK EGARCH 4.77% 4.91% 4.50% 5.32%
EGARCH-X 6.00% 4.77% 4.64% 4.64%

EGARCH-C] 6.149% 5.46% 5.59% 5.59%

RV® EGARCH 4.78% 4.92% 4.51% 5.33%
EGARCH-X 4.92% 4.64% 4.92% 4.92%

EGARCH-C] 6.429% 4.929% 4.649% 4.78%

Note: The bold values indicate the closest values to the 5% VaR-level

As shown i Table 6, no single model universally dominates VaR forecasting. The standard EGARCH
model with RK often excels at short horizons (4 = 1) and occasionally at longer ones, while the EGARCH-CJ
model generally provides superior tail-risk forecasts (lower RQL) at medium and long horizons (4 =5, 10, 20),
especially with 1-minute RV. This horizon-dependent performance underscores that the advantage of explicit
jump modeling 1s contingent on both the forecast horizon and the chosen realized measure.
Therefore, EGARCH-C]J is most valuable for medium- to long-term risk forecasting in jump-prone settings,
whereas simpler EGARCH specifications paired with robust measures like RK remain competitive for short-
term and calibration-focused applications.

These forecasting results carry direct relevance for regulatory risk management. Under frameworks such as
Basel III, accurate VaR estimation 1s critical for determining capital requirements and passing backtesting
standards. The observed superiority of the EGARCH-CJ model in reducing tail losses (lower RQL) suggests its
potential for improving economic capital allocation, while the consistent calibration of the standard EGARCH
model—particularly with RK and mid-frequency RV—supports its reliability in meeting strict regulatory coverage
thresholds. Further regulatory implications of these findings are elaborated in the Discussion.

Optimal model selection depends on forecast horizon, performance metric, and realized measure. Table
8 summarizes the best model for each key objective—volatility accuracy (MSE), tail-risk (RQL), and regulatory
calibration (5% FR)—across short, medium, and long horizons, highlighting the horizon-dependent trade-off
between EGARCH and EGARCH-(].

Table 8. Summary of optimal model selection by forecast horizon

q o Best for
. Best for DM test Best for tail risk ..
Horizon volatility sionificant? [RQL) r?‘?;{,laFt%y Key insight
Short EGARCH No EGARCH-CJ EGARCH EGARCH excels for short-
(h=1) (5-min RV) (I-min RV/RK) (10-min term volatility; EGARCH-C]J

RV/RK) better for immediate tail risk
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Medium EGARCH-CJ Yes EGARCH-CJ EGARCH EGARCH-CJ dominates
(h=5,10) (all RVs) (most RVs) (RK) forecasting
Long EGARCH-CJ Yes EGARCH-CJ EGARCH EGARCH-(C]J best for long-
(h=20) (all RVs) (I-min RV) or (RK) term predictions, but
EGARCH (RK) EGARCH with RK remains

robust for regulatory VaR

3.5 Discussion

The empirical results reveal a nuanced landscape where model superiority 1s conditional on forecast
horizon, the choice of realized measure, and the specific risk management objective. This discussion synthesizes
these findings into four key thematic insights, interprets their implications, and highlights the study’s contributions
relative to the existing literature.

3.5.1 Horizon-Dependent Model Performance

The empirical results demonstrate that the performance of the EGARCH-CJ model is conditionally
superior, with its advantages being particularly dependent on the forecast horizon. The standard EGARCH
model consistently offers the most accurate short-term volatility forecasts and the most reliable VaR calibration
(closest to the 5% failure rate). In contrast, the EGARCH-CJ model provides the best volatility forecasts and
lower tail losses (RQL) at medium- and long-term horizons. The Diebold-Mariano test results in Table 5
statistically validate this pattern, showing the EGARCH-CJ model’s significant superiority at medium and long
horizons while confirming no significant advantage at the one-day horizon.

3.5.2 The Critical Role of Realized Measures and Sampling Frequency

Model performance is critically moderated by the choice and intraday frequency of the realized volatility
measure. The observed degradation of 1-minute RV in short-term forecasts contrasting with its long-horizon
benefits signals contamination by microstructure noise such as bid-ask bounce. This noise diminishes over longer
horizons where persistent volatility dominates. Robust estimators like the RK or coarser sampling (e.g., 10-minute
RV) mitigate this noise and often enable the standard EGARCH model to perform competitively, particularly
for VaR calibration where stable mputs are valued. This evidence underscores a market-specific noise-resolution
trade-off, where the optimal sampling interval (10-minute for TOPIX) balances high-frequency information with
noise resilience. This granular analysis across multiple frequencies extends prior work that relied on a single
sampling scheme.

3.5.3 Implications for Risk Management and Basel Regulation

These findings carry direct consequences for financial risk management, particularly within post-crisis
regulatory frameworks like Basel III that emphasize accurate VaR estimation and backtesting. The EGARCH-
CJ model’s strength in reducing tail losses (lower RQIL) makes it valuable for internal economic capital allocation
and stress testing, where capturing extreme movements is paramount. However, the standard EGARCH model,
especially when paired with robust measures like RK, provides more consistent calibration (FR closest to the 5%
nominal level), a critical feature for regulatory compliance and capital reporting. This divergence suggests
mnstitutions might strategically employ a dual-model approach: EGARCH-C]J for internal risk modeling and the
standard EGARCH for regulatory submissions, thereby addressing both economic and regulatory objectives
effectively.
3.5.4Limitations and Avenues for Future Research

From a methodological standpoint, stable estimation results and low IACT values confirm the robustness
of the ARWM algorithm, consistent with previous findings [23]. The minimal impact of exogenous shocks on
the asymmetry parameter suggests that market-wide dynamics during stressful periods may overshadow leverage
effects captured by external variables. These models exhibit limitations in calmer market environments where
Jjump components contribute little additional information, and performance can weaken when volatility dynamics
are dominated by smooth, low-amplitude fluctuations. Future research should extend this framework to diverse
markets and investigate macroeconomic drivers of jump components [39].

3.5.5 Alignment with Recent Advances

These findings align with recent advances in volatility forecasting. Studies have shown that incorporating
realized volatility into CAViaR-type models improves VaR forecasting [40], and that decomposing continuous
and jump components enhances multi-step forecast performance [39]. Our DM test results provide formal
statistical confirmation of this enhancement for EGARCH-type models. Mid-frequency realized measures enable
stable calibration [41], and realized-based GARCH frameworks remain competitive when data frequency and
horizon align well [6].

The evidence indicates a clear trade-off: EGARCH-CJ provides better forecasting for medium-to-long
horizons and jump-driven markets, whereas EGARCH remains superior for short-term forecasting and
regulatory calibration. Model selection should be guided by specific risk management objectives—whether
prioritizing tail-risk reduction, nominal coverage accuracy, or leveraging robust realized measures.
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4. CONCLUSION

This study evaluates the performance of EGARCH-X and EGARCH-CJ models in forecasting volatility for
the Japanese TOPIX index using multiple realized measures within a Bayesian MCMC framework. The findings
reveal a clear, horizon-dependent trade-off: while the standard EGARCH model remains optimal for short-term
forecasting and regulatory VaR calibration, the EGARCH-CJ model provides statistically superior accuracy for
medium- and long-term horizons by explicitly capturing jump-driven risk. The choice of realized measure—
particularly the trade-off between high-frequency information and microstructure noise—critically influences
model performance.

Practically, the results support a dual-model approach in financial risk management: EGARCH-C]J 1s
recommended for internal capital allocation and stress testing where tail-risk accuracy is paramount, whereas the
standard EGARCH model, especially with robust measures like the RK, 1s better suited for regulatory reporting
under frameworks such as Basel III. Future research should extend this framework to a Realized EGARCH-CJ
specification, validate findings across diverse markets and asset classes, and investigate the macroeconomic drivers
of jump components to enhance model interpretability and forecasting robustness.
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