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1. INTRODUCTION

Disturbances in dynamic systems can significantly degrade control performance if they are not properly
addressed during the design stage. In many industrial and aerospace applications—such as flight control in modern
aircraft, robotic manipulation, and automotive systems—accurate disturbance estimation plays a crucial role in
ensuring robust and stable system behavior [1]. Since disturbances are typically unknown and cannot be measured
directly, they are often modeled as extended state variables within the system. Under this assumption—and in the
presence of measurement noise—state estimation methods, particularly the Kalman Filter (KF), are widely used
to estimate both the system states and disturbances effectively [2], [3].

Another important factor that must be considered in estimation problems is parameter uncertainty. This
type of uncertainty arises when the system equations are known, but some parameters are either uncertain or
vary over the system’s operational lifetime. Such variations frequently occur when models are derived from
experimental data using system identification techniques. In these cases, the resulting model is often represented
by a transfer function whose parameters vary within certain ranges [4].

These parameter variations introduce significant challenges in designing estimators capable of accurately
estimating both system states and disturbances. To achieve robust performance—particularly for disturbance
compensation—the estimator must be designed to perform reliably under worst-case conditions. One effective
way to address this issue is to represent the uncertain parameters as random variables with known statistical
characteristics, such as probability distributions [5]. As modern autonomous, acrospace, and other safety-critical
systems increasingly operate in uncertain, noisy, and rapidly varying environments, the need for estimation
frameworks that can simultaneously handle probabilistic parameter variations and disturbance dynamics has
become more urgent. Conventional deterministic filtering approaches struggle in such conditions, motivating the
development of more resilient and uncertainty-aware methods.

Polynomial Chaos Expansion (PCE) provides an efficient framework for representing uncertain parameters
and variables as polynomial functions that satisfy orthogonality properties [6], [7]. Compared to Monte Carlo
(MC) methods, PCE significantly reduces computational effort while maintaining high accuracy, as demonstrated
in various studies [7], [8], [9]. The presence of random parameters in dynamical systems leads to stochastic
trajectories, which complicates estimator design. To address this, the stochastic system can be transformed into
an equivalent deterministic form using the Intrusive Spectral Projection (ISP) approach [10], [11], [12]. Although
the resulting system has higher dimensionality, the ISP method offers high precision for linear systems and
facilitates the design of estimation algorithms, since the transformed equations retain a structure similar to the
original system.

1.1 Related Work

In previous studies, parameter uncertainty has been addressed either by augmenting uncertain parameters
mto the state vector [13] or by applying stochastic modeling techniques such as Polynomial Chaos Expansion
(PCE) to characterize probabilistic variations [11], [12], [14]. Meanwhile, disturbance handling in control systems
has typically relied on Disturbance Observers (DO) and Extended State Observers (ESO), which have proven
effective for deterministic disturbance profiles [15], [16], [17], [18]. However, these observer-based approaches
are generally not designed to handle probabilistic parameter variations, creating a gap when both effects occur
simultaneously. To overcome this limitation, stochastic modeling frameworks—particularly PCE—have been
mtroduced as tools capable of representing uncertainty in a structured manner.

Despite these advances, many existing works treat disturbances and parameter uncertainty separately.
Sensor noise 1s also frequently omitted [15], [16], [17], [19] or, when included, it 1s only incorporated into the
state estimation process without modeling the disturbance itself as a state to be estimated in real time [20], [21],
[22], [23], [24], [25]. As a result, prior studies often focus on either uncertainty propagation or state estimation
alone, without addressing the combined challenge of estimating disturbances in systems influenced by
probabilistic parameter variations and measurement noise.

Collectively, the literature indicates a lack of esimation frameworks that simultaneously model probabilistic
parameters, disturbances, and measurement noise within a unified formulation. To further clarify this gap, it is
mmportant to highlight the limitations of prior approaches. Most prior studies focused on either parameter
uncertainty or disturbance estimation, but not on their combined effects within a single estimation framework,
and many PCE-based KF methods primarily address state estimation or uncertainty propagation using non-
mtrusive or ensemble-based formulations.

In contrast, the present work adopts an intrusive polynomial chaos formulation to derive a deterministic
high-dimensional surrogate system in which disturbances are explicitly modeled as extended state variables. This
structure enables the direct application of KF with measurement noise, together with explicit observability
assumptions on the projected system. These distinctions clarify the novelty of the proposed IPC-KF relative to
prior PCE or PC-KF formulations.
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1.2 Contribution
The main contributions of this paper are summarized as follows.

e Formulating a stochastic system and its corresponding measurement matrix into a deterministic
representation using the ISP approach.

e Developing an implementation of the IPC-KF for estimating disturbances in systems with probabilistic
parameters.

e  Conducting a comparative analysis with the nominal KF to evaluate the effectiveness and robustness of
the proposed method under probabilistic parameters and measurement noise. Throughout this paper,
the term nominal KF denotes a Kalman filter constructed using fixed model parameters equal to their
mean values, which are kept constant for all realizations in the numerical experiments.

In addition to these contributions, the present study is guided by the following research questions:
e whether incorporating probabilistic parameter information through an intrusive polynomial chaos
formulation affects the accuracy and variance of disturbance estimation compared to the nominal KF;

o  whether the IPC-KF provides improved robustness or comparable performance under measurement
noise and parameter uncertainty; and

e  whether modeling disturbances as extended state variables within a stochastic-Galerkin framework offers
additional interpretability regarding the impact of parameter uncertainty on estimation performance.

These questions aim to clarify the practical implications and limitations of IPC-KF relative to the nominal
KF, rather than to assume inherent performance superiority.

1.3 Structure of This Paper

This paper 1s organized as follows. Section II presents the design of the proposed IPC-KF method,
beginning with the fundamental theory of PCE and followed by the mathematical modeling in terms of the state-
space representation and measurement matrix. Section III describes the case studies, which include the Spring-
Mass-Damper (SMD) system and the F-16 aircraft model, along with the simulation setup and discussion of the
obtained results. Finally, Section IV provides the conclusions and outlines potential directions for future research.

2. RESEARCH METHOD

This research was carried out in two main stages. First, the development stage mvolved establishing the
fundamental theory of PCE, system modeling, and the design of the proposed method. In the second stage, the
proposed method was evaluated through numerical case studies, followed by a simulation-based analysis of the
results to assess its performance and effectiveness.

2.1 Polynomial Chaos Expansion

The PCE was first introduced by Norbert Wiener to approximate a Gaussian random variable using
Hermite polynomials [26]. The core 1dea behind PCE 1s to employ an infinite series of orthogonal polynomials.
In 1947, the convergence of the Wiener-Hermite polynomial series in the £, norm was established in [27].

To facilitate practical implementation, the infinite series of polynomial expansions is truncated as follows

[12]:
N
M@ = @) (1)
. . . . n=0 ~ . ~
In this expression, M (A) is a random variable defined as a function of the random event A, &, are
the polynomial coefficients, and 1 are the polynomial basis functions. The series 1s truncated after N + 1
terms, where the number of terms is determined by

n, +ny)!
N+1—(p' R
np! ny!
with n,, representing the degree of the polynomial and n, is the number of random variables [11].

The choice of polynomial basis in PCE follows the Askey scheme [28], which encompasses a set of
orthogonal basis functions in the Hilbert space defined by the support of the random variables. As such, these
basis functions satisfy
1 ,m=n

W@, Yn (D)) = PEO) S, Smn ={y " 2 1 @

where

(W (8), Y (D)) = [, Y1 (D)2 (D)f (4) dA = E[h1 (A2 (4)] 3)
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denotes the inner product with respect to the weight f(4) (Probability Density Function (PDF) of A) and over the
domain D, (support of A). Using the Galerkin projection method [29], the coefficient @,, is computed by

. _EM@y, @)
" T EMR @

The mean and variance of M (A) can be efficiently approximated from the truncated expansion in Eq. (1)

[30]:

N
E[M(A)] =@ and Var[M(A)] = Z a2 E[2(4)]
n=1
2.2 Surrogate Augmented State Space
Consider a discrete-time stochastic linear system characterized by probabilistic ime-invariant parameters
and unknown disturbances. The system is defined by:

x(k +1,4) = A;(A)x(k,A) + B,d(k), 4)

where x(k,A) € R? is the state vector at time k which is a function of a random variable A and d(k) €
R? is the unknown disturbance vector at time k, respectively. Here, the state matrix A4 (A) depends on a single
random variable A, while B 1s the disturbance matrix. Since A4, incorporates randomness, the evolution of
the state vector becomes stochastic.

We assume that the disturbance vector remains constant over time and treat it as part of the state vector,
the augmented system of Eq. (4) can be rewritten in state space form as:

x(k +1, A)] _ [Ad(A) ?a] _ [x(k, A)]
p

d(k +1) d(k) ®)

0gxp

where 04y, is a zero matrix with size ¢ X p and I is the g X q identity matrix.

The representation in Eq. () allows the system to be expressed as an augmented linear system:
d(k+1,4) = A(Q)p(k, D), (6)

where ¢ = [xT,dT]T € RP*9 is the augmented state vector and A(A) represents the new state matrix
of the augmented system. Since A(A) depends on random variables, the evolution of the augmented state
vector in Eq. (6) remains stochastic, similar to the original system in Eq. (4).

Theorem 2.2. The surrogate augmented state space representation of system in Eq. (6) obtained using the IPC
approach can be written as the deterministic system

D(k+1) =AP(k) @)
where state vector 1s defined as ® = [(}I,, ~;+q]T € RP+HOW+D i each block

$i(k) = [Bio (), -, Gin(], i = 1,.p+4q

The system matrix A € RPTOW+DX@+OWN+D) j¢ oiven by
A Ay
a=| : :
Ap+p1r " Ap+o+a)
where each block A;; € RWVADXN+1) j¢ given by

N
A = § Aijn Pn
n=0
where

Pn =

Ynoo ° VYano l

Ynon " Vann

Proof. Assume that ¢p(k, A), A(A) € L,, so that all expectations used in the projection are finite. The random
vartable A is assumed to follow a distribution matched to the corresponding Askey polynomial basis
{,,(A)}N_, which satisfies the orthogonality property in Eq. (2). We further assume that A(A) is Lipschitz-
continuous in A, and that A has either bounded support or sub-Gaussian tails. These assumptions guarantee
integrability and justify the interchange of expectation, multiplication, and the discrete-time update operator
in the projection steps that follow.
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The construction of the augmented state space via an intrusive approach based on PCE can be
outlined by defining each augmented state ¢; € ¢ and state matrix A;; € A, using Eq. (1) as follows.

Bk, 2) = )" Ba(0n (4) (®)
Ay (@) = " Ay () 9

Substitute Eqs. (8) and

—~

9) into Eq. (6) to obtain

=

pt4d N N
Fuale+ D) = > > Aiyy 3 m (KA (4) (10)
j=1

l =0 m=0

1l
o

Multiply both side by ,, (A),n = 0,-:-, N, and take the expectation with A, Eq. (10) can be simplified to

ptq N N
Z Buale + DE @ @] = ) > Z Ayt Bim (OB (AP (A (A)]
j=11=0m=
For readabiht\ we omit the explicit dependeme on A in lhe basis functions, i.e. P, (4) is written simply as ,,.
Using the orthogonality property in Eq. (2), E[y,(4)y,,(4)] = E[2Z] and defining the triple-product tensor
[lpl(A)l)bm (A)lpn (A)] [lpllpmlpn]’ we ha\e
ptq N N
Finlle + DERE = D" > " Ay Gm (OB b (an

Divide Eq. (11) by E[?2] to yield

(ﬁi,n (k + 1)

(12)

E
-Q.:EN,_\
]

> I
= iDM=
e

s

3

—

)

=

<

S

3

=

[
1=
=2
>

s

3

3

E

=

E

In the intrusive polynomial chaos framework, the products of polynomial expansions lead to triple products of
basis functions. These interactions are compactly represented by the triple-product coefficients, where Y, =

E[Y, Y ¥, l/E[W2]. Form = 0,1, -, N, Eq. (12) can be written as:

ey $10(k)
- ~ b, (k
¢i,n(k + 1) = Z ZAij,l[VZOn Yiun len] d)]'l:( )
j=1 1=0 -
] Fin (k)
Define ¢;(k) = [d’;i,o k), ..., (;l;i_N (k)]T,i = 1,..,p + g, we obtain
p+q N Yoo Vuvo p+q N
Gl =D > Ayy| P l $) =) ZAU 00 (13)
j=11=0 Yion j=11=

where

P, =

Yioo Vuvol

Yion ** Yinw

To obtain a compact deterministic state-space representation, the polynomial-mode coupling coefficients are
. ~ ~ T . S .

assembled into a vector. Let @ = [¢I, e ¢£+q] , then Eq. (13) becomes the deterministic state-space equation

&k + 1) = AD(k),

where

A Aigeg
A= : :
‘A(p+q)1 "q(p+q)(p+q)
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with

N
=0

Under the stated regularity assumptions, all projection operations above are valid, and the deterministic surrogate
model follows directly. Therefore, the proof 1s complete.

2.3 Measurement Matrix

The use of an ISP approach to propagate the uncertainty A transforms the system into a higher-dimensional
deterministic form, represented by the surrogate state vector @, which contains the PCE coefficients.
Consequently, the measurement model must be adapted to align with this surrogate state representation.

Assumption 2.4. For the theoretical derivation and estimator design, the process dynamics are assumed to be
noise-free, i.e., w(k) = 0. This assumption is used exclusively in all projection arguments and proofs presented
in this section. However, the measurement data are considered to be corrupted by additive Gaussian white noise
with zero mean and covariance R, denoted as v(k) ~ N (0, R).

In practice, a small process noise is introduced only for numerical stability of the KF and IPC-KF, and does not
alter the theoretical formulation derived under Assumption 2.4.

Theorem 2.5. The discrete-time measurement model due to probabilistic parameters is given as follows.
z(k,A) = Cp(k, D), (14)

where z € RP i1s the measurement vector and C 1s the measurement matrix under disturbance measurement not
available. Due to the surrogate state representation @ (k) of the intrusive PCE method, the measurement
equation becomes

Z(k) = c®(k), (15)
where Z = [Z], ---fi;]T € RP+*OND - with each block defined by Z;(k) = [Z;0, (k), .., Z;n(k)]T, Vi =
1,...,pand € = € Q Iy, with Iy, is the identity matrix.

Proof. Define ¢;; € € and implement each state variable in PCE term given in Eq. (8) as well as a
measurement variable while ignoring A for simplification, for i = 1, -+, p we obtain

i Zim (K Pm = pz(f Cij i B 1 (K)o, (16)
m=0 j=1 m=0

Multiply both sides of Eq. (16) with {,,},,2% and take the expectation, to yield

i Zim O E[Ymin] = pz(:l i €1 B i (K)E[n 1]
m=0 j=1 m=0

Then apply orthogonal property to obtain

ptq N
Zn(OB[WE] = D ey m(OE[u7] (a7
j=1 m=0
Divide Eq. (17) by E[12], we simplify Eq. (16) to
p+tq N
Zin(k) = Z Z ¢ijP; m(k) (18)
j=1 m=0

Since Eq. (18) is equivalent to Eq. (15), this completes the proof.

Remark 2.6. The measurement variable must be extended in terms of the PCE coefficients. If the measurement
dimension were kept identical to that of the original system, the resulting surrogate system would not satisfy the
observability condition. Consequently, the disturbance estimate would not be guaranteed to converge to the true
disturbance.
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2.4 Intrusive Polynomial Chaos-based Kalman Filter

The IPC-KF i1s introduced to estimate disturbances under probabilistic system parameters. Its design 1s
based on the surrogate dynamic system. To enable the estimation of disturbances modeled as state vectors, the
observability condition in this framework is ensured by Lemma 2.7.

Lemma 2.7. (Sufficient Observability Condition) Suppose the parameter-dependent pair (A(A), €) is uniformly
observable for all A in the support of the random parameter. Then the surrogate pair (A, €) obtained from Egs.
(7) and (15) is observable for any truncation order N, provided the triple-product tensor constructed from the
basis has full row rank.

Lemma 2.7 is motivated by the fact that observability of the nominal dynamics, associated with the constant
polynomial chaos mode, is preserved under the Galerkin projection. The coupling induced by the triple-product
tensor transfers this observability to higher-order modes, provided the tensor has full row rank, yielding
observability of the augmented surrogate system.

Assumption 2.8. Consider the discrete-time surrogate system in Eqs. (7) and (14). The system 1s assumed to be
observable, with the observability matrix defined as

0 =[CCACA? .. CAPTON+D-1T,
This implies that the rank of the observability matrix is

The IPC-KF algorithm 1s built in a way similar to the nominal KF, but it operates in a higher-dimensional
space than the original system. Prior to running the IPC-KF, the polynomial degree n,
surrogate convergence tests. The process noise covariance is set to @ > 0 for numerical robustness, while the
measurement noise covariance R is determined from empirical sensor noise statistics. The initial PCE coefficient
vector  ®(0]0) = ¢p(0) @ ey,1, eyyq1 =[10--0] and the initial covariance P(0]0) =

T
diag (107%,-++,1071) @ Iy, is chosen as a diagonal matrix encoding prior uncertainty. The IPC-KF

M
procedure, \Iif'hcilch 1s derived from the surrogate system, can be summarized in Algorithm 1.
Algorithm 1 IPC-KF for disturbance estimation
Input: Measurement 3;(k),i = 1,...,pand k =0, ..., Niter, degree of polynomial n,, noise covariance
matrices @ and R, initial condition ¢»(0), sampling time Ty, and time duration for simulation t¢.
1. Define PDFs of uncertain parameters A.

1s selected based on

2. Form augmented state including disturbance

3. Construct PCE basis 1 and expand system matrices (A(A), C).
4

5

Apply Galerkin projection to obtain surrogate system (A, C).

Initialization:
"15(0|0) = {l\)o
P(0]0) = P,

Setk « 0

fork « 1:Nitpr = tT—fdo
Time update:
®klk—1)=AP (k—1lk—1)
Pklk —1) = AP(k — 1|k — DAT +Q
Measurement update:
K(k) = P(klk — 1)ET(€P(klk — 1)€T + R)?!
®(klk) = ®(klk — 1) + K(k) (Z(k) — B (k|k — 1))
P(klk) = (I rqyven — KGOC)P(klk — 1)
end
Result: ¢, (klk), i=(@+D,...(p+q)

Remark 2.9. Even though noise-free for the process dynamics according to Assumption 2.4, the noise covariance
matrix is defined by Q = Q ® I, - In practical implementations, a small process-noise covariance Q > 0
may be introduced for numerical stability of the discrete-time estimator, but this does not affect the analytical
results or the polynomial chaos projection. The initial state covariance 1s chosen to be diagonal, reflecting an
uninformative prior assumption with no prescribed cross-correlation among the augmented states.

Uncertainty-Aware Kalman Filtering via Intrusive Polynomial Chaos for Disturbance Estimation (Heri Purnawan)
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To evaluate the capability of the IPC-KF method in estimating disturbances, we consider N, realizations
of the parameters where each realization produces Njer + 1 measurement sequences.

3. RESULT AND ANALYSIS

To evaluate the performance of the IPC-KF in propagating probabilistic parameters and estimating
disturbances, two representative case studies are presented: SMD and F-16 aircraft systems. These examples are
selected to demonstrate the applicability of the proposed approach to both a simple mechanical model and
a more complex aerospace system. The simulation scenario is considered using zero initial condition ¢(0) =
[0,0,0]T. The noise covariance matrix is defined R = R ® Iy, ; where R = diag (107%,---,10™*) . In this

D
study, the uncertain parameter 4 is modeled as a uniformly distributed random variable. The uniform

distribution serves as a non-informative and bounded prior, which is commonly used when no specific
probabilistic profile of the parameter is assumed.

3.1 FExample 1: Spring-Mass-Damper
The SMD system, characterized by an uncertain spring stiffness coefficient ks and driven by a disturbance
d, 1s described by

mi(t) + cx(t) + kox(t) = d(t) (19)

The mass of the system is fixed at m = 1 and is released from the initial position x(0) = 5 with zero initial
velocity, %(0) = 0. The simulation is carried out over the interval t € [0, tf], where ty denotes the final time.
The damping constant 1s known and set to ¢ = 0.1. The state evolution of the nominal system,
corresponding to kg = 2 in the absence of external disturbance d(t) = 0, 1s illustrated in Figure 1.

states

time (s)
Figure 1. The state evolution of nominal parameter (kg = 2)

The spring stiffness k is assumed to follow a uniform distribution, kg ~ U(1.5,2.5), while the external
force as disturbance is represented by d(t). For ease of simulation, Eq. (18) is expressed in state-space form as

ol=[k o] bl +[1]

[xz] B [—ks —0.1] x) 14 (20)
where x; and x, denote the position and velocity states, respectively. The spring stiffness kg 1s subject to 25%
deviation around its nominal value and is modeled as

k, =2+ 0.5A,A ~ U(—1,1)

To implement the IPC-KF algorithm, the continuous-ime model in Eq. (20) is discretized using the Euler
method with a sampling period At = 0.01 s, yielding

[;ci EE J+r B] - [—0,(1)1ks 0(?5)0919] [;C; Eg] + [0_%1] d(k) (21)

where the discrete index k 1s defined as k = t/At.
Transforming Eq. (21) into the augmented state-space form Eq. (6) in discrete time, we define

X, 1 0.01 0
¢ = [Xz],and A(4) =]-0.01k, 0.999 0.01
d 0 0 1
Assuming that only the states of the SMD system are measurable, the measurement matrix is given by
1 o0 o
c=lg 1 o

Zero: Jurnal Sains, Matematika dan Terapan
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The polynomial degree is set to n, = 2, which leads to N +1 = (2 + 1)!/2!'1! = 3 terms in the
polynomial expansion The disturbance is modeled as a constant signal, d(k) = 2. The results of these
scenarios are shown in Figure 2.

4r 4r
mean = std mean = std
—mcean mean

¢ @ L

S3F - = =true S3F - - =rue
< =1

£ £

7 Z

o o2

v w

> 4

o 9

=3 =

= =]

0 5 10 15 0
time [s] time [s]

w

10 15

(@) Nominal KF (R = 107%1,) (b) IPC-KF

Figure 2. Comparison of disturbance estimations for SMD system with 100 random variables, A.

Figures 2(a) and (b) present the results of the nominal KF (with A = 0 for all realizations) and the IPC-KF
method, respectively. From these figures, it can be observed that both methods are able to track the true
disturbance despite the presence of parameter uncertainty and measurement noise. Although the estimations do
not perfectly match the true disturbance, the results for each realization remain close to the actual value.
Furthermore, the shaded area becomes narrower, indicating reduced estimation variability and convergence
toward the true disturbance.

3.2 Example 2: F-16 aircraft

The F-16 is a fighter aircraft whose nonlinear aerodynamic characteristics make it difficult to obtain an exact
mathematical model of its dynamics. This challenge primarily arises at high angles of attack, where
aerodynamic coefficient modeling becomes accurate. The state-space equation for the short-period mode in
discrete time, discretized from [3 1] using the Euler method with the same sampling time as in Example 1,
and under time-invariant probabilistic parameters, 1s given by

a(k +1) 0.9936  0.0094 —14x10°5 a(k) 0
qk +1) [ = [az,(8) az,(4) a,3(4) l q(l) |+ 0 d(k). (22)
xg(k +1) 0 0 0.7980 xz(k)| 10.202

Here, a denotes the angle of attack, g 1s the pitch rate, and xg represents the elevator state, which captures
actuator dynamics. The parameters are assumed to follow a uniform distribution with a deviation of 20% from
their nominal values, defined as

ay,(8) = —0.0157(1 + 0.24),
ay,(8) = 0.9912(1 + 0.24),
ay5(A) = —0.0011(1 + 0.24).

where the randomness of these parameters is governed by a single random variable A~ U(—1,1).
By augmenting the system to include the disturbance as an additional state variable, the discrete-time state-
space representation becomes

ok + 1) = A(D) (k) (23)
where ¢ = [a, q, x5, d]T and A(A) is given by
0.9936 0.0094 -14%x1075 0
A) a,,(A) a,s(A) 0
A(A) = az( 22 23
(2) 0 0 0.7980 0.202
0 0 0 1
Since the disturbance is unknown and unmeasurable, the measurement matrix for this case is defined as
1 0 0O
C=]0 1 0 O
0 010

The parameter settings in this simulation are set different from Example 1, particularly for adding noise
covariance matrices for Q and Q. This configuration is introduced to prevent divergence in the disturbance

Uncertainty-Aware Kalman Filtering via Intrusive Polynomial Chaos for Disturbance Estimation (Heri Purnawan)
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estimation, since the system derived from the ISP approach exhibits an eigenvalue exceeding one, which
signifies that the system is unstable. The disturbance 1s modeled as a constant signal, similar to Example 1 but
with a different magnitude, i.e. d(k) = 5. The simulation results for this case are presented in Figure 3.

s.01

= 499

truc vs cstimates
&5 :
truc vs cstimates

mean + std
mean

mean = std
— mean 1

- - =te - = =frue

0 L L J 0 L L )
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(@) Nominal KF (Q = 10%°I,) (b) IPC-KF

Figure 3. Comparison of disturbance estimations for F-16 model with 100 random variables, A.

Figure 3 presents the disturbance estimation results for both the nominal KF and the IPC-KF. In Figure
3(b), the diagonal elements of the Q matrix are set to be twice those of the Q matrix. This adjustment is necessary
because if the main diagonal values of Q are equal to those of @, the disturbance estimation via IPC-KF tends to
diverge. Therefore, Q is defined as Q = diag (10%°,-++,10%%) ® Iy, where the larger diagonal entries may be

—

required due to the increased state dimension induced by the PCE. As shown in Figures 3(a) and 3(b), the
estimated disturbances closely match the actual values across all parameter realizations for both the nominal KF
and the IPC-KF, although further tuning of Q and Q is still required. Furthermore, the selected uncertainty levels
and covariance values are chosen to represent representative stress-test scenarios and are applied consistently
across all estimators rather than being tuned for optimal performance.

3.3 Performance Metric Evaluation

To quantitatively assess the estimation performance of the IPC-KF and compare it with the nominal KF,
we employ performance metrics suitable for stochastic systems with probabilistic parameters. In this evaluation,
two metrics are used for both case studies, based on 100 realizations: the variance of the estimation results and
the root-mean-square error (RMSLE).

The variance indicates the estimator’s sensitivity to parameter uncertainty and measurement noise; a
smaller variance reflects a more stable and robust estimator. In addition, the average RMSE over all realizations
provides a global measure of the expected estimation error, capturing the combined effects of bias and
variability. These metrics are sufficient to determine whether the IPC-KF delivers comparable or improved
estimation accuracy relative to the nominal KF, without requiring formal hypothesis testing, which is beyond
the scope of this paper. The results obtained from these evaluation metrics are summarized in Table 1.

Table 1. Performance evaluation metrics for disturbance estimation using the nominal KF and IPC-KF,
computed over 100 realizations for Examples 1 and 2

Examples Perfqrmance . Methods
Metrics (mean) Nominal KF IPCKF
| Variance 0.2133 0.2133
RMSE 1.67901 1.67892
9 Variance 8.1915 x 1073 8.1915 x 107>
RMSE 1.11971 1.11971

Table 1 summarizes the performance metrics used to compare the nominal KF and the IPC-KF over
100 realizations of the disturbance estimation results. The metrics show that both estimators achieve essentially
identical performance in terms of the mean variance and RMSE across the same set of realizations. The mean
variance in Example 2 1s noticeably smaller than in Example 1, indicating that the estimators are more robust
to parameter variations under measurement noise in this scenario. Although the overall performance of the
two estimators is comparable, the IPC-KF vyields a slightly lower RMSE. than the nominal KF in Example 1
when using the same parameter settings. However, for Example 2, achieving performance comparable to the
nominal KF requires tuning the IPC-KF with larger noise-covariance values. This highlights that the TPC-KF 1s
more sensitive to covariance selection, and thus careful tuning of its parameters 1s essential.
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3.4 Limitation and Further Investigation

The IPC-KF developed in this study is based on the Intrusive Spectral Projection (ISP) approach, where
the system dynamics are expressed directly in terms of polynomial expansion coefficients. Although the Non-
Intrusive Spectral Projection (NISP) method offers a dimensional advantage, it requires numerous model
evaluations to construct the surrogate system, making it unsuitable for real-time Kalman filtering. Moreover, NISP
does not naturally provide the closed-form system matrices required for the prediction and update steps of the
filter. In contrast, the intrusive approach yields an explicit high-dimensional deterministic system that can be
seamlessly integrated into the KF framework, including the extended-state formulation for disturbance
estimation. While this approach increases the system dimensionality, it provides a clearer and more direct
pathway for estimator design.

Based on the simulation results in Examples 1 and 2, the IPC-KF does not exhibit a pronounced
performance improvement over the nominal KF under the considered scenarios. This outcome motivates further
discussion on the conditions under which uncertainty-aware filtering may provide tangible benefits. In particular,
for linear systems with moderate levels of parameter uncertainty, the nominal KF already operates close to
optimality, which naturally limits the observable performance gains achievable by extensions such as the IPC-KF.

Nevertheless, the IPC-KF provides added value beyond pointwise estimation accuracy. Through the
polynomial chaos representation, the proposed framework enables direct access to higher-order statistical
information—such as the variance and confidence bounds of the estimated states and disturbances—without
relying on repeated Monte Carlo simulations. This uncertainty-quantification capability offers interpretability
regarding how parameter uncertainty propagates into the estimation process, which is not readily available in
the nominal KF framework.

In this study, a constant disturbance is considered, as simulations indicate that the nominal KF implemented
via an extended state observer for fixed parameters cannot accurately estimate time-varying disturbances (e.g.,
sinusoidal signals). Furthermore, the disturbance is modeled as a single augmented state variable to avoid
unobservability issues 1n the resulting surrogate system.

To facilitate further research and validation, the MATLAB mmplementation of the IPC-KF method is
publicly available at: https://github.com/heripurnawan/IPC-KF. A detailed sensitivity analysis with respect to
uncertainty in 4 and variations in Q and R 1s beyond the scope of this paper and will be explored in future work,
as it constitutes an independent and substantial research direction.

4. CONCLUSION

This paper investigated the performance of the IPC-KF for estimating unknown disturbances in systems
with probabilistic parameters and measurement noise using two case studies: a spring-mass-damper system and
an F-16 aircraft model. Through intrusive stochastic projection, the IPC-KF transforms the stochastic dynamics
mto a deterministic augmented system, enabling estimation under parameter uncertainty within a unified
framework. The results show that the IPC-KF incorporates parameter-distribution information via polynomial
chaos while producing disturbance estimates comparable to those of the nominal KF, indicating that for the
considered uncertainty levels and configurations, estimation accuracy is not significantly altered. Nevertheless,
the TPC-KF provides a structured way to represent and propagate parametric uncertainty, which may be
advantageous 1n situations involving stronger uncertainty, nonlinear dynamics, or time-varying disturbances. In
such settings, polynomial chaos offers richer statistical information beyond pointwise estimates. Future work will
consider broader classes of systems, uncertainty levels, and operating conditions, as well as comparisons with
alternative approaches such as DO-based estimators and non-intrusive polynomial chaos methods, which may
help reduce computational complexity while preserving uncertainty-awareness.
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