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(SAE) approach is used to address this problem by utilizing auxiliary variables

to improve estimation efficiency. This study evaluates four SAE methods,
namely EBLUP, REBLUP, SEBLUP, and SREBLUP, through a simulation
study based on a nested error model across 18 scenarios that combine two area
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Outliers; 1s replicated 50 times. Model performance is evaluated using Relative Bias (RB)
Simulation; and Relative Root Mean Square Error (RRMSE). The results show that non-
Small Area Estimation; robust methods are sensitive to outliers, whereas robust methods produce more
Spatial Dependence; stable estimates. The SREBLUP method demonstrates the best performance
Spatial  Robust  Empirical ~ Best under low to moderate spatial correlation. In addition, an ANOVA test 1s
Linear Unbiased Prediction. conducted to identify factors that significantly affect the response.
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1. INTRODUCTION

Survey data are commonly available at higher administrative levels, such as national or provincial, but are
often unrehiable or unavailable for smaller regions due to limited sample sizes. Direct estimation at the district or
village level thus produces estimates with low precision [1]. Indirect estimation methods such as Small Area
Estimation (SAE) have been developed to address this issue. SAE improves estimation accuracy in small domains
by incorporating auxiliary variables correlated with the study variable [2].

Small area estimation models are typically divided into area-level models, such as the Fay-Herriot and unit-
level models [3]. Traditional SAE assumes independent random effects [4], but neighbouring areas often exhibit
spatial dependence i practice. To capture this, spatial effects can be introduced mto the model. The
incorporation of spatial correlation in SAE was first proposed by [5] cited in [6], and later refined by [7] through
the Spatial Empirical Best Linear Unbiased Prediction (SEBLUP) method, which outperforms the conventional
Empirical Best Linear Unbiased Prediction (EBLUP) when spatial relationships exist.
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Although these models perform well under normality assumptions, they are sensitive to outliers [8]. The
presence of outliers in the data can lead to Inaccurate estimates however, outliers often contain important
information and therefore cannot simply be discarded. Outliers can be addressed using a statistical approach
known as robust statistics, which 1s designed to handle outliers without the need to remove them. [9] first
addressed this issue using a robust M-quantile approach, followed by [8], who proposed the Robust EBLUP
(REBLUP). More recently, [9], [10] extended this framework into the Spatial Robust EBLUP (SREBLUP),
accommodating spatial correlation and outlier robustness. Many studies in Indonesia have applied Small Area
Estimation using the EBLUP, REBLUP, and SEBLUP methods [11], [12] [13], [14], [15].

It 1s essential to employ methods that can accommodate the presence of outliers and spatial dependence.
Outliers are often found in expenditure or income data, which are frequently used in poverty estimation. Such
data may also exhibit spatial dependence, as neighbouring regions tend to share similar socioeconomic patterns
due to geographical proximity. To obtain reliable estimates in the presence of outliers and spatial correlation,
methods such as SAE with robust and spatial approaches are highly needed.

Previous studies, particularly those employing the SREBLUP method, are relatively scarce and generally
consider only a single number of areas. This study extends prior research by comparing two different area
structures, namely a smaller number of areas (16) and a larger number of areas (64). In addition, the outlier
scenarlo 1s generated only in the error component, while the random effects are assumed to follow a normal
distribution with incorporated spatial impact. Outliers were introduced using a contaminated normal mechanism
by mixing standard normal errors with high-variance errors. This mechanism generates vertical outliers in the
response variable without affecting the explanatory variables.

This study aims to evaluate and compare the performance of four SAE methods EBLUP, REBLUP,
SEBLUP, and SREBLUP, through a simulation study. The simulation design explicitly considers key factors,
including two different numbers of small areas (16 and 64 areas), varying levels of outlier contamination in the
error component, and different degrees of spatial correlation incorporated in the area-level random effects.
Model performance is assessed using Relative Bias (RB) and Relative Root Mean Square Error (RRMSE). By
examining the results across these regimes, this study provides methodological insight into the relative advantages
of robust and spatially robust approaches and offers practical guidance for selecting between REBLUP and
SREBLUP under different data conditions. While also evaluating higher-order interactions among these factors
using ART ANOVA. The simulation study in this research aims to evaluate the performance of the models
under various conditions and to serve as a guide for selecting the most appropriate method for similar data
conditions.

2. RESEARCH METHOD
2.1 Small Area Estimation

According to the availability level of auxiliary variables, [3] classify SAE models into two types: area level
models and unit level models.
Area Level Model
The area level model is applied when auxiliary variables are only available at the area level, making unit
level modelling infeasible. Let x; = (zy;, ...,Zpi)T be a vector of auxiliary variables for area i, and y; the
parameter to be estimated, which 1s assumed to have a linear relationship with x;. The model 1s expressed as:
Vi =x’{ﬁ+bivi,l. = 1,...,m (1)
where b; is a positive constant, 8 = (S, ..., ,Bp)Tis ap X lvector of fixed parameters, and v; represents random
effects that are assumed to be independently and identically distributed as v; ~ N (0, 62). The term m denotes
the total number of small areas.
The area level SAE model was introduced by [16] to estimate average income in small areas. Their study
assumed normally distributed income. Let ; = ?’l denote the direct estimator, then:
)A/i=9i+ei,i=1,...,m (2)
where e; 1s the sampling error, assumed to be normally distributed and mutually independent.
By combining equations (1) and (2), the Fay-Herriot (FH) model is obtained:

9,: :xfﬁi—bivi +ei,i = 1,...,m (3)
Unit-Level Model
The unit-level model is used when auxiliary variables are available at the observation (unit) level. Let y;;
denote the response variable for area i and unit j, and X;; = (X1, -, X; jp)Tthc corresponding auxiliary variable
vector. The model can be expressed as:
_ yT P Ci—
yij—Xijﬂ+vi+eij,]—1,...,Ni, l—1,...,m (4)
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Here, v; represents the area-specific random effect, assumed to follow an independent and identically
distributed normal distribution v; ~ N(0, 62), and ¢; i~ N(0, 62) is the individual error term, independent of
Vj.

2.2 Robust Empirical Best Linear Unbiased Prediction

The model-based small area estimation approach using unit-level data adopts the framework proposed by
[17]. This model is a linear mixed model with area specific random effect, expressed as follows.

y=XB+Zv+e (5)

where B is a p X 1 vector of regression coefficients, v ~ N(0,G) is a m X 1 vector of area-specific random
effects,and e ~ N(0,R = 621I) isa N X 1 vector of sampling errors. Iy denotes an identity matrix of dimension
N. The covariance matrices G and R depend on the variance parameter vector 8 = (62, 62).

When the area effects are assumed to be independent, the covariance matrix of the random effects
simplifies to G = o2I,,,. Since the random effects ¥ and the sampling errors e are independent, the covariance
matrix of y is defined as V. =R + ZGZ T Therefore, the Empirical Best Linear Unbiased Prediction (EBLUP)

of the small area mean y; can be expressed as follows.

yiorvP = Nt Z yij + Z Jij= N' Z yij + Z(XIT,B +7;) (6)

JES; JET; JES; JET;

with B = B() being the empirical best linear unbiased estimator (EBLUE) of B, and ©(8) being the empirical
best linear unbiased predictor (EBLUP) of v [18]. The vector 0 is estimated using the maximum likelihood
estimator (ML) or the restricted maximum likelihood estimator (REML) for 8 = (02, ) [19]. The variable y; |
represents the response value y observed for the j-th unit in the i-th small area, while ¥;; denotes the estimated
response value y for the j-th unit that 1s not included in the sample within the i-th small area.

The Robust Empirical Best Linear Unbiased Prediction (REBLUP) method was first introduced by [8].
They developed a robust version of the traditional Empirical Best Linear Unbiased Prediction (EBLUP) that 1s
resistant to the influence of outliers. Robust estimators of § and v are obtained by applying an influence function
P () to the residuals in the likelihood-based estimating equations. The REBLUP estimator for the small area
means y; in area i 1s defined as:

FEERE = NS i+ ) (B + o) @

Jjesi Jjer;

[2] applied an influence function P to the residuals in the maximum likelihood estimating equations and
obtained the robust estimators E‘I’ and DY through an iterative algorithm.

2.8 Spatial Robust Empirical Best Linear Unbiased Prediction
The spatial SAE model incorporates spatial effects into the area-specific random effects using a
Simultaneously Autoregressive (SAR) process [7]
v =pWv +u,u ~ N(0,c2l) (8)
where p 1s the spatial autoregressive coefficient, W is the spatial weight matrix representing area
neighbourhoods, and uis the vector of independent area-specific random errors. This can be rewritten as:
v=~0-pW) u 9)
yielding the SAR based SAE. model:
y=XB+ZU—-pW) lu+e (10)

Variance components estimation: g, and pare estimated under normality assumptions using ML, or REML.
The model for the Spatial Empirical Best Linear Unbiased Prediction (SEBLUP) can be formulated as
YIEBLUP = ;B + b]GZ"V ' (y — XB) (11)
with G = o[(1 — pW)((1 — pWT)] tand V =R+ ZGZ" = diag(c?) + Zo2[(1— pW)(I —
pWT)]71ZT. The vector bl indicates the i-th area.

Following the approach of [2], a robustification procedure was applied to the maximum likelihood (ML)
equations for estimating 8, 8, and p (under the spatial correlation assumption), resulting in

a(B) = XTV-1UZY(r) = 0 12)
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v v
o(6)) = Y () UZV-1 6—91V‘1U%1,b(r) s (V—l a—glK) ~0 (13)
Q(p) = sz(r)U%v—lg—Zv—lu%zp(r) —tr (v—l‘;—zx) —0 (14)

1
where r = U 2(y — Xf) and U is a diagonal matrix with diagonal elements equal to those of the diagonal
of V. K is also a diagonal matrix defined as K = E (2 (t))1,,, where t follows a standard normal distribution.
The estimation of spatial random effects under robustness is performed using the Newton-Raphson algorithm,
as introduced by [20], to solve the following equation:

ZTR 2Y(R2(y — XB — ZTR 7 <R‘§(y ~XB - Zv)) ~ 6 (67) = 0 (15)

To mitigate the influence of outliers, robust estimation of the small area mean is obtained using a robust
maximum likelihood approach for parameters B, 8, and p. Consequently, the Spatial Robust Empirical Best
Linear Unbiased Prediction (SREBLUP) model for the mean of area i is formulated as:

il:S‘REBLUP — Ni_l Zy] + Z(x}"ﬁlp,sp + i]\illJ,Sp)

JES; JET;

=N (ni}-’si + (N —ny) (ﬂiﬁ(w'sm + ﬁi(w'sp))) (16)

The superscript P denotes dependence on the influence function, while the superscript sp indicates that the

parameters depend on the spatial autocorrelation parameter p [10].
Further details on the SREBLUP model can be found in [9].

2.4 Simulatio Design

This study employed simulated data modified from the work of [9]. The simulation was conducted to
evaluate the performance of several models under different scenarios. The experimental design was adapted
from previous studies with several modifications. Specifically, it was assumed that no outliers were present in the
random effects (v;), while outliers were introduced only in the individual error component (e;;).

A synthetic population consisting of N = 1600 and N = 6400 units was generated and divided into m =
16 small areas, each containing N; = 100 units and a sample size of n; = 5 for every area i = 1, ..., m. The data
were generated according to the following nested-error regression model [21], [22], [23] :

yij =100 + 5x]- + Vi + ei]',
where v; ~ N(0,G) and e;; ~ (1 —¥.)N(0,4) + y.N(10,25). The covariance matrix G is defined as
G = G2[(I — pW) (I — pW™)] ™,
using 02 = 3, where p represents the spatial autocorrelation parameter and W is the spatial weight matrix. Figure
1 shows the underlying neighborhood structure of the areas, which is the rook structure. In this structure, areas
are considered neighbors if they share a common side.

(a) (b)
Figure 1. Neighborhood structure for 16 areas (a) and 64 areas (b)
The spatial correlation coefficient p was varied to represent three conditions: low (p = 0.1), moderate (p =
0.5), and high (p = 0.85). The auxiliary variable x was generated from a lognormal distribution with a mean of
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Uy = 1 and a standard deviation of g, = 0.5. The contamination proportion ¥, controlled the level of outliers,

set at 19, 5%, and 15%, yielding 18 simulation scenarios. Each scenario was replicated 50 times. In total, three

spatial correlation levels, three outlier proportions, and two area settings were imvestigated.
The specific scenarios were as follows:

a.  Outliers were introduced in the sampling error, and spatial correlation was present (y, = 0,01, p =
0,1), where €;;~0,99 - N(0,4) + 0,01 - N(10, 25)
b. Outliers were introduced in the sampling error, and spatial correlation was present (y, = 0,01, p =
0,5), where €;;~0,99 - N(0,4) + 0,01 - N(10,25)
¢. Outliers were introduced in the sampling error, and spatial correlation was present (y, = 0,01, p =
0,85), where €;;~0,99 - N(0,4) + 0,01 - N(10, 25)
d.  Outliers were introduced in the sampling error, and spatial correlation was present (y, = 0,05,p =
0,1), where el-j~0,95 -N(0,4) +0,05-N(10,25)
e.  Outliers were introduced in the sampling error, and spatial correlation was present (y, = 0,05,p =
0,5), where €;;~0,95 - N(0,4) + 0,05 - N(10, 25)
f.  Outliers were introduced in the sampling error, and spatial correlation was present (y, = 0,05,p =
0,85), where €;;~0,95 - N(0,4) + 0,05 N(10, 25)
g.  Outliers were introduced in the sampling error, and spatial correlation was present (y, = 0,15,p =
0,1), where e;;~0,85 - N(0,4) + 0,15 N(10, 25)
h. Outliers were introduced in the sampling error, and spatial correlation was present (y, = 0,15,p =
0,5), where €;;~0,85- N(0,4) + 0,15 - N(10, 25)
1. Outliers were introduced in the sampling error, and spatial correlation was present (y, = 0,15,p =
0,85), where €;;~0,85 - N(0,4) + 0,15 N(10, 25)
Table 1. Simulation study scenario
m total sample size sample size per 9% Outlier p
area
100 5 0,1
100 5 1 0,5
100 5 0,85
16 100 5 0,1
100 5 5 0,5
100 5 0,85
100 5 0,1
100 5 15 0,5
100 5 0,85
100 5 0,1
100 5 1 0,5
100 5 0,85
100 5 0,1
64 100 5 5 0,5
100 5 0,85
100 5 0,1
100 5 15 0,5
100 5 0,85

For each replication, the mean of the response variable was estimated for every area using four estimation
methods: EBLUP, SEBLUP, REBLUP, and SREBLUP. The performance of these estimators was evaluated
using the Relative Bias (RB) and the Relative Root Mean Square Error (RRMSE), defined as follows:

R A
- IOy — ¥
RB(y:) = _Zf
erl Vi

RRMSE (y;) =
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where ¥; denotes the estimator of the true mean y; for area i, and R = 50 is the number of Monte Carlo
replications. The number of Monte Carlo replications was set to R = 50, which provides a reasonable balance
between estimation stability and computational feasibility. RRMSE and bias estimates tend to stabilize at this
replication level, whereas using a larger number of replications would substantially increase the computational
burden, given the large number of scenarios considered.

All simulations were conducted using the R statistical software. The estimation procedures were
implemented using user-defined functions for robust and spatial small area estimation developed by [9]. To
ensure reproducibility, a fixed random seed (047) was used throughout the simulation study.

3. RESULT AND ANALYSIS
3.1 Parameter Estimation Method

Two different estimation approaches were applied for model parameter estimation, depending on the small
area estimation method used. For the EBLUP method, parameters were estimated using the Restricted
Maximum Likelihood (REML) approach[3]. REML was selected because it generally yielded unbiased estimates
in linear mixed models. This finding was consistent with [3], who stated that REML estimates variance
components and therefore produces unbiased variance estimators.

In contrast, for the REBLUP, SEBLUP, and SREBLUP methods, parameter estimation was carried out
using the Maximum Likelihood (ML) approach. The use of ML was motivated by its compatibility with
estimation procedures involving influence functions, such as the Huber function, which are designed to mitigate
the effect of outliers and handle spatial structure complexities [24]. The robustification process was performed
directly at the likelihood estimation stage, which would have been challenging under REML due to the separation
between fixed and random effects. Hence, ML was considered the most suitable method for implementing these
estimators.

Table 2 presents the parameter estimates for scenario 9 (m = 16, %p = 15, p = 0,85) out of the 18 scenarios
analyzed, using four small area estimation methods: EBLUP, REBLUP, SEBLUP, and SREBLUP. The
estimated parameters include the regression coefficients (Bo and 1), the area effect variance (0,?), the error
variance (02), and the spatial correlation (p).

Table 2. Comparison of parameter estimates for Scenario 9

(m = 16, %outlier = 15%, p = 0,85)

Parameter True Value EBLUP REBLUP SEBLUP SREBLUP
Bo 100 102,09 101,19 102,08 101,18
By 5 4,84 4,87 4,84 4,88
ol 3 4,23 4,30 2,86 3,41
ol 19,9 30,72 18,36 30,08 18,24
p 0,85 0,28 0,37

Based on the results presented in Table 2, it can be seen that the estimates of parameters f, and f;from
the four methods are relatively close to the actual values. The SREBLUP method produces the estimates closest
to the actual values, namely 101,18 for 8, and 4,88 for B4, followed by the REBLUP method. This indicates that
all four methods are capable of estimating the regression parameters well, although there are slight differences in
precision among the methods.

Furthermore, for the variance of the area random effect (6;2) with an actual value of 8, the SEBLUP method
provides the closest estimate, which is 2,86, followed by the SREBLUP method with a value of 3,42, while the
other methods tend to overestimate the variance. This may occur because SEBLUP and SREBLUP specifically
incorporate spatial information. Spatial information helps the model distinguish between pure area variance and
variation that arises due to spatial adjacency. For the error variance (092) with an actual value of 19,9, the EBLUP
and SEBLUP methods produce estimates that deviate considerably from the actual value. This indicates a
potential difficulty of these models in accurately estimating the individual error variance under this scenario.
Conversely, robust methods such as REBLUP and SREBLUP provide estimates that are closer to the actual
value.

3.2 Performance of Small Area Estimation

Table 3 presents the average values of RRMSE and RB for the four methods with 16 areas. As shown in
Table 3, the overall performance of the four methods was relatively similar, as indicated by the RRMSE and RB
values that did not differ substantially from one another. Each method exhibited specific advantages depending
on the combination of factors. The robust methods outperformed the non-robust ones under data conditions
with 196 outliers, as reflected by lower RRMSE and RB values. The REBLUP method performed better than the
other approaches, including those with spatial components, when the spatial correlation was low (p = 0,1). This
occurred because the regular robust method could still manage low spatial correlation, allowing REBLUP to
handle such conditions effectively.
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Table 3. Average RRMSE and RB values for the EBLUP, REBLUP, SEBLUP, and SREBLUP models across
16 areas in the simulation study

Scenario
S1 S2 S3 S4 S5 S6 S7 S8 S9
RRMSE (%)

EBLUP 0,129 0,136 1,020 1,901 1,947 2,011 1,591 1,612 1,707
REBLUP 0,113 0,095 0,440 1,227 1,273 1,380 1,174 1,207 1,363
SEBLUP 0,115 0,140 1,018 1,811 1,865 1,948 1,508 1,531 1,645

SREBLUP 0,113 0,101 0,305 1,227 1,229 1,170 1,169 1,209 1,285
RB (%)

EBLUP 1,013 1,015 1,020 1,317 1,319 1,323 0,835 0,836 0,844
REBLUP 0,406 0,417 0,440 0,592 0,608 0,629 0,130 0,156 0,201
SEBLUP 1,013 1,015 1,018 1,314 1,317 1,320 0,834 0,835 0,840

SREBLUP 0,403 0,398 0,305 0,593 0,581 0,521 0,126 0,150 0,158

As the level of spatial correlation increased, the RRMSE values of EBLUP and SEBLUP tended to rise. In
contrast, REBLUP and SREBLUP remained consistent, showing lower RRMSE and RB values than the non-
robust methods. When the spatial correlation became high, SREBLUP showed a slight decline in performance.
This was likely due to the trade-off between the robust and spatial components within the model. Nevertheless,
the RB values of SREBLUP remained the smallest among all methods, demonstrating its ability to maintain
unbiased estimates.

The differences among methods became more pronounced when the proportion of outliers increased to
5%. The RRMSE values of EBLUP and SEBLUP increased significantly, particularly under high spatial
correlation (p = 0,85). This pattern indicated that moderate levels of contamination reduced the performance of
non-robust models, especially in the presence of strong spatial dependence. In contrast, SREBLUP was able to
resist the influence of outliers effectively. Both REBLUP and SREBLUP produced lower RRMSE values than
the other methods, suggesting that robust approaches were more reliable under higher contamination levels, as
they mitigated the influence of outliers on the estimation results. These findings were consistent with those
reported by [8], who stated that classical methods often failed to produce accurate estimates when data contained
extreme values.

‘When the proportion of outliers further increased to 15%, the RRMSE differences among models became
smaller. Although the gap between methods was narrower than that observed under moderate contamination,
SREBLUP consistently achieved lower RRMSE values under both low and high spatial correlations. The most
notable difference appeared in the RB values, where non-robust methods exhibited relatively high bias, while
robust methods successfully suppressed the bias to near zero. This pattern was observed across all levels of spatial
correlation. Therefore, robust methods, particularly SREBLUP, remained superior due to their ability to
maintain low bias even under severe contamination. These results aligned with the findings of [8], which
demonstrated that SREBLUP maintained estimation stability and accuracy under extreme conditions
characterized by high outlier proportions and substantial spatial correlation among areas. Regarding spatial
correlation, its influence was found to be significant for method performance. High spatial correlation indicated
strong interdependence among neighbouring areas, meaning that information from one area could substantially
contribute to estimating adjacent areas.

Table 4. Average RRMSE and RB values for the EBLUP, REBLUP, SEBLUP, and SREBLUP models across
64 areas in the simulation study

Scenario
S10 S11 S12 S13 S14 S15 S16 S17 S18
RRMSE (%)

EBLUP 1,505 1,512 1,541 1,963 2,022 2,012 1,601 1,661 1,682
REBLUP 0,914 0,934 1,002 1,219 1,250 1,335 1,145 1,190 1,287
SEBLUP 1,511 1,481 1,481 1,873 1,978 2,188 1,530 1,633 1,842

SREBLUP 0,916 0,909 0,958 1,217 1,182 1,349 1,150 1,167 1,338
RB (%)

EBLUP 1,016 1,016 1,018 1,347 1,351 1,359 0,777 0,780 0,789
REBLUP 0,433 0,440 0,459 0,603 0,620 0,657 0,040 0,060 0,105
SEBLUP 1,016 1,015 1,012 1,345 1,349 1,364 0,776 0,780 0,793

SREBLUP 0,430 0,416 0,430 0,596 0,567 0,583 0,038 0,031 0,049
Table 4 presents the average RRMSE and RB values of the four estimation methods for 64 areas. The
simulation results indicate that the RRMSE values are generally comparable to those obtained in the 16-area case,
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while the RB values remain relatively stable across both area configurations. In both settings, the SREBLUP
method consistently achieves the lowest RB values, approaching zero.

The performance of all estimators 1s strongly influenced by the level of contamination and the degree of
spatial correlation. Under low contamination, the EBLUP and SEBLUP methods tend to produce relatively
higher RRMSE and bias values, whereas the robust methods demonstrate superior performance with smaller
RRMSE and RB. Among the robust approaches, SREBLUP slightly outperforms REBLUP, particularly under
moderate to high spatial correlation, reflecting the advantage of explicitly incorporating spatial dependence as
correlation increases.

When contamination increased to 5%, the differences among methods became more evident. The non-
robust methods, EBLUP and SEBLUP, were more affected by outliers, resulting in higher RRMSE and RB
values. In contrast, the robust methods REBLUP and SREBLUP exhibited clear advantages in handling extreme
observations. Among them, SREBLUP performed best under low to moderate spatial correlation, with lower
RRMSE and RB compared to REBLUP. However, at high spatial correlation, the performance of SREBLUP
slightly declined. This result suggests that spatially connected outliers may propagate their influence across
neighbouring areas, thereby reducing estimation stability.

At a high contamination level of 15%, the performance gap between robust and non-robust methods
became even more pronounced. EBLUP and SEBLUP experienced further increases in RRMSE and RB
compared to previous scenarios, likely due to the violation of their normality assumption caused by extreme
outliers. Although SREBLUP maintained relatively good RRMSE performance, it was no longer superior to
REBLUP under high spatial correlation. Nevertheless, SREBLUP still exhibited the smallest bias, indicating that
it remained the least biased estimator among the four.

A comparison between the 16 area and 64 area settings revealed an interesting pattern in RRMSE and RB
dynamics. For the 16-area case, RRMSE values tended to be slightly higher across all methods, likely because a
smaller number of areas led to greater between-area variability and less stable estimates. In contrast, with 64 areas,
the larger total sample size per area resulted in more stable and consistent estimations. This stability was also
reflected in RB values: areas with smaller sample sizes exhibited higher bias, whereas in the 64-area case, RB
values approached zero, indicating less biased and more consistent estimates.

The patterns observed in this study are largely consistent with the findings of [9] and [10]. In particular, the
strong robustness of SREBLUP against outliers, as reflected by consistently low bias across contamination levels,
confirms earlier evidence that robustification through influence functions effectively mitigates the impact of
extreme observations.

Moreover, our results extend their findings by explicitly examining the interaction between robustness and
spatial dependence. While [9] reported stable performance of SREBLUP under contamination, the present
study shows that under high spatial correlation, the propagation of spatially clustered outliers may slightly reduce
efficiency, especially in terms of RRMSE. This highlights an important trade-off between robustness and spatial
smoothing that was not explicitly addressed in previous studies.

Overall, the results suggest that increasing the number of areas tends to reduce both RRMSE and RB,
particularly for robust methods. Therefore, in small area estimation contexts involving data with outliers or strong
spatial conditions, the REBLUP and SREBLUP methods are recommended due to their robustness and stability
across varying conditions. Furthermore, these findings reinforce the conclusions of previous studies regarding
the advantages of robust small area estimators, while also providing new insights into their behavior under varying
levels of spatial correlation and different numbers of areas.

3.3 ART ANOVA

The comparative analysis of factor effects was conducted to identify which factors significantly influenced
the response. ANOVA testing helped determine whether there were significant differences among the various
groups being compared. The ANOVA test had several assumptions, such as independence, normality, and
homogeneity of error variances, which needed to be satisfied. When these assumptions were violated, an
alternative method, the Aligned Rank Transform (ART) ANOVA, was applied. Conversely, no further tests were
conducted when the ART ANOVA results were not significant. The ART ANOVA results in this study, based
on the RRMSE values, were presented in Table 5

Table 5. Results of the ART ANOVA based on RRMSE values

df F-statistic Dp-value
Method 3 1653,89922 <2,922¢-16 ***
Area 1 1,68138 0,19484815
% Outlier 2 1017,94862 <2,22e-16 ***
Rho 2 101,20939 <2,22e-16 ***
Method *area ¢ 9,70918 0,51034833
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df F-statistic p-value
Method *outlier 6 45,28144 <2,22e-16 ***
area” outlier 2 46,80655 <2,22e-16 ***
Method *rho 6 4,65566 0,00010178 ***
area“rho 2 0,80818 0,44577059
Outlier*rho 4 7,08884 1,1239e-05 ***
Method *area* outlier 6 3,23503 0,00360106™*
Method *area*rho 6 1,72103 0,11201486
Method *outlier “rho 12 2,86373 0,00062341 **~
Area”outlier*rho 4 6,99296 1,3419e-05 ***
Method *outlier “area*rho 12 2,54700 0,00238560* *

Beyond the statistical significance reported in Table 5, the ART ANOVA results reveal several important
practical implications for small area estimation. The results indicate that prediction accuracy is primarily driven
by the estimation method, the proportion of outliers, and the degree of spatial correlation. These factors jointly
determine the relative performance of the competing SAE approaches. In particular, the significant interaction
between method and outlier proportion confirms that robust methods respond differently to contamination
compared to non-robust methods. Likewise, the interaction between method and spatial correlation highlights
that incorporating spatial dependence alters estimator performance as spatial dependence strengthens.

Several higher-order interactions are also significant, suggesting that the effectiveness of each method
depends on the combined data conditions rather than on any single factor alone. While the number of areas
does not exhibit a strong main effect, its interactions with outlier contamination and spatial correlation indicate
that area configuration influences estimation accuracy indirectly. Overall, these findings emphasize that method
selection in small area estimation should be guided by both the presence of outliers and the strength of spatial
dependence, rather than relying on a single modelling assumption.
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Figure 2. Interaction plot among area, method, percentage of outliers, and spatial correlation

Figure 2 illustrates the interaction among four key factors: estimation method, percentage of outlers,
number of areas, and spatial correlation. The plot displays RRMSE values across increasing levels of outlier
contamination, with separate panels corresponding to different area configurations and spatial correlation levels.
The horizontal axis represents the percentage of outliers (19, 5%, and 15%), while the vertical axis shows the
RRMSE. Different coloured curves correspond to the four estimation methods (EBLUP, REBLUP, SEBLUP,
and SREBLUP). Rows indicate the number of areas (16 and 64), and columns represent the level of spatial
correlation (p = 0.1, 0.5, and 0.85).
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Under low contamination, all methods yield relatively small RRMSE values; however, the non-robust
methods (EBLUP and SEBLUP) already begin to exhibit greater instability across both area settings. As the
percentage of outliers increases to moderate and high levels, these methods experience sharp increases in
RRMSE, confirming their sensitivity to contamination. In contrast, the robust methods (REBLUP and
SREBLUP) remain considerably more stable across all scenarios.

SREBLUP shows clear advantages over REBLUP under moderate to high spatial correlation, where
mcorporating spatial dependence enables more effective smoothing and reduces the influence of extreme
observations. Nevertheless, when spatial correlation becomes very high, the RRMSE of SREBLUP increases
slightly, likely due to the propagation of spatially clustered outliers through neighbouring areas.

The number of areas also affects estimation stability. The 16-area design exhibits larger fluctuations in
RRMSE, reflecting greater between-area variability and limited information for borrowing strength. In contrast,
the 64-area configuration provides a richer spatial structure, leading to more stable and consistent estimates across
all methods. These findings are consistent with [9], which highlights the benefits of combining spatial information
with robust estimation to improve prediction accuracy.

From a practical perspective, the results suggest that under low contamination and weak spatial correlation,
REBLUP is generally sufficient. However, under moderate to high contamination or increasing spatial
dependence, SREBLUP emerges as the most reliable method. Overall, increasing the percentage of outliers
consistently increases RRMSE, underscoring the importance of robust and spatially robust estimators in
contaminated data settings.

4. CONCLUSION

The simulation results demonstrate that estimation accuracy in small area estimation is strongly influenced
by the presence of outliers, the choice of esimation method, and the strength of spatial correlation. The ART
ANOVA analysis confirms significant interactions between these factors, indicating that method performance
cannot be assessed independently of data conditions. In particular, non-robust methods exhibit rapidly increasing
RRMSE as contamination grows, while robust approaches maintain greater stability, especially when supported
by an increasing number of areas.

From a practical perspective, the findings provide clear guidance for method selection. EBLUP is
appropriate only in settings with negligible contamination and weak spatial dependence. REBLUP performs
reliably under low to moderate levels of outliers when spatial correlation is weak. In contrast, SREBLUP
consistently delivers the most stable and accurate predictions under moderate to high contamination and
mcreasing spatial correlation, benefiting from both robustness and spatial borrowing of strength. These
recommendations are especially relevant for real data applications such as poverty mapping, small area income
or expenditure estimation, and regional welfare analysis, where outliers and spatial dependence commonly arise.
The simulation insights suggest that adopting robust and spatially explicit estimators can substantially reduce bias
and improve reliability in such applications.
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