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 Robust control under parameter uncertainty requires reliable disturbance 
estimation. This paper proposes an uncertainty-aware method, namely 
Intrusive Polynomial Chaos-based Kalman Filter (IPC-KF) for systems with 
probabilistic parameters and measurement noise. The method is evaluated 
through two numerical case studies and compared with a nominal Kalman filter 
(KF). Results from 100 realizations, assessed using RMSE and mean variance, 
show that the IPC-KF achieves estimation accuracy comparable to the nominal 
KF. For the spring–mass–damper system, the RMSE difference is below 
0.01%, with both methods yielding the same mean variance of 0.2133. For 
the F-16 aircraft model, identical RMSE values and a mean variance of 
8.1915 × 10!" are obtained. While IPC-KF captures parameter uncertainty 
via polynomial chaos, augmenting the state with disturbances does not 
necessarily improve estimation accuracy. Further studies are needed to assess 
uncertainty bounds and robustness. 
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1. INTRODUCTION 
Disturbances in dynamic systems can significantly degrade control performance if they are not properly 

addressed during the design stage. In many industrial and aerospace applications—such as flight control in modern 
aircraft, robotic manipulation, and automotive systems—accurate disturbance estimation plays a crucial role in 
ensuring robust and stable system behavior [1]. Since disturbances are typically unknown and cannot be measured 
directly, they are often modeled as extended state variables within the system. Under this assumption—and in the 
presence of measurement noise—state estimation methods, particularly the Kalman Filter (KF), are widely used 
to estimate both the system states and disturbances effectively [2], [3]. 

Another important factor that must be considered in estimation problems is parameter uncertainty. This 
type of uncertainty arises when the system equations are known, but some parameters are either uncertain or 
vary over the system’s operational lifetime. Such variations frequently occur when models are derived from 
experimental data using system identification techniques. In these cases, the resulting model is often represented 
by a transfer function whose parameters vary within certain ranges [4]. 

These parameter variations introduce significant challenges in designing estimators capable of accurately 
estimating both system states and disturbances. To achieve robust performance—particularly for disturbance 
compensation—the estimator must be designed to perform reliably under worst-case conditions. One effective 
way to address this issue is to represent the uncertain parameters as random variables with known statistical 
characteristics, such as probability distributions [5]. As modern autonomous, aerospace, and other safety-critical 
systems increasingly operate in uncertain, noisy, and rapidly varying environments, the need for estimation 
frameworks that can simultaneously handle probabilistic parameter variations and disturbance dynamics has 
become more urgent. Conventional deterministic filtering approaches struggle in such conditions, motivating the 
development of more resilient and uncertainty-aware methods. 

Polynomial Chaos Expansion (PCE) provides an efficient framework for representing uncertain parameters 
and variables as polynomial functions that satisfy orthogonality properties [6], [7]. Compared to Monte Carlo 
(MC) methods, PCE significantly reduces computational effort while maintaining high accuracy, as demonstrated 
in various studies [7], [8], [9]. The presence of random parameters in dynamical systems leads to stochastic 
trajectories, which complicates estimator design. To address this, the stochastic system can be transformed into 
an equivalent deterministic form using the Intrusive Spectral Projection (ISP) approach [10], [11], [12]. Although 
the resulting system has higher dimensionality, the ISP method offers high precision for linear systems and 
facilitates the design of estimation algorithms, since the transformed equations retain a structure similar to the 
original system. 

 
1.1 Related Work 

In previous studies, parameter uncertainty has been addressed either by augmenting uncertain parameters 
into the state vector [13] or by applying stochastic modeling techniques such as Polynomial Chaos Expansion 
(PCE) to characterize probabilistic variations [11], [12], [14]. Meanwhile, disturbance handling in control systems 
has typically relied on Disturbance Observers (DO) and Extended State Observers (ESO), which have proven 
effective for deterministic disturbance profiles [15], [16], [17], [18]. However, these observer-based approaches 
are generally not designed to handle probabilistic parameter variations, creating a gap when both effects occur 
simultaneously. To overcome this limitation, stochastic modeling frameworks—particularly PCE—have been 
introduced as tools capable of representing uncertainty in a structured manner. 

Despite these advances, many existing works treat disturbances and parameter uncertainty separately. 
Sensor noise is also frequently omitted [15], [16], [17], [19] or, when included, it is only incorporated into the 
state estimation process without modeling the disturbance itself as a state to be estimated in real time [20], [21], 
[22], [23], [24], [25]. As a result, prior studies often focus on either uncertainty propagation or state estimation 
alone, without addressing the combined challenge of estimating disturbances in systems influenced by 
probabilistic parameter variations and measurement noise. 

Collectively, the literature indicates a lack of estimation frameworks that simultaneously model probabilistic 
parameters, disturbances, and measurement noise within a unified formulation. To further clarify this gap, it is 
important to highlight the limitations of prior approaches. Most prior studies focused on either parameter 
uncertainty or disturbance estimation, but not on their combined effects within a single estimation framework, 
and many PCE-based KF methods primarily address state estimation or uncertainty propagation using non-
intrusive or ensemble-based formulations.  

In contrast, the present work adopts an intrusive polynomial chaos formulation to derive a deterministic 
high-dimensional surrogate system in which disturbances are explicitly modeled as extended state variables. This 
structure enables the direct application of KF with measurement noise, together with explicit observability 
assumptions on the projected system. These distinctions clarify the novelty of the proposed IPC-KF relative to 
prior PCE or PC-KF formulations.  
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1.2 Contribution 

The main contributions of this paper are summarized as follows. 
• Formulating a stochastic system and its corresponding measurement matrix into a deterministic 

representation using the ISP approach. 
• Developing an implementation of the IPC-KF for estimating disturbances in systems with probabilistic 

parameters. 
• Conducting a comparative analysis with the nominal KF to evaluate the effectiveness and robustness of 

the proposed method under probabilistic parameters and measurement noise. Throughout this paper, 
the term nominal KF denotes a Kalman filter constructed using fixed model parameters equal to their 
mean values, which are kept constant for all realizations in the numerical experiments. 

In addition to these contributions, the present study is guided by the following research questions: 
• whether incorporating probabilistic parameter information through an intrusive polynomial chaos 

formulation affects the accuracy and variance of disturbance estimation compared to the nominal KF; 

• whether the IPC-KF provides improved robustness or comparable performance under measurement 
noise and parameter uncertainty; and 

• whether modeling disturbances as extended state variables within a stochastic-Galerkin framework offers 
additional interpretability regarding the impact of parameter uncertainty on estimation performance. 

These questions aim to clarify the practical implications and limitations of IPC-KF relative to the nominal 
KF, rather than to assume inherent performance superiority. 
 
1.3 Structure of This Paper 

This paper is organized as follows. Section II presents the design of the proposed IPC-KF method, 
beginning with the fundamental theory of PCE and followed by the mathematical modeling in terms of the state-
space representation and measurement matrix. Section III describes the case studies, which include the Spring–
Mass–Damper (SMD) system and the F-16 aircraft model, along with the simulation setup and discussion of the 
obtained results. Finally, Section IV provides the conclusions and outlines potential directions for future research. 
 
2. RESEARCH METHOD 

This research was carried out in two main stages. First, the development stage involved establishing the 
fundamental theory of PCE, system modeling, and the design of the proposed method. In the second stage, the 
proposed method was evaluated through numerical case studies, followed by a simulation-based analysis of the 
results to assess its performance and effectiveness. 

 
2.1 Polynomial Chaos Expansion 

The PCE was first introduced by Norbert Wiener to approximate a Gaussian random variable using 
Hermite polynomials [26]. The core idea behind PCE is to employ an infinite series of orthogonal polynomials. 
In 1947, the convergence of the Wiener-Hermite polynomial series in the ℒ! norm was established in [27]. 

To facilitate practical implementation, the infinite series of polynomial expansions is truncated as follows 
[12]: 

ℳ(Δ) ='𝑎)"
#

"$%

𝜓"(Δ) (1) 

In this expression, ℳ(Δ) is a random variable defined as a function of the random event Δ,  𝑎)" are 
the polynomial coefficients, and 𝜓 are the polynomial basis functions. The series is truncated after 𝑁+ 1 
terms, where the number of terms is determined by 

𝑁 + 1 =
.𝑛& + 𝑛'0!
𝑛&!  𝑛'!

 

with 𝑛& representing the degree of the polynomial and 𝑛' is the number of random variables [11]. 
The choice of polynomial basis in PCE follows the Askey scheme [ 2 8 ] , which encompasses a set of 

orthogonal basis functions in the Hilbert space defined by the support of the random variables. As such, these 
basis functions satisfy 

〈𝜓((Δ),𝜓"(Δ)〉 = 〈𝜓"!(Δ)〉𝛿(" , 	𝛿(" = 81 ,𝑚 = 𝑛
0 ,𝑚 ≠ 𝑛	 (2) 

where 

〈𝜓((Δ),𝜓"(Δ)〉 = ∫ 𝜓)(𝛥)𝜓!(𝛥)𝑓(𝛥)*!
 𝑑𝛥 = 𝔼[𝜓)(𝛥)𝜓!(𝛥)] (3)  
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denotes the inner product with respect to the weight 𝑓(𝛥) (Probability Density Function (PDF) of Δ) and over the 
domain 𝐷' (support of Δ). Using the Galerkin projection method [29], the coefficient 𝑎)" is computed by 

𝑎)" =
𝔼[𝑀(𝛥)𝜓"(𝛥)]
𝔼[𝜓"!(𝛥)]

	
 

The mean and variance of ℳ(Δ) can be efficiently approximated from the truncated expansion in Eq. (1) 
[30]: 

𝔼[ℳ(Δ)] = 𝑎)%				and				Var[ℳ(Δ)] = '𝑎)"!
#

"$)

𝔼[𝜓"!(𝛥)]	

2.2 Surrogate Augmented State Space 
Consider a discrete-time stochastic linear system characterized by probabilistic time-invariant parameters 

and unknown disturbances. The system is defined by: 

𝒙(𝑘 + 1, ∆) 	= 	𝑨+(∆)𝒙(𝑘, ∆) 	+	𝑩+𝒅(𝑘), (4) 

where 𝒙(𝑘, ∆) ∈ ℝ& is the state vector at time 𝑘 which is a function of a random variable ∆ and 𝒅(𝑘) ∈
ℝ, 	is the unknown disturbance vector at time 𝑘, respectively. Here, the state matrix 𝑨+(∆) depends on a single 
random variable ∆, while 𝑩+  is the disturbance matrix. Since 𝑨+ incorporates randomness, the evolution of 
the state vector becomes stochastic. 

We assume that the disturbance vector remains constant over time and treat it as part of the state vector, 
the augmented system of Eq. (4) can be rewritten in state space form as: 

	
U𝒙(𝑘 + 1, ∆)𝒅(𝑘 + 1) V = U

𝑨+(∆) 𝑩+
𝟎,×& 𝑰&

V = U𝒙(𝑘, ∆)𝒅(𝑘) V (5) 

where 𝟎,×& is a zero matrix with size 𝑞 × 𝑝 and 𝑰,  is the 𝑞 × 𝑞 identity matrix. 
The representation in Eq. (5) allows the system to be expressed as an augmented linear system: 

𝝓(𝑘 + 1, ∆) 	= 	𝑨(∆)𝝓(𝑘, ∆), (6) 

where 𝝓 = [𝒙. , 𝒅.]. ∈ ℝ&/, is the augmented state vector and 𝑨(∆) represents the new state matrix 
of the augmented system. Since 𝑨(∆) depends on random variables, the evolution of the augmented state 
vector in Eq. (6) remains stochastic, similar to the original system in Eq. (4). 

Theorem 2.2. The surrogate augmented state space representation of system in Eq. (6) obtained using the IPC 
approach can be written as the deterministic system 

𝚽(𝑘 + 1) = 𝓐𝚽(𝑘) (7) 

where state vector is defined as 𝚽 = b𝝓c). , . . . , 𝝓c&/,. e. ∈ ℝ(&/,)(#/)), and each block  

𝝓c 2(𝑘) = b𝜙g2,%(𝑘), … , 𝜙g2,#(𝑘)e
. , 	 𝑖	 = 	1, … , 𝑝 + 𝑞. 

The system matrix 𝓐 ∈ ℝ(&/,)(#/))×(&/,)(#/)) is given by 

𝓐 = j
𝒜)) ⋯ 𝒜)(&/,)
⋮ ⋱ ⋮

𝒜(&/,)) ⋯ 𝒜(&/,)(&/,)

o 

where each block 𝒜24 ∈ ℝ(#/))×(#/)) is given by 

𝒜24 ='𝐴q24,"

#

"$%

𝝋", 

where 	

𝝋" = s
𝛾"%% ⋯ 𝛾"#%
⋮ ⋱ ⋮

𝛾"%# ⋯ 𝛾"##
u. 

Proof. Assume that 𝝓(𝑘, Δ), 𝑨(Δ) ∈ ℒ!, so that all expectations used in the projection are finite. The random 
variable Δ is assumed to follow a distribution matched to the corresponding Askey polynomial basis 
{𝜓"(Δ)}"$)#  which satisfies the orthogonality property in Eq. (2). We further assume that 𝑨(Δ) is Lipschitz-
continuous in Δ, and that Δ has either bounded support or sub-Gaussian tails. These assumptions guarantee 
integrability and justify the interchange of expectation, multiplication, and the discrete-time update operator 
in the projection steps that follow. 
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The construction of the augmented state space via an intrusive approach based on PCE can be 
outlined by defining each augmented state 𝜙2 ∈ 𝝓 and state matrix 𝐴24 ∈ 𝑨, using Eq. (1) as follows. 

𝜙2(𝑘, 𝛥) = '𝜙g"(𝑘)𝜓"(𝛥)
#

"$%

(8) 

𝐴24(Δ) = '𝐴q24,"
#

"$%

𝜓"(Δ) (9) 

Substitute Eqs. (8) and (9) into Eq. (6) to obtain 

'𝜙g2,5(𝑘 + 1)𝜓5(𝛥)
#

5$%

='''𝐴q24,5
#

($%

𝜙g4,((𝑘)𝜓5(𝛥)𝜓((𝛥)
#

5$%

&/,

4$)

(10) 

Multiply both side by 𝜓"(∆), 𝑛 = 0,···, 𝑁, and take the expectation with ∆, Eq. (10) can be simplified to 

'𝜙g2,5(𝑘 + 1)𝔼[𝜓5(𝛥)𝜓"(𝛥)]
#

5$%

= '''𝐴q24,5
#

($%

𝜙g4,((𝑘)𝔼[𝜓5(𝛥)𝜓((𝛥)𝜓"(𝛥)]
#

5$%

&/,

4$)

 

For readability, we omit the explicit dependence on ∆ in the basis functions, i.e. 𝜓"(𝛥) is written simply as 𝜓". 
Using the orthogonality property in Eq. (2), 𝔼[𝜓5(𝛥)𝜓"(𝛥)] = 𝔼[𝜓"!] and defining the triple-product tensor 
𝔼[𝜓5(𝛥)𝜓((𝛥)𝜓"(𝛥)] = 𝔼[𝜓5𝜓(𝜓"], we have  

𝜙g2,"(𝑘 + 1)𝔼[𝜓"!] = ''' 𝐴q24,5
#

($%

𝜙g4,((𝑘)𝔼[𝜓5𝜓(𝜓"]
#

5$%

&/,

4$)

(11) 

Divide Eq. (11) by 𝔼[𝜓"!] to yield 

𝜙g2,"(𝑘 + 1) =
1

𝔼[𝜓"!]
'''𝐴q24,5

#

($%

𝜙g4,((𝑘)𝔼[𝜓5𝜓(𝜓"]
#

5$%

&/,

4$)

 

(12) 

 =''' 𝐴q24,5

#

($%

𝜙g4,((𝑘)
#

5$%

𝛾5("

&/,

4$)

 

In the intrusive polynomial chaos framework, the products of polynomial expansions lead to triple products of 
basis functions. These interactions are compactly represented by the triple-product coefficients, where 𝛾5"( =
𝔼[𝜓5𝜓(𝜓"]/𝔼[𝜓"!]. For 𝑚 = 0, 1,⋯ ,𝑁, Eq. (12) can be written as: 

𝜙g2,"(𝑘 + 1) = ''𝐴q24,5[𝛾5%"			𝛾5)" 		⋯		𝛾5#"]
#

5$%

&/,

4$)
⎣
⎢
⎢
⎢
⎡𝜙
g4,%(𝑘)
𝜙g4,)(𝑘)

⋮
𝜙g4,#(𝑘)⎦

⎥
⎥
⎥
⎤

 

Define 𝝓c 2(𝑘) = b𝜙g2,%(𝑘), … , 𝜙g2,#(𝑘)e
. , 𝑖	 = 	1, … , 𝑝 + 𝑞, we obtain 

𝝓c 2(𝑘 + 1) = ''𝐴q24,5
#

5$%

&/,

4$)

s
𝛾5%% ⋯ 𝛾5#%
⋮ ⋱ ⋮

𝛾5%# ⋯ 𝛾5##
u𝝓c4(𝑘) = ''𝐴q24,5

#

5$%

&/,

4$)

𝝋5𝝓c4(𝑘) (13) 

where 	

𝝋5 = s
𝛾5%% ⋯ 𝛾5#%
⋮ ⋱ ⋮

𝛾5%# ⋯ 𝛾5##
u. 

To obtain a compact deterministic state-space representation, the polynomial-mode coupling coefficients are 

assembled into a vector. Let 𝚽 = b𝝓c). , . . . , 𝝓c&/,. e. ,	then Eq. (13) becomes the deterministic state-space equation 

𝚽(𝑘 + 1) = 𝓐𝚽(𝑘), 
where 

𝓐 = j
𝒜)) ⋯ 𝒜)(&/,)
⋮ ⋱ ⋮

𝒜(&/,)) ⋯ 𝒜(&/,)(&/,)

o 
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with  

𝒜24 ='𝐴q24,5

#

5$%

𝝋5 , ∀𝑖, 𝑗 = 1, 2,⋯ , (𝑝 + 𝑞) 

Under the stated regularity assumptions, all projection operations above are valid, and the deterministic surrogate 
model follows directly. Therefore, the proof is complete. 

2.3 Measurement Matrix 
The use of an ISP approach to propagate the uncertainty ∆ transforms the system into a higher-dimensional 

deterministic form, represented by the surrogate state vector 𝚽, which contains the PCE coefficients. 
Consequently, the measurement model must be adapted to align with this surrogate state representation. 

Assumption 2.4. For the theoretical derivation and estimator design, the process dynamics are assumed to be 
noise-free, i.e., 𝒘(𝑘) = 𝟎. This assumption is used exclusively in all projection arguments and proofs presented 
in this section. However, the measurement data are considered to be corrupted by additive Gaussian white noise 
with zero mean and covariance 𝑹, denoted as	𝒗(𝑘) ∼ 𝒩(0, 𝑹).  

In practice, a small process noise is introduced only for numerical stability of the KF and IPC-KF, and does not 
alter the theoretical formulation derived under Assumption 2.4. 

Theorem 2.5. The discrete-time measurement model due to probabilistic parameters is given as follows. 

𝒛(𝑘, ∆) = 𝑪𝝓(𝑘, ∆), (14) 

where 𝒛 ∈ ℝ& is the measurement vector and 𝑪	is the measurement matrix under disturbance measurement not 
available. Due to the surrogate state representation 𝚽(𝑘) of the intrusive PCE method, the measurement 
equation becomes 

𝒁(𝑘) = 𝓒𝚽(𝑘), (15) 

where 𝒁 = b𝔃�)6, … , 𝔃�&6e
6 ∈ ℝ(&/,)(#/𝟙), with each block defined by 𝔃�2(𝑘) = [𝓏̃2,%, (𝑘), … , 𝓏̃2,#(𝑘)]. , ∀𝑖 =

1,… , 𝑝 and 𝓒 = 𝑪⊗ 𝑰#/) with 𝑰#/) is the identity matrix. 

Proof. Define 𝑐24 ∈ 𝑪 and implement each state variable in PCE term given in Eq. (8) as well as a 
measurement variable while ignoring ∆ for simplification, for 𝑖 = 1,⋯ , 𝑝 we obtain 

' 𝓏̃2,((𝑘)𝜓( ='𝑐24

&/,

4$)

'𝛷c4,((𝑘)𝜓(
#

($%

#

($%

(16) 

Multiply both sides of Eq. (16) with {𝜓"} 	"$%
# and take the expectation, to yield 

' 𝓏̃2,((𝑘)𝔼[𝜓(𝜓"] = ' 	
&/,

4$)

' 𝑐24𝛷c4,((𝑘)𝔼[𝜓(𝜓"]
#

($%

#

($%

 

Then apply orthogonal property to obtain  

𝓏̃2,"(𝑘)𝔼[𝜓"!] =	 '	
&/,

4$)

' 𝑐24𝛷c4,((𝑘)𝔼b𝜓"!	e
#

($%

(17) 

Divide Eq. (17) by 𝔼[𝜓"!], we simplify Eq. (16) to 

𝓏̃2,"(𝑘) =	 '	
&/,

4$)

' 𝑐24𝛷c4,((𝑘)
#

($%

(18) 

Since Eq. (18) is equivalent to Eq. (15), this completes the proof. 

Remark 2.6. The measurement variable must be extended in terms of the PCE coefficients. If the measurement 
dimension were kept identical to that of the original system, the resulting surrogate system would not satisfy the 
observability condition. Consequently, the disturbance estimate would not be guaranteed to converge to the true 
disturbance. 
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2.4 Intrusive Polynomial Chaos-based Kalman Filter 
The IPC-KF is introduced to estimate disturbances under probabilistic system parameters. Its design is 

based on the surrogate dynamic system. To enable the estimation of disturbances modeled as state vectors, the 
observability condition in this framework is ensured by Lemma 2.7. 

Lemma 2.7. (Sufficient Observability Condition) Suppose the parameter‐dependent pair (𝑨(Δ), 𝑪) is uniformly 
observable for all Δ in the support of the random parameter. Then the surrogate pair (𝓐, 𝓒) obtained from Eqs. 
(7) and (15) is observable for any truncation order 𝑁, provided the triple-product tensor constructed from the 
basis has full row rank. 

Lemma 2.7 is motivated by the fact that observability of the nominal dynamics, associated with the constant 
polynomial chaos mode, is preserved under the Galerkin projection. The coupling induced by the triple-product 
tensor transfers this observability to higher-order modes, provided the tensor has full row rank, yielding 
observability of the augmented surrogate system. 

Assumption 2.8. Consider the discrete-time surrogate system in Eqs. (7) and (14). The system is assumed to be 
observable, with the observability matrix defined as 

𝒪 = [𝓒, 𝓒𝓐,𝓒𝓐! 	… 		𝓒𝓐(&/,)(#/))9)]:. 

This implies that the rank of the observability matrix is 

rank(𝒪) = (𝑝 + 𝑞)(𝑁 + 1). 

  The IPC-KF algorithm is built in a way similar to the nominal KF, but it operates in a higher-dimensional 
space than the original system. Prior to running the IPC-KF, the polynomial degree 𝑛& is selected based on 
surrogate convergence tests. The process noise covariance is set to 𝑸 > 0 for numerical robustness, while the 
measurement noise covariance 𝑹 is determined from empirical sensor noise statistics. The initial PCE coefficient 
vector 𝚽�(0|0) = 𝝓(0)⊗ 𝒆#/), 𝒆#/) = [1		0	⋯ 	0]�������

#/)

 and the initial covariance 𝐏(0|0) =

diag (109), ⋯ , 109))�����������
&/,

⊗𝑰#/) is chosen as a diagonal matrix encoding prior uncertainty. The IPC-KF 

procedure, which is derived from the surrogate system, can be summarized in Algorithm 1. 

Algorithm 1 IPC-KF for disturbance estimation 
Input: Measurement	𝓏2(𝑘), 𝑖 = 1,… , 𝑝	and 𝑘 = 0,… ,𝑁;<=>, degree of polynomial 𝑛&, noise covariance 
matrices 𝑸 and 𝑹, initial condition 𝝓(0), sampling time 𝑇?, and time duration for simulation 𝑡@.  
1. Define PDFs of uncertain parameters Δ. 
2. Form augmented state including disturbance 

3. Construct PCE basis 𝜓 and expand system matrices (𝑨(∆), 𝑪). 
4. Apply Galerkin projection to obtain surrogate system (𝓐,𝓒). 
5. Initialization: 

𝚽�(0|0) = 𝚽� % 
𝐏(0|0) = 𝐏% 

Set 𝑘 ← 0  

for 𝑘 ← 1:𝑁2ABC =
A"
.#
	do 

Time update: 
𝚽�(𝑘|𝑘 − 1) = 𝓐𝚽� 	(𝑘 − 1|𝑘 − 1) 
𝐏(𝑘|𝑘 − 1) = 𝓐𝐏(𝑘 − 1|𝑘 − 1)𝓐: + 𝐐̈ 

Measurement update: 
𝐊(𝑘) = 𝐏(𝑘|𝑘 − 1)𝓒:(𝓒𝐏(𝑘|𝑘 − 1)𝓒: + 𝐑̈)9) 

𝚽�(𝑘|𝑘) = 𝚽� (𝑘|𝑘 − 1) + 𝐊(𝑘) «𝒁(𝑘) − 𝓒𝚽� (𝑘|𝑘 − 1)¬ 

𝐏(𝑘|𝑘) = .𝑰(&/,)(#/)) −𝐊(𝑘)𝓒0𝐏(𝑘|𝑘 − 1) 
end 

Result: 𝜙g­2,"(𝑘|𝑘), 	 𝑖 = (𝑝 + 1),… , (𝑝 + 𝑞) 
 
Remark 2.9. Even though noise-free for the process dynamics according to Assumption 2.4, the noise covariance 
matrix is defined by 𝐐̈ = 𝑸⊗ 𝑰#/). In practical implementations, a small process-noise covariance 𝑸 > 𝟎 
may be introduced for numerical stability of the discrete-time estimator, but this does not affect the analytical 
results or the polynomial chaos projection. The initial state covariance is chosen to be diagonal, reflecting an 
uninformative prior assumption with no prescribed cross-correlation among the augmented states. 



     r                                                                                            E-ISSN : 2580-5754; P-ISSN : 2580-569X 

Zero: Jurnal Sains, Matematika dan Terapan 

998 

To evaluate the capability of the IPC-KF method in estimating disturbances, we consider 𝑁∆ realizations 
of the parameters where each realization produces 𝑁;<=> + 1 measurement sequences. 
 
3. RESULT AND ANALYSIS 

To evaluate the performance of the IPC-KF in propagating probabilistic parameters and estimating 
disturbances, two representative case studies are presented: SMD and F-16 aircraft systems. These examples are 
selected to demonstrate the applicability of the proposed approach to both a simple mechanical model and 
a more complex aerospace system. The simulation scenario is considered using zero initial condition 𝝓(0) =
[0,0,0]:. The noise covariance matrix is defined 𝐑̈ = 𝑹⊗ 𝑰#/) where 𝑹 = diag	 (109E, ⋯ , 109E)	�����������

&

. In this 

study, the uncertain parameter 𝛥 is modeled as a uniformly distributed random variable. The uniform 
distribution serves as a non-informative and bounded prior, which is commonly used when no specific 
probabilistic profile of the parameter is assumed.  

 
3.1 Example 1: Spring-Mass-Damper 

The SMD system, characterized by an uncertain spring stiffness coefficient 𝑘? and driven by a disturbance 
𝑑, is described by  

𝑚𝑥̈(𝑡) + 𝑐𝑥̇(𝑡) + 𝑘?𝑥(𝑡) = 𝑑(𝑡) (19) 
The mass of the system is fixed at 𝑚 = 1 and is released from the initial position 𝑥(0) = 5 with zero initial 

velocity, 𝑥̇(0) = 0. The simulation is carried out over the interval 𝑡 ∈ b0, 𝑡@e, where 𝑡@ denotes the final time. 
The damping constant is known and set to 𝑐 = 0.1. The state evolution of the nominal system, 
corresponding to 𝑘? = 2 in the absence of external disturbance 𝑑(𝑡) = 0, is illustrated in Figure 1. 

 
Figure 1. The state evolution of nominal parameter (𝑘? = 2) 

The spring stiffness 𝑘? is assumed to follow a uniform distribution, 𝑘? ∼ 𝒰(1.5,2.5), while the external 
force as disturbance is represented by 𝑑(𝑡). For ease of simulation, Eq. (18) is expressed in state–space form as 

U𝑥̇)𝑥̇!
V = U 0 1

−𝑘? −0.1V ²
𝑥)
𝑥!³ + ²

0
1³ 𝑑 (20) 

where 𝑥) and 𝑥! denote the position and velocity states, respectively. The spring stiffness 𝑘? is subject to 25% 
deviation around its nominal value and is modeled as 

𝑘? = 2 + 0.5Δ, Δ ∼ 𝒰(−1,1) 
To implement the IPC-KF algorithm, the continuous-time model in Eq. (20) is discretized using the Euler 

method with a sampling period ∆𝑡 = 0.01	s, yielding  

U𝑥)
(𝑘 + 1)

𝑥!(𝑘 + 1)
V = U 1 0.01

−0,01𝑘? 0.999V U
𝑥)(𝑘)
𝑥!(𝑘)

V + ² 0
0.01³ 𝑑(𝑘) (21) 

where the discrete index 𝑘 is defined as 𝑘 = 𝑡/∆𝑡. 
Transforming Eq. (21) into the augmented state–space form Eq. (6) in discrete time, we define 

𝜙 = ¶
𝑥)
𝑥!
𝑑
· , and		𝑨(𝛥) = s

1 0.01 0
−0.01𝑘? 0.999 0.01

0 0 1
u 

Assuming that only the states of the SMD system are measurable, the measurement matrix is given by 

𝑪 = ²1 0 0
0 1 0³ 
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The polynomial degree is set to 𝑛& = 2, which leads to 𝑁 + 1 = (2 + 1)!/2! 1! = 3 terms in the 
polynomial expansion The disturbance is modeled as a constant signal,	𝑑(𝑘) = 2. The results of these 
scenarios are shown in Figure 2. 

 

 

(a) Nominal KF (𝑹 = 109E𝑰!) 

 

(b) IPC-KF 

Figure 2. Comparison of disturbance estimations for SMD system with 100 random variables, ∆. 

Figures 2(a) and (b) present the results of the nominal KF (with Δ = 0 for all realizations) and the IPC-KF 
method, respectively. From these figures, it can be observed that both methods are able to track the true 
disturbance despite the presence of parameter uncertainty and measurement noise. Although the estimations do 
not perfectly match the true disturbance, the results for each realization remain close to the actual value. 
Furthermore, the shaded area becomes narrower, indicating reduced estimation variability and convergence 
toward the true disturbance. 

 
3.2 Example 2: F-16 aircraft 

The F-16 is a fighter aircraft whose nonlinear aerodynamic characteristics make it difficult to obtain an exact 
mathematical model of its dynamics. This challenge primarily arises at high angles of attack, where 
aerodynamic coefficient modeling becomes inaccurate. The state-space equation for the short-period mode in 
discrete time, discretized from [ 3 1 ] using the Euler method with the same sampling time as in Example 1, 
and under time-invariant probabilistic parameters, is given by 

j
𝛼(𝑘 + 1)
𝑞(𝑘 + 1)
𝑥F(𝑘 + 1)

o = s
0.9936			 0.0094 	−1.4 × 109G 	
𝑎!)(∆)				 𝑎!!(∆) 								𝑎!H(∆) 	

0 0 								0.7980 	
u j
𝛼(𝑘)
𝑞(𝑘)
𝑥F(𝑘)

o + s
0
0

0.202
u 	𝑑(𝑘). (22) 

Here, α denotes the angle of attack, 𝑞 is the pitch rate, and 𝑥F represents the elevator state, which captures 
actuator dynamics. The parameters are assumed to follow a uniform distribution with a deviation of 20% from 
their nominal values, defined as 

𝑎!)(Δ) = −0.0157(1 + 0.2Δ), 
𝑎!!(Δ) = 0.9912(1 + 0.2Δ), 
𝑎!H(Δ) = −0.0011(1 + 0.2Δ).	

where the randomness of these parameters is governed by a single random variable ∆∼ 𝒰(−1,1).	
By augmenting the system to include the disturbance as an additional state variable, the discrete-time state-

space representation becomes 

𝝓(𝑘	 + 	1) = 𝑨(∆)𝝓(𝑘) (23) 

where 𝝓 = [𝛼, 𝑞, 𝑥F , 𝑑]: and 𝑨(∆)	is given by 

𝑨(∆) = ¹

0.9936			 0.0094 −1.4 × 109G 0
𝑎!)(∆)				 𝑎!!(∆) 				𝑎!H(∆) 							0

0
0

0
0 								0.79800 						0.2021

º 

Since the disturbance is unknown and unmeasurable, the measurement matrix for this case is defined as 

𝑪 = s
1 0 0
0 1 0
0 0 1

				
0
0
0
u 

The parameter settings in this simulation are set different from Example 1, particularly for adding noise 
covariance matrices for 𝑸 and 𝐐̈. This configuration is introduced to prevent divergence in the disturbance 
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estimation, since the system derived from the ISP approach exhibits an eigenvalue exceeding one, which 
signifies that the system is unstable. The disturbance is modeled as a constant signal, similar to Example 1 but 
with a different magnitude, i.e. 𝑑(𝑘) = 5. The simulation results for this case are presented in Figure 3. 

 
(a) Nominal KF (𝑸 = 10!%𝑰E) 

 
(b) IPC-KF  

Figure 3. Comparison of disturbance estimations for F-16 model with 100 random variables, ∆. 
 

Figure 3 presents the disturbance estimation results for both the nominal KF and the IPC-KF. In Figure 
3(b), the diagonal elements of the 𝐐̈ matrix are set to be twice those of the 𝑸 matrix. This adjustment is necessary 
because if the main diagonal values of 𝐐̈ are equal to those of 𝑸, the disturbance estimation via IPC-KF tends to 
diverge. Therefore, 𝐐̈ is defined as 𝐐̈ = diag (10E%, ⋯ , 10E%)�����������

&/,

⊗𝑰#/), where the larger diagonal entries may be 

required due to the increased state dimension induced by the PCE. As shown in Figures 3(a) and 3(b), the 
estimated disturbances closely match the actual values across all parameter realizations for both the nominal KF 
and the IPC-KF, although further tuning of 𝑸 and 𝐐̈ is still required. Furthermore, the selected uncertainty levels 
and covariance values are chosen to represent representative stress-test scenarios and are applied consistently 
across all estimators rather than being tuned for optimal performance. 

3.3 Performance Metric Evaluation 
To quantitatively assess the estimation performance of the IPC-KF and compare it with the nominal KF, 

we employ performance metrics suitable for stochastic systems with probabilistic parameters. In this evaluation, 
two metrics are used for both case studies, based on 100 realizations: the variance of the estimation results and 
the root-mean-square error (RMSE).  

The variance indicates the estimator’s sensitivity to parameter uncertainty and measurement noise; a 
smaller variance reflects a more stable and robust estimator. In addition, the average RMSE over all realizations 
provides a global measure of the expected estimation error, capturing the combined effects of bias and 
variability. These metrics are sufficient to determine whether the IPC-KF delivers comparable or improved 
estimation accuracy relative to the nominal KF, without requiring formal hypothesis testing, which is beyond 
the scope of this paper. The results obtained from these evaluation metrics are summarized in Table 1. 
 

Table 1. Performance evaluation metrics for disturbance estimation using the nominal KF and IPC-KF, 
computed over 100 realizations for Examples 1 and 2 

Examples 
Performance 
Metrics (mean) 

Methods 
Nominal KF  IPC-KF 

1 Variance 0.2133 0.2133 
RMSE 1.67901 1.67892 

2 
Variance 8.1915 × 109G 8.1915 × 109G 
RMSE 1.11971 1.11971 

 
Table 1 summarizes the performance metrics used to compare the nominal KF and the IPC-KF over 

100 realizations of the disturbance estimation results. The metrics show that both estimators achieve essentially 
identical performance in terms of the mean variance and RMSE across the same set of realizations. The mean 
variance in Example 2 is noticeably smaller than in Example 1, indicating that the estimators are more robust 
to parameter variations under measurement noise in this scenario. Although the overall performance of the 
two estimators is comparable, the IPC-KF yields a slightly lower RMSE than the nominal KF in Example 1 
when using the same parameter settings. However, for Example 2, achieving performance comparable to the 
nominal KF requires tuning the IPC-KF with larger noise-covariance values. This highlights that the IPC-KF is 
more sensitive to covariance selection, and thus careful tuning of its parameters is essential. 
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3.4 Limitation and Further Investigation 
The IPC-KF developed in this study is based on the Intrusive Spectral Projection (ISP) approach, where 

the system dynamics are expressed directly in terms of polynomial expansion coefficients. Although the Non-
Intrusive Spectral Projection (NISP) method offers a dimensional advantage, it requires numerous model 
evaluations to construct the surrogate system, making it unsuitable for real-time Kalman filtering. Moreover, NISP 
does not naturally provide the closed-form system matrices required for the prediction and update steps of the 
filter. In contrast, the intrusive approach yields an explicit high-dimensional deterministic system that can be 
seamlessly integrated into the KF framework, including the extended-state formulation for disturbance 
estimation. While this approach increases the system dimensionality, it provides a clearer and more direct 
pathway for estimator design. 

Based on the simulation results in Examples 1 and 2, the IPC-KF does not exhibit a pronounced 
performance improvement over the nominal KF under the considered scenarios. This outcome motivates further 
discussion on the conditions under which uncertainty-aware filtering may provide tangible benefits. In particular, 
for linear systems with moderate levels of parameter uncertainty, the nominal KF already operates close to 
optimality, which naturally limits the observable performance gains achievable by extensions such as the IPC-KF. 

Nevertheless, the IPC-KF provides added value beyond pointwise estimation accuracy. Through the 
polynomial chaos representation, the proposed framework enables direct access to higher-order statistical 
information—such as the variance and confidence bounds of the estimated states and disturbances—without 
relying on repeated Monte Carlo simulations. This uncertainty-quantification capability offers interpretability 
regarding how parameter uncertainty propagates into the estimation process, which is not readily available in 
the nominal KF framework. 

In this study, a constant disturbance is considered, as simulations indicate that the nominal KF implemented 
via an extended state observer for fixed parameters cannot accurately estimate time-varying disturbances (e.g., 
sinusoidal signals). Furthermore, the disturbance is modeled as a single augmented state variable to avoid 
unobservability issues in the resulting surrogate system. 

To facilitate further research and validation, the MATLAB implementation of the IPC-KF method is 
publicly available at: https://github.com/heripurnawan/IPC-KF. A detailed sensitivity analysis with respect to 
uncertainty in 𝛥 and variations in 𝑸 and 𝑹 is beyond the scope of this paper and will be explored in future work, 
as it constitutes an independent and substantial research direction. 
 
4. CONCLUSION 

This paper investigated the performance of the IPC-KF for estimating unknown disturbances in systems 
with probabilistic parameters and measurement noise using two case studies: a spring–mass–damper system and 
an F-16 aircraft model. Through intrusive stochastic projection, the IPC-KF transforms the stochastic dynamics 
into a deterministic augmented system, enabling estimation under parameter uncertainty within a unified 
framework. The results show that the IPC-KF incorporates parameter-distribution information via polynomial 
chaos while producing disturbance estimates comparable to those of the nominal KF, indicating that for the 
considered uncertainty levels and configurations, estimation accuracy is not significantly altered. Nevertheless, 
the IPC-KF provides a structured way to represent and propagate parametric uncertainty, which may be 
advantageous in situations involving stronger uncertainty, nonlinear dynamics, or time-varying disturbances. In 
such settings, polynomial chaos offers richer statistical information beyond pointwise estimates. Future work will 
consider broader classes of systems, uncertainty levels, and operating conditions, as well as comparisons with 
alternative approaches such as DO-based estimators and non-intrusive polynomial chaos methods, which may 
help reduce computational complexity while preserving uncertainty-awareness. 
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