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 Estimating parameters for small areas often faces limitations due to insufficient 

sample sizes, resulting in low-precision estimates. The Small Area Estimation 

(SAE) approach is used to address this problem by utilizing auxiliary variables 

to improve estimation efficiency. This study evaluates four SAE methods, 

namely EBLUP, REBLUP, SEBLUP, and SREBLUP, through a simulation 

study based on a nested error model across 18 scenarios that combine two area 

sizes (16 and 64 areas), levels of outlier contamination in the error component, 

and degrees of spatial correlation in the area-level random effects. Each scenario 

is replicated 50 times. Model performance is evaluated using Relative Bias (RB) 

and Relative Root Mean Square Error (RRMSE). The results show that non-

robust methods are sensitive to outliers, whereas robust methods produce more 

stable estimates. The SREBLUP method demonstrates the best performance 

under low to moderate spatial correlation. In addition, an ANOVA test is 

conducted to identify factors that significantly affect the response. 
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1. INTRODUCTION 
Survey data are commonly available at higher administrative levels, such as national or provincial, but are 

often unreliable or unavailable for smaller regions due to limited sample sizes. Direct estimation at the district or 

village level thus produces estimates with low precision [1]. Indirect estimation methods such as Small Area 

Estimation (SAE) have been developed to address this issue. SAE improves estimation accuracy in small domains 

by incorporating auxiliary variables correlated with the study variable [2]. 

Small area estimation models are typically divided into area-level models, such as the Fay–Herriot and unit-

level models [3]. Traditional SAE assumes independent random effects [4], but neighbouring areas often exhibit 

spatial dependence in practice. To capture this, spatial effects can be introduced into the model. The 

incorporation of spatial correlation in SAE was first proposed by [5] cited in [6], and later refined by [7] through 

the Spatial Empirical Best Linear Unbiased Prediction (SEBLUP) method, which outperforms the conventional 

Empirical Best Linear Unbiased Prediction (EBLUP) when spatial relationships exist. 
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Although these models perform well under normality assumptions, they are sensitive to outliers [8]. The 

presence of outliers in the data can lead to inaccurate estimates however, outliers often contain important 

information and therefore cannot simply be discarded. Outliers can be addressed using a statistical approach 

known as robust statistics, which is designed to handle outliers without the need to remove them. [9] first 

addressed this issue using a robust M-quantile approach, followed by [8], who proposed the Robust EBLUP 

(REBLUP). More recently, [9], [10] extended this framework into the Spatial Robust EBLUP (SREBLUP), 

accommodating spatial correlation and outlier robustness. Many studies in Indonesia have applied Small Area 

Estimation using the EBLUP, REBLUP, and SEBLUP methods [11], [12] [13], [14], [15].  

It is essential to employ methods that can accommodate the presence of outliers and spatial dependence. 

Outliers are often found in expenditure or income data, which are frequently used in poverty estimation. Such 

data may also exhibit spatial dependence, as neighbouring regions tend to share similar socioeconomic patterns 

due to geographical proximity. To obtain reliable estimates in the presence of outliers and spatial correlation, 

methods such as SAE with robust and spatial approaches are highly needed. 

Previous studies, particularly those employing the SREBLUP method, are relatively scarce and generally 

consider only a single number of areas. This study extends prior research by comparing two different area 

structures, namely a smaller number of areas (16) and a larger number of areas (64). In addition, the outlier 

scenario is generated only in the error component, while the random effects are assumed to follow a normal 

distribution with incorporated spatial impact. Outliers were introduced using a contaminated normal mechanism 

by mixing standard normal errors with high-variance errors. This mechanism generates vertical outliers in the 

response variable without affecting the explanatory variables.  

This study aims to evaluate and compare the performance of four SAE methods EBLUP, REBLUP, 

SEBLUP, and SREBLUP, through a simulation study. The simulation design explicitly considers key factors, 

including two different numbers of small areas (16 and 64 areas), varying levels of outlier contamination in the 

error component, and different degrees of spatial correlation incorporated in the area-level random effects. 

Model performance is assessed using Relative Bias (RB) and Relative Root Mean Square Error (RRMSE). By 

examining the results across these regimes, this study provides methodological insight into the relative advantages 

of robust and spatially robust approaches and offers practical guidance for selecting between REBLUP and 

SREBLUP under different data conditions. While also evaluating higher-order interactions among these factors 

using ART ANOVA. The simulation study in this research aims to evaluate the performance of the models 

under various conditions and to serve as a guide for selecting the most appropriate method for similar data 

conditions.  

 

2. RESEARCH METHOD 
2.1 Small Area Estimation 

According to the availability level of auxiliary variables, [3] classify SAE models into two types: area level 

models and unit level models. 

Area Level Model 

The area level model is applied when auxiliary variables are only available at the area level, making unit 

level modelling infeasible. Let 𝒙𝒊 = (𝑧1𝑖 , … , 𝑧𝑝𝑖)
𝑇 be a vector of auxiliary variables for area 𝑖, and 𝑦𝑖  the 

parameter to be estimated, which is assumed to have a linear relationship with 𝒙𝒊. The model is expressed as: 

𝑦𝑖 = 𝒙𝑖
𝑇𝜷 + 𝑏𝑖𝑣𝑖 , 𝑖 = 1, … , 𝑚 (1) 

where 𝑏𝑖 is a positive constant, 𝜷 = (𝛽1, … , 𝛽𝑝)𝑇is a 𝑝 × 1vector of fixed parameters, and 𝑣𝑖 represents random 

effects that are assumed to be independently and identically distributed as 𝑣𝑖 ∼ 𝑁(0, 𝜎𝑣
2). The term 𝑚 denotes 

the total number of small areas. 

The area level SAE model was introduced by [16] to estimate average income in small areas. Their study 

assumed normally distributed income. Let 𝑦̂𝑖 = 𝑌̂̅𝑖 denote the direct estimator, then: 

𝑦̂𝑖 = 𝜃𝑖 + 𝑒𝑖 , 𝑖 = 1, … , 𝑚 (2) 
where 𝑒𝑖 is the sampling error, assumed to be normally distributed and mutually independent. 

By combining equations (1) and (2), the Fay–Herriot (FH) model is obtained: 

𝑦̂𝑖 = 𝒙𝑖
𝑇𝜷 + 𝑏𝑖𝑣𝑖 + 𝑒𝑖 , 𝑖 = 1, … , 𝑚 (3) 

Unit-Level Model 

The unit-level model is used when auxiliary variables are available at the observation (unit) level. Let 𝑦𝑖𝑗 

denote the response variable for area 𝑖 and unit 𝑗, and 𝑿𝑖𝑗 = (𝑥𝑖𝑗1, … , 𝑥𝑖𝑗𝑝)𝑇the corresponding auxiliary variable 

vector. The model can be expressed as: 

𝑦𝑖𝑗 = 𝑿𝑖𝑗
𝑇 𝜷 + 𝑣𝑖 + 𝑒𝑖𝑗 , 𝑗 = 1, … , 𝑁𝑖;  𝑖 = 1, … , 𝑚 (4) 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&
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Here, 𝑣𝑖 represents the area-specific random effect, assumed to follow an independent and identically 

distributed normal distribution 𝑣𝑖 ∼ 𝑁(0, 𝜎𝑣
2), and 𝑒𝑖𝑗 ∼ 𝑁(0, 𝜎𝑒

2) is the individual error term, independent of 

𝑣𝑖. 

 

2.2 Robust Empirical Best Linear Unbiased Prediction 

The model-based small area estimation approach using unit-level data adopts the framework proposed by 

[17]. This model is a linear mixed model with area specific random effect, expressed as follows.  

𝒚 = 𝑿𝜷 + 𝒁𝒗 + 𝒆                                                             (5) 

where 𝜷 is a 𝑝 × 1 vector of regression coefficients, 𝒗 ∼ 𝑁(0, 𝑮) is a 𝑚 × 1 vector of area-specific random 

effects, and 𝒆 ∼ 𝑁(0, 𝑹 = 𝜎𝑒
2𝑰𝑁) is a 𝑁 × 1 vector of sampling errors. 𝐼𝑁 denotes an identity matrix of dimension 

𝑁. The covariance matrices 𝑮 and 𝑹 depend on the variance parameter vector 𝜽 = (𝜎𝑣
2, 𝜎𝑢

2).  

When the area effects are assumed to be independent, the covariance matrix of the random effects 

simplifies to 𝑮 = 𝜎𝑣
2𝑰𝑚. Since the random effects 𝒗 and the sampling errors 𝒆 are independent, the covariance 

matrix of 𝑦 is defined as 𝑽 = 𝑹 + 𝒁𝑮𝒁𝑇 . Therefore, the Empirical Best Linear Unbiased Prediction (EBLUP) 

of the small area mean 𝑦̄𝑖 can be expressed as follows. 

𝑦̂̅𝑖
𝐸𝐵𝐿𝑈𝑃 = 𝑁𝑖

−1 {∑ 𝑦𝑖𝑗

𝑗∈𝑠𝑖

+ ∑ 𝑦̂𝑖𝑗

𝑗∈𝑟𝑖

} =   𝑁𝑖
−1 {∑ 𝑦𝑖𝑗

𝑗∈𝑠𝑖

+ ∑(𝒙𝑖𝑗
𝑇 𝜷̂ + 𝑣̂𝑖)

𝑗∈𝑟𝑖

}     (6) 

with 𝜷̂ = 𝜷̂(𝜽̂) being the empirical best linear unbiased estimator (EBLUE) of 𝜷, and 𝒗̂(𝜽̂) being the empirical 

best linear unbiased predictor (EBLUP) of 𝒗 [18]. The vector 𝜽̂ is estimated using the maximum likelihood 

estimator (ML) or the restricted maximum likelihood estimator (REML) for 𝜽 = (𝜎𝑣
2, 𝜎𝑢

2) [19]. The variable 𝑦𝑖𝑗  

represents the response value 𝑦 observed for the 𝑗-th unit in the 𝑖-th small area, while 𝑦̂𝑖𝑗 denotes the estimated 

response value 𝑦 for the 𝑗-th unit that is not included in the sample within the 𝑖-th small area. 

The Robust Empirical Best Linear Unbiased Prediction (REBLUP) method was first introduced by [8]. 

They developed a robust version of the traditional Empirical Best Linear Unbiased Prediction (EBLUP) that is 

resistant to the influence of outliers. Robust estimators of 𝛽 and 𝑣 are obtained by applying an influence function 

𝜓(⋅) to the residuals in the likelihood-based estimating equations. The REBLUP estimator for the small area 

means 𝑦̄𝑖 in area 𝑖 is defined as: 

𝑦̂̅𝑖
𝑅𝐸𝐵𝐿𝑈𝑃 = 𝑁𝑖

−1 {∑ 𝑦𝑖𝑗

𝑗∈𝑠𝑖

+ ∑(𝒙𝑖𝑗
𝑇 𝜷̂𝝍 + 𝑣̂𝒊

𝝍
)

𝑗∈𝑟𝑖

} (7) 

 [2] applied an influence function 𝜓 to the residuals in the maximum likelihood estimating equations and 

obtained the robust estimators 𝜷̂𝝍 and 𝒗̂𝝍 through an iterative algorithm. 

 

2.3 Spatial Robust Empirical Best Linear Unbiased Prediction 

 The spatial SAE model incorporates spatial effects into the area-specific random effects using a 

Simultaneously Autoregressive (SAR) process [7] 

𝒗 = 𝜌𝐖𝒗 + 𝒖, 𝑢 ∼ 𝑁(0, 𝜎𝑢
2𝐼) (8) 

where 𝜌 is the spatial autoregressive coefficient, 𝑾 is the spatial weight matrix representing area 

neighbourhoods, and 𝑢is the vector of independent area-specific random errors. This can be rewritten as: 

𝒗 = (𝐈 − 𝜌𝐖)−𝟏𝒖    (9) 

yielding the SAR based SAE model: 

𝒚 = 𝑿𝜷 + 𝒁(𝐈 − 𝜌𝑾)−𝟏𝒖 + 𝒆 (10) 

 

Variance components estimation: 𝜎𝑢
2 and 𝜌are estimated under normality assumptions using ML or REML. 

The model for the Spatial Empirical Best Linear Unbiased Prediction (SEBLUP) can be formulated as 

𝑦̂̄𝑖
𝑆𝐸𝐵𝐿𝑈𝑃 = 𝑥𝑖𝜷̂ + 𝒃𝑖

𝑇𝑮̂𝒁𝑻𝑽̂−𝟏(𝒚 − 𝑿𝜷̂) (11) 

with 𝑮̂ = 𝜎𝑢
2[(𝐈 − 𝜌𝐖)((𝐈 − 𝜌𝐖𝑇)]−1and 𝐕 = 𝐑 + 𝐙𝐆𝐙T = 𝑑𝑖𝑎𝑔(𝜎𝑒

2) +   𝐙𝜎𝑢
2[(𝐈 − 𝜌𝐖)(𝐈 −

𝜌𝐖𝑇)]−1𝐙T. The vector 𝒃𝑖
𝑇 indicates the 𝑖-th area. 

 

Following the approach of [2], a robustification procedure was applied to the maximum likelihood (ML) 

equations for estimating 𝛽, 𝜃, and 𝜌 (under the spatial correlation assumption), resulting in 

𝛼(𝜷) = 𝑿𝑇𝑽−1𝑼
1
2𝜓(𝒓) = 0                                                   (12) 
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Φ(𝜃𝑙) = 𝜓𝑇(𝒓)𝑼
1
2𝑽−1

𝜕𝑽

𝜕𝜃𝑙

𝑽−1𝑼
1
2𝜓(𝒓) − 𝑡𝑟 (𝑽−1

𝜕𝑽

𝜕𝜃𝑙

𝑲) = 0 (13) 

 

Ω(𝜌) = 𝜓𝑇(𝒓)𝑼
1
2𝑽−1

𝜕𝑽

𝜕𝜌
𝑽−1𝑼

1
2𝜓(𝒓) − 𝑡𝑟 (𝑽−1

𝜕𝑽

𝜕𝜌
𝑲) = 0 (14) 

 

where 𝒓 = 𝑼−
1

2(𝒚 − 𝑿𝜷) and 𝑼 is a diagonal matrix with diagonal elements equal to those of the diagonal 

of 𝑽. 𝑲 is also a diagonal matrix defined as 𝑲 = 𝐸(𝜓𝑏
2(𝑡))𝑰𝑛, where 𝑡 follows a standard normal distribution. 

The estimation of spatial random effects under robustness is performed using the Newton–Raphson algorithm, 

as introduced by [20], to solve the following equation: 

𝑍𝑇𝑅−
1

2𝜓(𝑅−
1

2(𝑦 − 𝑋𝛽 − 𝒁𝑇𝑹−
1

2𝜓 (𝑹−
1

2(𝒚 − 𝑿𝜷 − 𝒁𝒗)) − 𝑮−
1

2𝜓 (𝑮−
1

2𝒗) = 0                         (15) 

To mitigate the influence of outliers, robust estimation of the small area mean is obtained using a robust 

maximum likelihood approach for parameters 𝛽, 𝜃, and 𝜌. Consequently, the Spatial Robust Empirical Best 

Linear Unbiased Prediction (SREBLUP) model for the mean of area 𝑖 is formulated as: 

𝑦̂̅𝑖
𝑆𝑅𝐸𝐵𝐿𝑈𝑃 = 𝑁𝑖

−1 {∑ 𝑦𝑗

𝑗∈𝑠𝑖

+ ∑(𝒙𝑗
𝑇𝜷̂𝜓,𝑠𝑝 + 𝑣̂𝑖

𝜓,𝑠𝑝
)

𝑗∈𝑟𝑖

} 

= 𝑁𝑖
−1 (𝑛𝑖𝑦̄𝑠𝑖 + (𝑁𝑖 − 𝑛𝑖) (𝒙̄𝑟𝑖

𝑇 𝜷̂(𝜓,𝑠𝑝) + 𝑣̂𝑖
(𝜓,𝑠𝑝)

)) (16)

 

 

The superscript 𝜓 denotes dependence on the influence function, while the superscript 𝑠𝑝 indicates that the 

parameters depend on the spatial autocorrelation parameter 𝜌 [10]. 

Further details on the SREBLUP model can be found in [9]. 

 

2.4 Simulatio Design 

This study employed simulated data modified from the work of [9]. The simulation was conducted to 

evaluate the performance of several models under different scenarios. The experimental design was adapted 

from previous studies with several modifications. Specifically, it was assumed that no outliers were present in the 

random effects (𝑣𝑖), while outliers were introduced only in the individual error component (𝑒𝑖𝑗).  

A synthetic population consisting of 𝑁 = 1600 and 𝑁 = 6400 units was generated and divided into 𝑚 =
16 small areas, each containing 𝑁𝑖 = 100 units and a sample size of 𝑛𝑖 = 5 for every area 𝑖 = 1, … , 𝑚. The data 

were generated according to the following nested-error regression model [21], [22], [23] : 

𝑦𝑖𝑗 = 100 + 5𝑥𝑗 + 𝑣𝑖 + 𝑒𝑖𝑗 , 

where 𝑣𝑖 ∼ 𝑁(0, 𝐺) and 𝑒𝑖𝑗 ∼ (1 − 𝛾𝑒)𝑁(0,4) + 𝛾𝑒𝑁(10,25). The covariance matrix 𝐺 is defined as 

𝑮 = 𝜎𝑣
2[(𝑰 − 𝜌𝑾)(𝐼 − 𝜌𝑾𝑇)]−1, 

using 𝜎𝑣
2 = 3, where 𝜌 represents the spatial autocorrelation parameter and 𝐖 is the spatial weight matrix. Figure 

1 shows the underlying neighborhood structure of the areas, which is the rook structure. In this structure, areas 

are considered neighbors if they share a common side. 

 

 
(a) 

 

 
(b) 

Figure 1. Neighborhood structure for 16 areas (a) and 64 areas (b) 

The spatial correlation coefficient 𝜌 was varied to represent three conditions: low (𝜌 = 0.1), moderate (𝜌 =
0.5), and high (𝜌 = 0.85). The auxiliary variable 𝑥 was generated from a lognormal distribution with a mean of 
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𝜇𝑥 = 1 and a standard deviation of 𝜎𝑥 = 0.5. The contamination proportion 𝛾𝑒 controlled the level of outliers, 

set at 1%, 5%, and 15%, yielding 18 simulation scenarios. Each scenario was replicated 50 times. In total, three 

spatial correlation levels, three outlier proportions, and two area settings were investigated. 

The specific scenarios were as follows: 

a. Outliers were introduced in the sampling error, and spatial correlation was present (𝛾𝑒 = 0,01, 𝜌 =
0,1), where 𝑒𝑖𝑗~0,99 ∙ 𝑁(0, 4) + 0,01 ∙ 𝑁(10, 25) 

b. Outliers were introduced in the sampling error, and spatial correlation was present (𝛾𝑒 = 0,01, 𝜌 =
0,5), where 𝑒𝑖𝑗~0,99 ∙ 𝑁(0, 4) + 0,01 ∙ 𝑁(10, 25) 

c. Outliers were introduced in the sampling error, and spatial correlation was present (𝛾𝑒 = 0,01, 𝜌 =
0,85), where 𝑒𝑖𝑗~0,99 ∙ 𝑁(0, 4) + 0,01 ∙ 𝑁(10, 25) 

d. Outliers were introduced in the sampling error, and spatial correlation was present (𝛾𝑒 = 0,05, 𝜌 =
0,1), where 𝑒𝑖𝑗~0,95 ∙ 𝑁(0, 4) + 0,05 ∙ 𝑁(10, 25) 

e. Outliers were introduced in the sampling error, and spatial correlation was present (𝛾𝑒 = 0,05, 𝜌 =
0,5), where 𝑒𝑖𝑗~0,95 ∙ 𝑁(0, 4) + 0,05 ∙ 𝑁(10, 25) 

f. Outliers were introduced in the sampling error, and spatial correlation was present (𝛾𝑒 = 0,05, 𝜌 =
0,85), where 𝑒𝑖𝑗~0,95 ∙ 𝑁(0, 4) + 0,05 ∙ 𝑁(10, 25) 

g. Outliers were introduced in the sampling error, and spatial correlation was present (𝛾𝑒 = 0,15, 𝜌 =
0,1), where 𝑒𝑖𝑗~0,85 ∙ 𝑁(0, 4) + 0,15 ∙ 𝑁(10, 25) 

h. Outliers were introduced in the sampling error, and spatial correlation was present (𝛾𝑒 = 0,15, 𝜌 =
0,5), where 𝑒𝑖𝑗~0,85 ∙ 𝑁(0, 4) + 0,15 ∙ 𝑁(10, 25) 

i. Outliers were introduced in the sampling error, and spatial correlation was present (𝛾𝑒 = 0,15, 𝜌 =
0,85), where 𝑒𝑖𝑗~0,85 ∙ 𝑁(0, 4) + 0,15 ∙ 𝑁(10, 25) 

 

Table 1. Simulation study scenario 

m total sample size 
sample size per 

area 
% Outlier 𝝆 

16 

100 5 

1 

0,1 

100 5 0,5 

100 5 0,85 

100 5 

5 

0,1 

100 5 0,5 

100 5 0,85 

100 5 

15 

0,1 

100 5 0,5 

 100 5 0,85 

64 

100 5 

1 

0,1 

100 5 0,5 

100 5 0,85 

100 5 

5 

0,1 

100 5 0,5 

100 5 0,85 

100 5 

15 

0,1 

100 5 0,5 

100 5 0,85 

 

For each replication, the mean of the response variable was estimated for every area using four estimation 

methods: EBLUP, SEBLUP, REBLUP, and SREBLUP. The performance of these estimators was evaluated 

using the Relative Bias (RB) and the Relative Root Mean Square Error (RRMSE), defined as follows: 

𝑅𝐵(𝑦̂̅𝑖) =
1

𝑅
∑

𝑦̂̅𝑖 − 𝑦̅𝑖

𝑦̅𝑖

𝑅

𝑟=1

 

𝑅𝑅𝑀𝑆𝐸(𝑦̂̅𝑖) = √
1

𝑅
∑ (

𝑦̂̅𝑖 − 𝑦̅𝑖

𝑦̅𝑖

)

2𝑅

𝑟=1
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where 𝑦̂̅𝑖 denotes the estimator of the true mean 𝑦̄𝑖 for area 𝑖, and 𝑅 = 50 is the number of Monte Carlo 

replications.  The number of Monte Carlo replications was set to 𝑅 = 50, which provides a reasonable balance 

between estimation stability and computational feasibility. RRMSE and bias estimates tend to stabilize at this 

replication level, whereas using a larger number of replications would substantially increase the computational 

burden, given the large number of scenarios considered. 

All simulations were conducted using the R statistical software. The estimation procedures were 

implemented using user-defined functions for robust and spatial small area estimation developed by [9]. To 

ensure reproducibility, a fixed random seed (047) was used throughout the simulation study. 

 

3. RESULT AND ANALYSIS 
3.1 Parameter Estimation Method 

Two different estimation approaches were applied for model parameter estimation, depending on the small 

area estimation method used. For the EBLUP method, parameters were estimated using the Restricted 

Maximum Likelihood (REML) approach[3]. REML was selected because it generally yielded unbiased estimates 

in linear mixed models. This finding was consistent with [3], who stated that REML estimates variance 

components and therefore produces unbiased variance estimators. 

In contrast, for the REBLUP, SEBLUP, and SREBLUP methods, parameter estimation was carried out 

using the Maximum Likelihood (ML) approach. The use of ML was motivated by its compatibility with 

estimation procedures involving influence functions, such as the Huber function, which are designed to mitigate 

the effect of outliers and handle spatial structure complexities [24]. The robustification process was performed 

directly at the likelihood estimation stage, which would have been challenging under REML due to the separation 

between fixed and random effects. Hence, ML was considered the most suitable method for implementing these 

estimators. 

Table 2 presents the parameter estimates for scenario 9 (m = 16, %p = 15, ρ = 0,85) out of the 18 scenarios 

analyzed, using four small area estimation methods: EBLUP, REBLUP, SEBLUP, and SREBLUP. The 

estimated parameters include the regression coefficients (β₀ and β₁), the area effect variance (σᵥ²), the error 

variance (σₑ²), and the spatial correlation (ρ). 

Table 2. Comparison of parameter estimates for Scenario 9 

 (𝑚 = 16, %outlier = 15%, ρ = 0,85) 

Parameter True Value EBLUP REBLUP SEBLUP SREBLUP 

𝛽0 100 102,09 101,19 102,08 101,18 

𝛽1 5 4,84 4,87 4,84 4,88 

𝜎𝑣
2 3 4,23 4,30 2,86 3,41 

𝜎𝑒
2 19,9 30,72 18,36 30,08 18,24 

𝜌 0,85   0,28 0,37 

Based on the results presented in Table 2, it can be seen that the estimates of parameters 𝛽0 and 𝛽1from 

the four methods are relatively close to the actual values. The SREBLUP method produces the estimates closest 

to the actual values, namely 101,18 for 𝛽0 and 4,88 for 𝛽1, followed by the REBLUP method. This indicates that 

all four methods are capable of estimating the regression parameters well, although there are slight differences in 

precision among the methods. 

Furthermore, for the variance of the area random effect (𝜎𝑣
2) with an actual value of 3, the SEBLUP method 

provides the closest estimate, which is 2,86, followed by the SREBLUP method with a value of 3,42, while the 

other methods tend to overestimate the variance. This may occur because SEBLUP and SREBLUP specifically 

incorporate spatial information. Spatial information helps the model distinguish between pure area variance and 

variation that arises due to spatial adjacency. For the error variance (𝜎𝑒
2) with an actual value of 19,9, the EBLUP 

and SEBLUP methods produce estimates that deviate considerably from the actual value. This indicates a 

potential difficulty of these models in accurately estimating the individual error variance under this scenario. 

Conversely, robust methods such as REBLUP and SREBLUP provide estimates that are closer to the actual 

value. 

3.2 Performance of Small Area Estimation 

Table 3 presents the average values of RRMSE and RB for the four methods with 16 areas. As shown in 

Table 3, the overall performance of the four methods was relatively similar, as indicated by the RRMSE and RB 

values that did not differ substantially from one another. Each method exhibited specific advantages depending 

on the combination of factors. The robust methods outperformed the non-robust ones under data conditions 

with 1% outliers, as reflected by lower RRMSE and RB values. The REBLUP method performed better than the 

other approaches, including those with spatial components, when the spatial correlation was low (ρ = 0,1). This 

occurred because the regular robust method could still manage low spatial correlation, allowing REBLUP to 

handle such conditions effectively. 
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Table 3. Average RRMSE and RB values for the EBLUP, REBLUP, SEBLUP, and SREBLUP models across 

16 areas in the simulation study 

 Scenario 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 

RRMSE (%) 

EBLUP 0,129 0,136 1,020 1,901 1,947 2,011 1,591 1,612 1,707 

REBLUP 0,113 0,095 0,440 1,227 1,273 1,380 1,174 1,207 1,363 

SEBLUP 0,115 0,140 1,018 1,811 1,865 1,948 1,508 1,531 1,645 

SREBLUP 0,113 0,101 0,305 1,227 1,229 1,170 1,169 1,209 1,285 

RB (%) 

EBLUP 1,013 1,015 1,020 1,317 1,319 1,323 0,835 0,836 0,844 

REBLUP 0,406 0,417 0,440 0,592 0,608 0,629 0,130 0,156 0,201 

SEBLUP 1,013 1,015 1,018 1,314 1,317 1,320 0,834 0,835 0,840 

SREBLUP 0,403 0,398 0,305 0,593 0,581 0,521 0,126 0,150 0,158 

As the level of spatial correlation increased, the RRMSE values of EBLUP and SEBLUP tended to rise. In 

contrast, REBLUP and SREBLUP remained consistent, showing lower RRMSE and RB values than the non-

robust methods. When the spatial correlation became high, SREBLUP showed a slight decline in performance. 

This was likely due to the trade-off between the robust and spatial components within the model. Nevertheless, 

the RB values of SREBLUP remained the smallest among all methods, demonstrating its ability to maintain 

unbiased estimates. 

The differences among methods became more pronounced when the proportion of outliers increased to 

5%. The RRMSE values of EBLUP and SEBLUP increased significantly, particularly under high spatial 

correlation (ρ = 0,85). This pattern indicated that moderate levels of contamination reduced the performance of 

non-robust models, especially in the presence of strong spatial dependence. In contrast, SREBLUP was able to 

resist the influence of outliers effectively. Both REBLUP and SREBLUP produced lower RRMSE values than 

the other methods, suggesting that robust approaches were more reliable under higher contamination levels, as 

they mitigated the influence of outliers on the estimation results. These findings were consistent with those 

reported by [8], who stated that classical methods often failed to produce accurate estimates when data contained 

extreme values. 

When the proportion of outliers further increased to 15%, the RRMSE differences among models became 

smaller. Although the gap between methods was narrower than that observed under moderate contamination, 

SREBLUP consistently achieved lower RRMSE values under both low and high spatial correlations. The most 

notable difference appeared in the RB values, where non-robust methods exhibited relatively high bias, while 

robust methods successfully suppressed the bias to near zero. This pattern was observed across all levels of spatial 

correlation. Therefore, robust methods, particularly SREBLUP, remained superior due to their ability to 

maintain low bias even under severe contamination. These results aligned with the findings of [8], which 

demonstrated that SREBLUP maintained estimation stability and accuracy under extreme conditions 

characterized by high outlier proportions and substantial spatial correlation among areas. Regarding spatial 

correlation, its influence was found to be significant for method performance. High spatial correlation indicated 

strong interdependence among neighbouring areas, meaning that information from one area could substantially 

contribute to estimating adjacent areas. 

 

Table 4. Average RRMSE and RB values for the EBLUP, REBLUP, SEBLUP, and SREBLUP models across 

64 areas in the simulation study 

 Scenario 

 S10 S11 S12 S13 S14 S15 S16 S17 S18 

RRMSE (%) 

EBLUP 1,505 1,512 1,541 1,963 2,022 2,012 1,601 1,661 1,682 

REBLUP 0,914 0,934 1,002 1,219 1,250 1,335 1,145 1,190 1,287 

SEBLUP 1,511 1,481 1,481 1,873 1,978 2,188 1,530 1,633 1,842 

SREBLUP 0,916 0,909 0,958 1,217 1,182 1,349 1,150 1,167 1,338 

RB (%) 

EBLUP 1,016 1,016 1,018 1,347 1,351 1,359 0,777 0,780 0,789 

REBLUP 0,433 0,440 0,459 0,603 0,620 0,657 0,040 0,060 0,105 

SEBLUP 1,016 1,015 1,012 1,345 1,349 1,364 0,776 0,780 0,793 

SREBLUP 0,430 0,416 0,430 0,596 0,567 0,583 0,038 0,031 0,049 

Table 4 presents the average RRMSE and RB values of the four estimation methods for 64 areas. The 

simulation results indicate that the RRMSE values are generally comparable to those obtained in the 16-area case, 
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while the RB values remain relatively stable across both area configurations. In both settings, the SREBLUP 

method consistently achieves the lowest RB values, approaching zero. 

The performance of all estimators is strongly influenced by the level of contamination and the degree of 

spatial correlation. Under low contamination, the EBLUP and SEBLUP methods tend to produce relatively 

higher RRMSE and bias values, whereas the robust methods demonstrate superior performance with smaller 

RRMSE and RB. Among the robust approaches, SREBLUP slightly outperforms REBLUP, particularly under 

moderate to high spatial correlation, reflecting the advantage of explicitly incorporating spatial dependence as 

correlation increases. 

When contamination increased to 5%, the differences among methods became more evident. The non-

robust methods, EBLUP and SEBLUP, were more affected by outliers, resulting in higher RRMSE and RB 

values. In contrast, the robust methods REBLUP and SREBLUP exhibited clear advantages in handling extreme 

observations. Among them, SREBLUP performed best under low to moderate spatial correlation, with lower 

RRMSE and RB compared to REBLUP. However, at high spatial correlation, the performance of SREBLUP 

slightly declined. This result suggests that spatially connected outliers may propagate their influence across 

neighbouring areas, thereby reducing estimation stability. 

At a high contamination level of 15%, the performance gap between robust and non-robust methods 

became even more pronounced. EBLUP and SEBLUP experienced further increases in RRMSE and RB 

compared to previous scenarios, likely due to the violation of their normality assumption caused by extreme 

outliers. Although SREBLUP maintained relatively good RRMSE performance, it was no longer superior to 

REBLUP under high spatial correlation. Nevertheless, SREBLUP still exhibited the smallest bias, indicating that 

it remained the least biased estimator among the four. 

A comparison between the 16 area and 64 area settings revealed an interesting pattern in RRMSE and RB 

dynamics. For the 16-area case, RRMSE values tended to be slightly higher across all methods, likely because a 

smaller number of areas led to greater between-area variability and less stable estimates. In contrast, with 64 areas, 

the larger total sample size per area resulted in more stable and consistent estimations. This stability was also 

reflected in RB values: areas with smaller sample sizes exhibited higher bias, whereas in the 64-area case, RB 

values approached zero, indicating less biased and more consistent estimates. 

The patterns observed in this study are largely consistent with the findings of [9] and [10]. In particular, the 

strong robustness of SREBLUP against outliers, as reflected by consistently low bias across contamination levels, 

confirms earlier evidence that robustification through influence functions effectively mitigates the impact of 

extreme observations. 

Moreover, our results extend their findings by explicitly examining the interaction between robustness and 

spatial dependence. While [9] reported stable performance of SREBLUP under contamination, the present 

study shows that under high spatial correlation, the propagation of spatially clustered outliers may slightly reduce 

efficiency, especially in terms of RRMSE. This highlights an important trade-off between robustness and spatial 

smoothing that was not explicitly addressed in previous studies. 

Overall, the results suggest that increasing the number of areas tends to reduce both RRMSE and RB, 

particularly for robust methods. Therefore, in small area estimation contexts involving data with outliers or strong 

spatial conditions, the REBLUP and SREBLUP methods are recommended due to their robustness and stability 

across varying conditions. Furthermore, these findings reinforce the conclusions of previous studies regarding 

the advantages of robust small area estimators, while also providing new insights into their behavior under varying 

levels of spatial correlation and different numbers of areas.  

 

3.3 ART ANOVA 

The comparative analysis of factor effects was conducted to identify which factors significantly influenced 

the response. ANOVA testing helped determine whether there were significant differences among the various 

groups being compared. The ANOVA test had several assumptions, such as independence, normality, and 

homogeneity of error variances, which needed to be satisfied. When these assumptions were violated, an 

alternative method, the Aligned Rank Transform (ART) ANOVA, was applied. Conversely, no further tests were 

conducted when the ART ANOVA results were not significant.  The ART ANOVA results in this study, based 

on the RRMSE values, were presented in Table 5  

Table 5. Results of the ART ANOVA based on RRMSE values 

 df  F-statistic p-value 

Method 3 1653,89922 < 2,22e-16 *** 

Area 1 1,68138 0,19484815     

% Outlier 2 1017,94862 < 2,22e-16 *** 

Rho  2 101,20939 < 2,22e-16 *** 

Method*area 3 9,70918 0,51034833 
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 df  F-statistic p-value 

Method*outlier 6 45,28144 <2,22e-16 *** 

area*outlier 2 46,80655  <2,22e-16 *** 

Method*rho 6 4,65566  0,00010178 *** 

area*rho 2 0,80818  0,44577059     

Outlier*rho 4 7,08884  1,1239e-05 *** 

Method*area*outlier  6 3,23503  0,00360106** 

Method*area*rho 6 1,72103  0,11201486     

Method*outlier*rho 12 2,86373  0,00062341 *** 

Area*outlier*rho 4 6,99296  1,3419e-05 *** 

Method*outlier*area*rho 12 2,54700  0,00238560** 

 

Beyond the statistical significance reported in Table 5, the ART ANOVA results reveal several important 

practical implications for small area estimation. The results indicate that prediction accuracy is primarily driven 

by the estimation method, the proportion of outliers, and the degree of spatial correlation. These factors jointly 

determine the relative performance of the competing SAE approaches. In particular, the significant interaction 

between method and outlier proportion confirms that robust methods respond differently to contamination 

compared to non-robust methods. Likewise, the interaction between method and spatial correlation highlights 

that incorporating spatial dependence alters estimator performance as spatial dependence strengthens. 

Several higher-order interactions are also significant, suggesting that the effectiveness of each method 

depends on the combined data conditions rather than on any single factor alone. While the number of areas 

does not exhibit a strong main effect, its interactions with outlier contamination and spatial correlation indicate 

that area configuration influences estimation accuracy indirectly. Overall, these findings emphasize that method 

selection in small area estimation should be guided by both the presence of outliers and the strength of spatial 

dependence, rather than relying on a single modelling assumption. 

 

  
Figure 2. Interaction plot among area, method, percentage of outliers, and spatial correlation 

 

Figure 2 illustrates the interaction among four key factors: estimation method, percentage of outliers, 

number of areas, and spatial correlation. The plot displays RRMSE values across increasing levels of outlier 

contamination, with separate panels corresponding to different area configurations and spatial correlation levels. 

The horizontal axis represents the percentage of outliers (1%, 5%, and 15%), while the vertical axis shows the 

RRMSE. Different coloured curves correspond to the four estimation methods (EBLUP, REBLUP, SEBLUP, 

and SREBLUP). Rows indicate the number of areas (16 and 64), and columns represent the level of spatial 

correlation (ρ = 0.1, 0.5, and 0.85). 
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Under low contamination, all methods yield relatively small RRMSE values; however, the non-robust 

methods (EBLUP and SEBLUP) already begin to exhibit greater instability across both area settings. As the 

percentage of outliers increases to moderate and high levels, these methods experience sharp increases in 

RRMSE, confirming their sensitivity to contamination. In contrast, the robust methods (REBLUP and 

SREBLUP) remain considerably more stable across all scenarios. 

SREBLUP shows clear advantages over REBLUP under moderate to high spatial correlation, where 

incorporating spatial dependence enables more effective smoothing and reduces the influence of extreme 

observations. Nevertheless, when spatial correlation becomes very high, the RRMSE of SREBLUP increases 

slightly, likely due to the propagation of spatially clustered outliers through neighbouring areas. 

The number of areas also affects estimation stability. The 16-area design exhibits larger fluctuations in 

RRMSE, reflecting greater between-area variability and limited information for borrowing strength. In contrast, 

the 64-area configuration provides a richer spatial structure, leading to more stable and consistent estimates across 

all methods. These findings are consistent with [9], which highlights the benefits of combining spatial information 

with robust estimation to improve prediction accuracy. 

From a practical perspective, the results suggest that under low contamination and weak spatial correlation, 

REBLUP is generally sufficient. However, under moderate to high contamination or increasing spatial 

dependence, SREBLUP emerges as the most reliable method. Overall, increasing the percentage of outliers 

consistently increases RRMSE, underscoring the importance of robust and spatially robust estimators in 

contaminated data settings. 

 

4. CONCLUSION 

The simulation results demonstrate that estimation accuracy in small area estimation is strongly influenced 

by the presence of outliers, the choice of estimation method, and the strength of spatial correlation. The ART 

ANOVA analysis confirms significant interactions between these factors, indicating that method performance 

cannot be assessed independently of data conditions. In particular, non-robust methods exhibit rapidly increasing 

RRMSE as contamination grows, while robust approaches maintain greater stability, especially when supported 

by an increasing number of areas. 

From a practical perspective, the findings provide clear guidance for method selection. EBLUP is 

appropriate only in settings with negligible contamination and weak spatial dependence. REBLUP performs 

reliably under low to moderate levels of outliers when spatial correlation is weak. In contrast, SREBLUP 

consistently delivers the most stable and accurate predictions under moderate to high contamination and 

increasing spatial correlation, benefiting from both robustness and spatial borrowing of strength. These 

recommendations are especially relevant for real data applications such as poverty mapping, small area income 

or expenditure estimation, and regional welfare analysis, where outliers and spatial dependence commonly arise. 

The simulation insights suggest that adopting robust and spatially explicit estimators can substantially reduce bias 

and improve reliability in such applications. 
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