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Modeling rainfall is crucial for hydrological studies and climate adaptation, 
especially in regions with complex topography such as the Toba Lake area, 
North Sumatra. Classical probability distributions often struggle to represent 
skewness, heavy tails, and variability observed in tropical rainfall. This study 
explores APTXL distribution as a flexible two-parameter model. Through the 
alpha power transformation, APTXL extends the X-Lindley distribution by 
introducing an additional shape parameter, allowing better accommodation of 
asymmetrical and extreme values while maintaining analytical tractability. 
Statistical properties are derived, and parameters are estimated using maximum 
likelihood. The model is applied to a long-term dataset from 13 meteorological 
stations, covering 408 monthly observations per station. Comparative analysis 
against Gamma, Lognormal, and Generalized Extreme Value distributions 
using multiple goodness-of-fit criteria indicates that APTXL provides 
consistently improved performance. These results suggest APTXL as a practical 
tool for rainfall modeling and water-resource applications in climate-sensitive 
regions. 
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1. INTRODUCTION 

Rainfall is a fundamental component of the Earth’s climate system, playing a pivotal role in hydrological 
processes [1], [2], water resource sustainability [3], agricultural productivity [4], urban planning [5], and disaster 
risk mitigation [6]. In tropical countries such as Indonesia, rainfall exhibits high spatiotemporal variability and 
frequent extreme events [7], [8], which introduce significant uncertainty into water management and climate 
adaptation planning.  This variability complicates the prediction of hydrological responses and increases the risk 
of floods, landslides, and droughts [9], [10], especially in ecologically sensitive and economically vital regions such 
as the Toba Lake area in North Sumatra. 

The Toba Lake region is characterized by a complex hydrometeorological setting influenced by volcanic 
topography, steep elevation gradients, and a large caldera lake that affects local weather dynamics [11], [12]. 
Monthly rainfall in this area shows substantial temporal fluctuation and spatial heterogeneity [13], often with high 
positive skewness and heavy-tailed distributions. These statistical characteristics present significant challenges for 
traditional probabilistic models, which generally rely on assumptions of symmetry and light-tailed behavior. 

Rainfall modeling is not only of academic interest but also directly informs practical decision-making 
systems, including reservoir operation planning [14], agricultural scheduling [15], [16], and hydrometeorological 
early warning systems [17], [18]. Accurate representation of extremes is essential for managing flood risk [19], 
[20], while reliable estimates of central tendencies support water allocation and long-term resource planning [21], 
[22]. Classical probability distributions such as the Gamma [23], Lognormal [24], and Generalized Extreme 
Value [25] have been widely employed in modeling rainfall data due to their mathematical simplicity and 
analytical convenience. However, their ability to capture the full complexity of empirical rainfall distributions is 
often limited [26], particularly in tropical regions where extremes and distributional asymmetry are common. To 
overcome these shortcomings, more flexible approaches like mixture distributions [27], [28] and copula-based 
models [29], [30] have been explored, offering improved fit at the expense of substantially higher computational 
demands. These limitations underscore the need for more flexible probability models that can provide a better 
fit to observed data and enhance statistical inference. 

To address this gap, the present study investigates the Alpha Power Transformed X-Lindley (APTXL) 
distribution [31], a two-parameter model derived from the X-Lindley distribution through an alpha power 
transformation. Through this transformation, an additional shape parameter is introduced, enabling the model 
to accommodate a broader range of skewness and kurtosis. Unlike the Alpha Power Transformed Lindley (APT–
Lindley) distribution [32], which modifies the standard Lindley baseline, APTXL is constructed from the X-
Lindley distribution, thereby offering distinct flexibility in handling heavier tails and asymmetry while still 
maintaining analytical tractability. This distinction is important because the X-Lindley baseline itself has different 
tail properties compared to the Lindley distribution, which makes the transformed version (APTXL) better suited 
for highly variable rainfall data. 

This study presents an analytical investigation of the statistical properties of the APTXL distribution, 
including its probability density function, cumulative distribution function, and quantile function. Moreover, the 
estimation performance of the model parameters using Maximum Likelihood Estimation (MLE) is evaluated 
through simulation experiments under varying sample sizes. The practical motivation for applying APTXL arises 
from evidence that classical distributions such as Gamma, Lognormal, and Generalized Extreme Value often 
underestimate rainfall extremes and fail to capture heavy skewness in tropical climates [23], [24], [26]. Such 
shortcomings have been documented in various studies of Indonesia and other tropical regions, where rainfall 
exhibits marked asymmetry and frequent extreme values [9], [10]. To evaluate its effectiveness in this context, 
this study applies the APTXL model to long-term monthly rainfall data from the Toba Lake region and compares 
its performance with Gamma, Lognormal, and GEV distributions using multiple goodness-of-fit metrics (AIC, 
RMSE, KS, and CM). 

Recent advances in alpha-power–type transformations have considerably broadened the Lindley/X-Lindley 
family for environmental applications. Beyond the classical Lindley distribution, newer variants such as the alpha 
power transformation of the Lindley distribution (APTLD) formalize a multi-parameter generalization with richer 
tail behavior and flexible hazards, demonstrating improved fits on skewed data sets [33]. Related extensions 
include the alpha power–transformed extended power Lindley (APTEPL) model, which shows tangible gains 
over earlier Lindley-type baselines [34]. Within the X-Lindley lineage, 2024 developments such as the power 
new X-Lindley distribution likewise reinforce the utility of power-transformation strategies to control skewness 
and kurtosis with minimal parameter overhead [35]. These advances align with our choice to employ an alpha-
power transformation over the X-Lindley baseline for tropical rainfall, where right-tail realism is essential. 
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Parallel progress has occurred in stochastic rainfall modelling. A contemporary review synthesizes temporal 
and space–time point-process formulations and fitting strategies, underscoring the role of mechanistic structure 
when representing extremes [36]. New generators—e.g., STORM v.2—enable controlled exploration of climate-
change impacts at hydrologically relevant scales [37], and serial-type stochastic rainfall generators emphasize 
unprecedented events in daily sequences, improving design-oriented hydrological analysis [38]. Complementing 
generators, comparative distributional studies continue to benchmark candidates for extremes; a 1972–2022 
assessment shows when log-Gumbel or three-parameter log-normal outperform competitors for different return-
period ranges, illustrating why flexible, tail-aware models remain necessary [39]. Within the X-Lindley sphere 
itself, an XLindley extension with rainfall application further validates the practical relevance of this baseline for 
precipitation data [31]. 

From a hydrological applications and optimal design perspective, recent international works emphasize 
decision support under data and network constraints. Large-scale rain-gauge network optimization workflows 
have been proposed to balance computational tractability with coverage of heterogeneous terrains [40], while 
entropy–copula frameworks and MADM-style approaches provide rank-based criteria for network design and 
prioritization in operational contexts [41]. On the analysis side, updated IDF-curve derivations informed by 
distributional testing enhance flood-risk diagnostics in rapidly urbanizing regions [42]. Collectively, these 
contributions motivate rainfall models that are (i) parsimonious yet tail-responsive, (ii) compatible with stochastic 
generators and design studies, and (iii) robust across stations with varying hydro-climatic regimes—criteria satisfied 
by the APTXL formulation evaluated here. 

 
2. RESEARCH METHOD 

The methodological framework of this study is structured to present both the theoretical formulation of the 
proposed model and its empirical application to rainfall data. The section begins with a detailed exposition of 
the Alpha Power Transformed X-Lindley (APTXL) distribution, including its probability functions and key 
statistical properties. Following this, the procedures for parameter estimation are outlined, with emphasis on the 
maximum likelihood approach and the numerical optimization routine used. Goodness-of-fit evaluation criteria 
are then introduced to assess the adequacy of the APTXL distribution in comparison with classical alternatives 
such as the Gamma, Lognormal, and Generalized Extreme Value models. Finally, simulation experiments and 
empirical applications are described to validate the consistency of the estimation method and to demonstrate the 
practical relevance of the distribution for hydrological data. 

2.1. Alpha Power Transformed X-Lindley (APTXL) Distribution 
Mahdavi and Kundu [43] introduced a family of lifetime distributions known as the Alpha Power 

Transformation (APT) method, which generalizes a baseline distribution by incorporating an additional shape 
parameter. Since its introduction, the APT method has been widely adopted by researchers to develop more 
flexible probabilistic models. For instance, Nassar et al. [44] proposed the alpha power Weibull distribution, 
Basheer [45] introduced the alpha power inverse Weibull distribution, Dey et al. [32] suggested the alpha power 
transformed Lindley distribution, and in a separate study, Dey et al. [46] developed the alpha power transformed 
inverse Lindley distribution. Furthermore, Ihtisham et al. [47] explored the alpha power Pareto distribution, 
while Zeineldin et al. [48] proposed the alpha power inverse Lomax distribution. 

The Alpha Power Transformed X-Lindley (APTXL) distribution [31] is a two-parameter probability model 
developed to enhance the modeling flexibility of the original X-Lindley distribution [49]. Introduced as part of 
the alpha power transformation family, this model incorporates an additional shape parameter that regulates the 
tail behavior and asymmetry of the distribution. Such a transformation enables the APTXL to represent a wider 
variety of empirical data patterns, particularly those exhibiting positive skewness and heavy tails, characteristics 
commonly observed in environmental and hydrological variables. 
 
Definition 1. Let 𝑋 be a random variable following the alpha power transformed X-Lindley distribution with 
parameter 𝛼 > 0 and 𝜃 > 0. Its probability density function (pdf) is given by: 
 

𝑓(𝑥; 𝛼, 𝜃) =

⎩
⎪
⎨

⎪
⎧ln(𝛼)
𝛼 − 1𝛼

!"#$"% &'
("%&)!*+

"#$, 𝜃-(2 + 𝜃 + 𝑥)𝑒#&'

(1 + 𝜃)- , if	𝛼 ≠ 1

𝜃-(2 + 𝜃 + 𝑥)𝑒#&'

(1 + 𝜃)-		 , if	𝛼 = 1
 (1) 

 
and the corresponding cumulative distribution function (cdf) is: 
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The random variable 𝑋 has support 𝑥 ∈ (0,∞), governed by shape parameter 𝛼 > 0 and scale parameter 

𝜃 > 0. When 𝛼 = 1, the distribution reduces to the original X–Lindley model. The additional parameter 𝛼 gives 
APTXL great flexibility: for 𝛼 > 1, the pdf becomes more right–skewed and heavy–tailed, and for 0 < 𝛼 < 1, 
the pdf shifts mass to the left, producing lighter upper tails. 

The quantile function 𝑄(𝑢) = 	𝐹#"(𝑢), 0	 < 	𝑢	 < 	1, is required in stochastic simulation and statistical 
applications, and is given by: 

 

𝑄(𝑢; 𝛼, 𝜃) = −
(1 + 𝜃)-

𝜃 −
1
𝜃𝑊#" E

𝑒#("%&)!(1 + 𝜃)-FlnF1 + 𝑢(−1 + 𝛼)G − ln(𝛼)G − ln(𝛼)
ln(𝛼) H (3) 

 
Using the quantile function, the random variable 𝑋	 = 	𝑄(𝑉; 𝛼, 𝜃) has density function (Eq. 1), where 𝑉 is a 
uniform random variable over the interval (0, 1). 

These properties demonstrate that the APTXL distribution provides a flexible yet analytically tractable 
framework for modeling skewed and heavy-tailed data. Its ability to adjust both scale and tail behavior through 
the parameters 𝜃and 𝛼makes it particularly suitable for hydrological applications where extremes are of central 
concern. Having established the theoretical basis of the model, the next step is to discuss the estimation of its 
parameters and the procedures used to assess its empirical adequacy. 

 
2.2. Parameter Estimation  

Let the random variables 𝑋", 𝑋-, … , 𝑋.	~	𝐴𝑃𝑇𝑋𝐿(𝛼, 𝜃) with observed values 𝑥", 𝑥-, . . , 𝑥.. From (Eq.1), 
the log-likelihood function can be written as 
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(4) 

To estimate the maximum likelihood values of parameters α and θ, Equation 4 can be directly maximized with 
respect to both parameters. Since the function is nonlinear, the maximum value of the log-likelihood can be 
determined using numerical optimization methods. One such method is the Nelder-Mead simplex algorithm 
[50]. The task of maximizing the likelihood is reformulated as minimizing the negative log-likelihood function, 
making the objective function to be minimized as: 

 
𝛼, 𝜃 = min

1,&
−𝑙(𝛼, 𝜃) (5) 

To estimate the parameters 𝛼 and 𝜃, the negative log-likelihood function (Eq. 5) was minimized using the 
Nelder–Mead simplex algorithm, a derivative-free optimization routine widely applied in likelihood-based 
estimation. The algorithm iteratively updates a simplex of candidate solutions through reflection, expansion, 
contraction, and shrinkage operations until convergence. Convergence was declared when successive iterations 
satisfied both (i) a relative change in the objective function below 10#3 and (ii) a relative change in parameter 
values below 10#4, or when the maximum number of iterations (10,000) was reached. To avoid local optima, 
the optimization was initialized with multiple starting values obtained from method-of-moments estimates and 
from uniform random draws within plausible parameter ranges (𝛼, 𝜃 > 0). In practice, stable convergence was 
consistently achieved across all stations, and the final solutions were insensitive to the choice of initial values. 
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2.3. Goodness-of-Fits Test 
To evaluate whether the APTXL distribution provides an adequate representation of monthly rainfall data, 

a set of complementary goodness-of-fit criteria was applied. The Akaike Information Criterion (AIC) was used 
to balance model parsimony and quality of fit, defined as 

𝐴𝐼𝐶 = 2𝑘 − 2 ln 𝐿, (6) 

where 𝑘 denotes the number of estimated parameters and 𝐿 is the maximized likelihood function. The Root 
Mean Square Error (RMSE) was considered to measure the magnitude of predictive errors, expressed as 
 

𝑅𝑀𝑆𝐸 = a
1
𝑛S

(𝑃5/ − 𝑃6/)-
.

/0"

, (7) 

with 𝑛 denoting the sample size, 𝑃5/ the empirical frequencies, and 𝑃6/ the theoretical frequencies. The 
Kolmogorov–Smirnov (KS) statistic was employed to capture the maximum absolute difference between the 
empirical and theoretical distributions, given by 

𝐾𝑆 = max
/0",-,…,.

|𝑃5/ − 𝑃6/|. (8) 

Finally, the Cramér–von Mises (CM) statistic was used to assess overall discrepancies between the empirical and 
fitted cumulative distribution functions, computed as 
 

𝑇 =
1
12𝑛 +SV

2𝑖 − 1
2𝑛 − 𝐹(𝑥/)W

-.

/0"

 (9) 

where 𝐹(𝑥/) is the theoretical cumulative distribution evaluated at the ordered sample values 𝑥/. Together, these 
metrics provide a comprehensive assessment of model adequacy, since each emphasizes a distinct dimension of 
fit quality, from parsimony and error magnitude to local and global distributional differences. 

To perform a comprehensive and objective comparison across all 13 rainfall stations and multiple statistical 
criteria, this study adopts the Comprehensive Rating Index (CRI) [51], [52]. The CRI is a normalized index that 
aggregates the ranks of each distribution across all stations and all metrics: 

𝐶𝑅𝐼8 = 1 −
1

𝑆 ×𝑀 ×𝑁SS𝑅𝑎𝑛𝑘/89

:

90"

;

/0"

 (10) 

 
where 𝐶𝑅𝐼8 is comprehensive rating index for distribution 𝑗, 𝑅𝑎𝑛𝑘/89 is rank of distribution 𝑗 at station 𝑖 under 
metric 𝑘 (1 = best to 4 = worst), 𝑆 is number of stations (13), 𝑀 is number of evaluation metrics (4), and 𝑁 is 
number of candidate distributions (4: APTXL, Gamma, Lognormal, GEV). 

The decision to employ aggregated ranks rather than direct normalization offers clear methodological 
advantages for evaluating competing distributions. By converting raw values of AIC, RMSE, KS, and CM into 
ranks, differences in measurement scales and units are eliminated, which allows each criterion to contribute 
equally to the overall assessment. This approach ensures that a metric expressed in large absolute numbers, such 
as AIC, does not overshadow another metric like KS or CM, which typically yields smaller values. Moreover, 
rank aggregation provides a more robust summary by reducing the undue influence of extreme values. For 
instance, if one distribution produces an unusually high RMSE at a single station, normalization of raw scores 
would heavily penalize that model across the entire evaluation. In contrast, when using ranks, the impact of this 
anomaly is limited to one criterion at one station, preserving the fairness of the overall index. The Comprehensive 
Rating Index (CRI) derived from aggregated ranks therefore captures the consistency of model performance 
across stations and metrics, rather than being driven by isolated outliers. In hydrological applications, where 
rainfall distributions can vary widely across space and time, such stability is particularly valuable because it reflects 
general reliability rather than sensitivity to extreme local fluctuations. 

3. RESULTS AND DISCUSSION 
3.1. Simulation 

To evaluate the accuracy of the estimation method, we employ a Monte Carlo simulation approach with 
10,000 replications, adopted from [53]. Three scenarios are considered, using sample sizes n = {50, 100, 500}. 
Random samples are generated based on Eq. 3, with true parameter values set to α = 0.5 and θ = 0.5 for Scenario 
1, α = 0.5 and b = 1 for Scenario 2, and α = 1.5 and b = 1.5 for Scenario 3. They provide a controlled variation 
in both shape (𝛼) and scale (𝜃) that allows assessment of estimation performance across light-tailed, moderate, 
and heavy-tailed conditions. Thus, while simplified, the scenarios approximate realistic rainfall characteristics, 
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enabling the simulation study to be both interpretable and relevant to the empirical application. Table 1 presents 
the simulation results across all scenarios, including the average estimator (AE) over 10,000 replications, the bias 
of AE relative to the true parameter values, and the mean squared error (MSE) for each sample. As expected, 
the MLE estimates converge to the true values, and both bias and MSE decrease as the sample size n increases. 

 
Table 1. Simulation results (Average estimator AE, Absolute bias AB, and MSE) for different sample sizes 𝑛 

and scenarios. 
 

𝑛 Parameters Estimation 
Scenario 1 

(α = 0.5, θ = 0.5) 
Scenario 2 

 (α = 0.5, θ = 1) 
Scenario 3 

(α = 1.5, θ = 1.5) 
50 α AE 1.1117 1.0767 2.6100 
  AB 0.6117 0.5767 1.1100 
  MSE 2.8719 17.002 11.030 
 θ AE 0.5289 1.0597 1.5521 
  AB 0.0289 0.0597 0.0521 
  MSE 0.0240 0.1069 0.1355 
100 α AE 0.7728 0.7674 1.9646 
  AB 0.2728 0.2674 0.4646 
  MSE 0.6334 15.005 2.2450 
 θ AE 0.5078 1.0149 1.5269 
  AB 0.0078 0.0149 0.0269 
  MSE 0.0147 0.0609 0.0603 
500 α AE 0.5440 0.5401 1.5835 
  AB 0.0440 0.0401 0.0835 
  MSE 0.0638 0.0516 0.2472 
 θ AE 0.5001 1.0012 1.5045 
  AB 0.0001 0.0012 0.0045 
  MSE 0.0030 0.0121 0.0111 

Table 1 summarizes the results of a Monte Carlo simulation study designed to assess the performance of 
the maximum likelihood estimation (MLE) method for the APTXL distribution under three different parameter 
settings and varying sample sizes. For each scenario, the table reports the average estimator (AE), absolute bias 
(AB), and mean squared error (MSE) based on 10,000 simulated samples of size 𝑛 = 50, 100, and 500. The 
simulation results confirm that the maximum likelihood estimators for both parameters of the APTXL 
distribution are consistent and asymptotically unbiased. Both the absolute bias and MSE decrease systematically 
with increasing sample size, validating the reliability of the proposed estimation method in practical applications. 
The results also highlight that while estimation of 𝛼 can be more sensitive to sample size, particularly in heavy-
tailed settings, the estimation of 𝜃 remains comparatively stable and efficient. To aid interpretation, we 
complement Table 1 with line plots of AE and MSE against sample size 𝑛 for 𝛼 and 𝜃 across the three scenarios. 
Figure 1 highlight the expected consistency of MLE (AE approaching the true parameters) and efficiency gains 
(MSE decreasing with 𝑛).  
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Figure 1.  Monte Carlo simulation results showing AE and MSE for 𝛼 and 𝜃 across three scenarios, illustrating 

convergence of MLE estimates to true parameters and decreasing MSE with larger sample sizes. 
 
Figure 1 provides a visual validation of the theoretical properties of the MLE for APTXL parameters. In 

all scenarios, the AE curves for both 𝛼 and 𝜃 move closer to the true parameter values as the sample size grows, 
indicating unbiasedness in large samples. Simultaneously, the MSE curves decline sharply with increasing nnn, 
showing efficiency gains and reduced estimation variability. Notably, scenarios with heavier tails (e.g., 𝛼 =
1.5, 𝜃 = 1.5) exhibit larger deviations at smaller sample sizes, but these stabilize rapidly as 𝑛 increases. Overall, 
the figure illustrates that MLE remains reliable for both shape and scale parameters of the APTXL distribution, 
with performance improving markedly as the amount of data grows. 

In practical terms, the simulation results highlight how the two parameters of the APTXL distribution, 𝛼and 
𝜃, govern different aspects of rainfall behavior. The parameter 𝛼primarily controls the heaviness of the 
distribution’s tail and thus reflects the probability of observing extreme rainfall events. Larger values of 𝛼generate 
heavier right tails, implying an increased likelihood of unusually high rainfall totals, while smaller values of 𝛼shift 
the mass toward the body of the distribution, reducing the probability of extremes. This interpretation is 
particularly important in hydrological applications, since tail behavior directly affects flood risk assessment and 
early warning systems. The parameter 𝜃, on the other hand, acts as a scale factor that determines the overall 
spread of rainfall values. Higher values of 𝜃correspond to broader variability and larger expected totals, whereas 
lower values compress the distribution, producing lower mean rainfall. When considered jointly, 𝛼and 𝜃provide 
a flexible way of characterizing both the typical monthly rainfall levels and the likelihood of extreme events. The 
simulation confirms that their maximum likelihood estimates converge toward the true values as sample size 
increases, reinforcing the reliability of these parameters as interpretable indicators of rainfall intensity and 
variability. 

3.2. Application to Monthly Rainfall Data 

To demonstrate the practical applicability of the APTXL distribution, this section presents an empirical 
analysis of long-term monthly rainfall data from the Toba Lake region in North Sumatra, Indonesia. The 
objective is to evaluate the goodness-of-fit performance of the proposed model in capturing the distributional 
characteristics of real-world hydrological data, particularly in a tropical setting with known variability and 
extremes. The region is well suited for this purpose, as its complex topography and climatic conditions produce 
highly skewed and heavy-tailed rainfall patterns. By comparing APTXL with classical models, the analysis assesses 
not only its ability to describe average behavior but also its effectiveness in representing extreme rainfall events 
that are critical for hydrological risk management. 
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3.2.1. Dataset 

This study utilizes a comprehensive monthly rainfall dataset from 13 meteorological observation stations 
located in the Toba Lake region, North Sumatra, Indonesia. The dataset spans a 34-year period, from January 
1981 to December 2014, resulting in 408 monthly observations per station. Each station record includes metadata 
such as station name, geographical coordinates (latitude and longitude), and a continuous time series of monthly 
rainfall totals (in millimeters). The selection of the Toba Lake region is motivated by its complex topography and 
hydrometeorological importance. The area features a large volcanic caldera lake surrounded by steep highlands, 
which significantly influence local precipitation patterns. Consequently, rainfall in this region tends to exhibit high 
temporal variability, spatial heterogeneity, and extreme values, conditions that challenge standard statistical 
models and motivate the use of more flexible probability distributions such as the APTXL. The 13 observation 
stations used in this analysis include: Dolok Sanggul, Merek, Onanrunggu, Pangururan, Stage of Parapat, 
Siborongborong, Laguboti, Lumban Julu, Silaen, Sidamanik, Parlilitan, Sitinjo, and Gabe Hutaraja. 

Table 2. Simplified descriptive statistics of monthly rainfall (in mm) per station (1981–2014). 
Station Mean Std. Min. Median Max. Skewness Excess Kurtosis 
Dolok Sanggul 176.05 105.77 3 163 715 0.78 1.13 
Merek 182.44 111.74 8 163 916 1.74 6.66 
Onanrunggu 161.67 96.30 7 152 490 0.74 0.32 
Pangururan 155.90 90.79 0 145 542 0.78 0.67 
Stageof Parapat 175.34 95.73 2 164 577 0.73 0.65 
Siborong-borong 181.07 111.15 2 164 548 0.72 0.22 
Laguboti 145.97 88.64 2 133 513 0.84 1.04 
Lumban Julu 211.36 120.82 4 198 647 0.66 0.22 
Silaen 145.23 87.18 2 128 461 0.78 0.22 
Sidamanik 239.49 122.74 6 222 840 1.06 1.94 
Parlilitan 336.26 173.68 14 312 900 0.65 0.14 
Sitinjo 210.71 105.88 17 200 584 0.51 -0.01 
Gabe Hutaraja 175.58 102.50 2 162 464 0.50 -0.26 

 

To further characterize the rainfall patterns across the Toba Lake region, Table 2 presents a statistical 
summary of monthly rainfall data from 1981 to 2014 for each observation station. The results reveal substantial 
spatial heterogeneity in rainfall behavior, with stations such as Parlilitan, Sidamanik, and Merek recording the 
highest mean rainfall values, large standard deviations, and extreme maximum values that exceed 800 mm. These 
characteristics are indicative of pronounced inter-annual variability and distributional asymmetry. Most stations 
exhibit strong positive skewness and heavy right tails, particularly at Merek, Sidamanik, and Laguboti, reflecting 
asymmetric rainfall distributions. In addition, several stations show substantial excess kurtosis, such as Merek and 
Dolok Sanggul, suggesting a heightened probability of extreme rainfall events. The standard deviations are also 
notably large relative to the mean at stations like Parlilitan and Lumban Julu, further underscoring the variability 
in monthly totals. These statistical features collectively emphasize the inadequacy of traditional symmetric models 
and underscore the need for more flexible probability distributions that can accommodate skewness, heavy tails, 
and high variability when modeling rainfall in this hydrologically complex region. 

3.2.2. Fitted distribution 
The APTXL distribution will be fitted to the monthly rainfall data of all 13 stations, using the 34-year period 

from January 1981 to December 2014. Parameter estimation will be carried out using the maximum likelihood 
estimation (MLE) method, which provides statistically consistent estimates under regular conditions. To evaluate 
the performance of the APTXL distribution, it will be compared against several well-established distributions, 
such as the Gamma, Lognormal, and Generalized Extreme Value (GEV) distributions. 

Figure 2 shows the statistical advantages of the APTXL distribution in representing the empirical 
characteristics of rainfall data. It highlights the ability of the APTXL model to accommodate positive skewness 
and heavy tails, features commonly observed in tropical rainfall regimes. The comparative density curves show 
that while classical models provide reasonable fits in moderate ranges, they often underestimate or fail to 
capture extreme events and sharp peaks. The close alignment of the APTXL distribution with empirical data 
reinforces its suitability for modeling rainfall phenomena with complex distributional properties, thereby 
providing a more accurate probabilistic framework for hydrological and climate-related risk analysis. 
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Figure 2. Comparison of fitted probability density functions (PDFs) of monthly rainfall data at selected stations 

using the APTXL, Gamma, Lognormal, and GEV distributions. 
 
Beyond the overall visual fit, Figure 2 also reveals important station-specific insights. At locations such as 

Merek and Sidamanik, where the empirical histograms exhibit strong right skewness and high variability, the 
APTXL distribution clearly tracks the upper tail more closely than the Gamma or Lognormal models. In 
contrast, the GEV distribution occasionally follows the empirical tail but tends to deviate around the central body 
of the data, indicating a trade-off between fitting extremes and representing average behavior. The robustness of 
APTXL across diverse stations—including those with moderate rainfall regimes like Pangururan and those with 
highly variable regimes like Parlilitan—illustrates its adaptability to heterogeneous hydrological conditions. This 
consistency underscores the practical value of the distribution in multi-station analyses, where a single model 
must adequately capture a broad spectrum of rainfall characteristics without sacrificing accuracy in either the 
center or the tails of the distribution. 

Table 3 presents a comparative evaluation of four probability distributions applied to monthly rainfall data 
at selected stations in the Toba Lake region, such as Dolok Sanggul, Merek, and Onanrunggu. To enhance 
interpretability, each metric value is accompanied by its corresponding rank in parentheses, with rank 1 indicating 
the best performance among the four models. The results indicate that the APTXL distribution consistently 
achieves top rankings across multiple criteria and stations. At all three stations, APTXL ranks first in AIC, KS, 
and CM, and either first or second in RMSE. These results reflect its superior ability to capture both central and 
tail behaviors in rainfall distributions. In contrast, although classical distributions such as Gamma, Lognormal, 
and GEV are widely used in hydrological modeling [54], [55], their performance is highly variable across stations. 
The Lognormal distribution performs poorly across all criteria, consistently receiving the lowest ranks. While 
Gamma and GEV occasionally show competitive results, particularly in RMSE and KS. 

 
Table 3. Comparison of distribution fitting criteria and rankings (in parentheses) for monthly rainfall at Dolok 

Sanggul, Merek, and Onanrunggu stations. 
 

Station	 Distribution	 AIC	 RMSE	 KS	 CM 
Dolok Sanggul	 APTXL	 4910.2(1)	 0.0187(2)	 0.0417(1)	 0.1505(1) 

	 Gamma	 4926.6(4)	 0.0339(3)	 0.0617(3)	 0.4725(3) 
	 GEV	 4924.8(3)	 0.0178(1)	 0.0480(2)	 0.1646(2) 

 Lognormal 4924.0(2) 0.0627(4) 0.0886(4) 1.0181(4) 
Merek APTXL 4875.1(1) 0.0167(1) 0.0314(1) 0.1073(1) 
 Gamma 4908.1(4) 0.0172(2) 0.0447(3) 0.1707(3) 
 GEV 4894.4(3) 0.0180(3) 0.0338(2) 0.1370(2) 
 Lognormal 4883.5(2) 0.1210(4) 0.3052(4) 1.4057(4) 
Onanrunggu APTXL 4821.8(1) 0.0188(2) 0.0295(1) 0.1208(1) 
 Gamma 4826.7(3) 0.0272(3) 0.0400(3) 0.1986(3) 
 GEV 4823.8(2) 0.0112(1) 0.0355(2) 0.1467(2) 
 Lognormal 4882.7(4) 0.1291(4) 0.2367(4) 1.2568(4) 
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To synthesize the results across all stations and metrics, the distributions were ranked using the 
Comprehensive Rating Index (CRI), which aggregates performance across multiple criteria. To illustrate how the 
Comprehensive Rating Index was derived, consider the rainfall data from Dolok Sanggul station. For this station, 
each of the four candidate distributions—APTXL, Gamma, GEV, and Lognormal—was evaluated under four 
statistical criteria: AIC, RMSE, KS, and CM. For every criterion, the models were ranked from best (rank 1) to 
worst (rank 4), with lower values indicating superior performance. At Dolok Sanggul, the APTXL distribution 
obtained rank 1 for AIC, rank 2 for RMSE, rank 1 for KS, and rank 1 for CM. Summing these values gives a 
total score of five. By contrast, the Gamma distribution scored much higher, with ranks of four, three, three, and 
three, for a total of thirteen, while the Lognormal distribution accumulated the worst score of fourteen. The GEV 
distribution occupied an intermediate position with a total score of nine. Once ranks have been assigned for each 
metric and station, they are aggregated across all thirteen stations and all four criteria, producing a cumulative 
rank sum for every distribution. The CRI value is then calculated by normalizing this sum against the maximum 
and minimum possible rank totals, thereby ensuring comparability across stations and metrics. A distribution 
with consistently good performance will achieve a low aggregate rank sum and thus a higher CRI value. For Dolok 
Sanggul alone, the partial comparison already reveals the advantage of the APTXL distribution, and when the 
scores from all stations are combined, APTXL emerges as the overall best performer with the highest CRI value, 
confirming its superior ability to represent rainfall data across diverse conditions. Table 4 summarizes the total 
rank scores, CRI values, and overall rankings for each distribution across all stations and metrics. 

 
Table 4. Summary of distribution performance based on total rank and Comprehensive Rating Index (CRI) 

across all stations and metrics. 
 

Distribution Sum Rank CRI Ranking 
APTXL 62 0.7019 1st 
GEV 120 0.4231 2nd 
Gamma 137 0.3413 3rd 
Lognormal 192 0.0769 4th 

 
The results demonstrate that the APTXL distribution is the most consistent and superior performer, 

achieving the highest CRI value and the lowest total rank. This confirms the earlier station-level findings, where 
APTXL often ranked first or second across all four-evaluation metrics. The GEV distribution ranks second 
overall, indicating relatively good but less consistent performance. The Gamma distribution ranks third, while 
the Lognormal distribution ranks last, with a CRI close to zero, highlighting its poor adaptability to the rainfall 
data in this study. 

Overall, these findings validate the effectiveness of the APTXL distribution as a robust probabilistic model 
for representing monthly rainfall patterns in the Toba Lake region. Its ability to consistently outperform 
established models across diverse metrics and locations makes it a strong candidate for future hydrological 
modeling and climate-related applications. 

4. CONCLUSION 
This study introduced and evaluated the Alpha Power Transformed X-Lindley (APTXL) distribution as a 

flexible probability model for representing monthly rainfall in the Toba Lake region. By incorporating an 
additional shape parameter through the alpha power transformation, APTXL was able to capture the 
pronounced skewness, heavy tails, and variability that characterize tropical rainfall data. Comparative analysis 
against the Gamma, Lognormal, and Generalized Extreme Value (GEV) distributions demonstrated that APTXL 
consistently achieved superior performance across multiple goodness-of-fit criteria, a result further supported by 
the Comprehensive Rating Index. Based on these findings, the APTXL distribution is recommended in practice 
as a robust alternative for hydrological and climatological applications where accurate characterization of 
extremes is essential, such as flood risk management, reservoir operation, and agricultural water allocation. 

Despite its strong performance, the present analysis is subject to several limitations. The model fitting 
assumed temporal independence of monthly rainfall series and stationarity of the underlying distribution over 
the 34-year period. These assumptions simplify estimation but may not hold under real climate variability and 
long-term climate change, where autocorrelation and shifting rainfall regimes are expected. Furthermore, the 
evaluation relied on maximum likelihood estimation under the frequentist framework, which does not explicitly 
quantify parameter uncertainty beyond asymptotic properties. 

Future research could address these limitations in several ways. Bayesian estimation techniques would 
provide a natural framework for incorporating prior knowledge and quantifying full parameter uncertainty. 
Regionalization approaches that pool information across neighboring stations could improve stability of 
parameter estimates in data-scarce areas, while explicitly accounting for spatial dependence. Finally, extending 
the APTXL distribution to non-stationary settings—where parameters evolve over time in response to climate 
drivers—would broaden its applicability to climate change impact studies and long-term water-resource planning. 

 



          r                                                                                              E-ISSN : 2580-5754; P-ISSN : 2580-569X 
 

Zero: Jurnal Sains, Matematika dan Terapan 

762 

ACKNOWLEDGEMENTS 
The authors would like to express their sincere gratitude to all individuals and institutions who contributed 

to the successful completion of this research. Special thanks are extended to the School of Data Science, 
Mathematics, and Informatics, IPB University, as well as the Research Center for Climate and Atmosphere, 
National Research and Innovation Agency (BRIN), for their support and collaboration. This research was 
financially supported by IPB University through the “Dana Masyarakat IPB Tahun Anggaran 2025”, under the 
“Skema Penelitian Dosen Muda Tahun Anggaran 2025”, with Grant Number 
10816/IT3.D10/PT.01.03/P/B/2025. The support is gratefully acknowledged. This research was financially 
supported by IPB University through the Dana Masyarakat IPB Tahun Anggaran 2025, under the Skema 
Penelitian Dosen Muda Tahun Anggaran 2025, with Grant Number 10816/IT3.D10/PT.01.03/P/B/2025. 
 
  



Zero: Jurnal Sains, Matematika dan Terapan  r 
 

 Modeling Monthly Rainfall Data Using the Alpha Power Transformed X-Lindley Distribution in the Toba Lake Region (Mohamad Khoirun Najib) 

763 

5. REFERENCES 
[1] E. Deal, J. Braun, and G. Botter, “Understanding the Role of Rainfall and Hydrology in Determining 

Fluvial Erosion Efficiency,” Journal of Geophysical Research: Earth Surface, vol. 123, no. 4, pp. 744–778, 
2018, doi: 10.1002/2017JF004393. 

[2] Z. Sokol, J. Szturc, J. Orellana-Alvear, J. Popová, A. Jurczyk, and R. Célleri, “The role of weather radar in 
rainfall estimation and its application in meteorological and hydrological modelling —A review,” Remote 
Sensing, vol. 13, no. 3, pp. 1–38, 2021, doi: 10.3390/rs13030351. 

[3] M. Dumont et al., “Assessing rainfall global products reliability for water resource management in a tropical 
volcanic mountainous catchment,” Journal of Hydrology: Regional Studies, vol. 40, p. 101037, 2022, doi: 
10.1016/j.ejrh.2022.101037. 

[4] E. Bessah, E. A. Boakye, S. K. Agodzo, E. Nyadzi, I. Larbi, and A. Awotwi, “Increased seasonal rainfall in 
the twenty-first century over Ghana and its potential implications for agriculture productivity,” Environment, 
Development and Sustainability, vol. 23, no. 8, pp. 12342–12365, 2021, doi: 10.1007/s10668-020-01171-
5. 

[5] S. Benziane, “Survey: Rainfall Prediction Precipitation, Review of Statistical Methods,” WSEAS 
Transactions on Systems, vol. 23, pp. 47–59, 2024, doi: 10.37394/23202.2024.23.5. 

[6] J. A. Marengo, P. I. Camarinha, L. M. Alves, F. Diniz, and R. A. Betts, “Extreme Rainfall and Hydro-Geo-
Meteorological Disaster Risk in 1.5, 2.0, and 4.0°C Global Warming Scenarios: An Analysis for Brazil,” 
Frontiers in Climate, vol. 3, p. 610433, 2021, doi: 10.3389/fclim.2021.610433. 

[7] E. Bevacqua, G. Zappa, F. Lehner, and J. Zscheischler, “Precipitation trends determine future occurrences 
of compound hot–dry events,” Nature Climate Change, vol. 12, no. 4, pp. 350–355, 2022, doi: 
10.1038/s41558-022-01309-5. 

[8] L. Gimeno et al., “Extreme precipitation events,” Wiley Interdisciplinary Reviews: Water, vol. 9, no. 6, p. 
e1611, 2022, doi: 10.1002/wat2.1611. 

[9] R. Satyaningsih, V. Jetten, J. Ettema, A. Sopaheluwakan, L. Lombardo, and D. E. Nuryanto, “Dynamic 
rainfall thresholds for landslide early warning in Progo Catchment, Java, Indonesia,” Natural Hazards, vol. 
119, no. 3, pp. 2133–2158, 2023, doi: 10.1007/s11069-023-06208-2. 

[10] E. Yanfatriani et al., “Extreme Rainfall Trends and Hydrometeorological Disasters in Tropical Regions: 
Implications for Climate Resilience,” Emerging Science Journal, vol. 8, no. 5, pp. 1860–1874, 2024, doi: 
10.28991/ESJ-2024-08-05-012. 

[11] C. A. Chesner, “The Toba Caldera Complex,” Quaternary International, vol. 258, pp. 5–18, 2012, doi: 
10.1016/j.quaint.2011.09.025. 

[12] H. Irwandi, M. S. Rosid, and T. Mart, “The effects of ENSO, climate change and human activities on the 
water level of Lake Toba, Indonesia: a critical literature review,” Geoscience Letters, vol. 8, no. 1, p. 21, 
2021, doi: 10.1186/s40562-021-00191-x. 

[13] E. Cristiano, M. C. Ten Veldhuis, and N. Van De Giesen, “Spatial and temporal variability of rainfall and 
their effects on hydrological response in urban areas - A review,” Hydrology and Earth System Sciences, 
vol. 21, no. 7, pp. 3859–3878, 2017, doi: 10.5194/hess-21-3859-2017. 

[14] T. Meema, Y. Tachikawa, Y. Ichikawa, and K. Yorozu, “Real-time optimization of a large-scale reservoir 
operation in Thailand using adaptive inflow prediction with medium-range ensemble precipitation 
forecasts,” Journal of Hydrology: Regional Studies, vol. 38, 2021, doi: 10.1016/j.ejrh.2021.100939. 

[15] V. Anupoju, B. P. Kambhammettu, and S. K. Regonda, “Role of Short-Term Weather Forecast Horizon 
in Irrigation Scheduling and Crop Water Productivity of Rice,” Journal of Water Resources Planning and 
Management, vol. 147, no. 8, 2021, doi: 10.1061/(asce)wr.1943-5452.0001406. 

[16] Y. Zhang and J. M. Swaminathan, “Improved crop productivity through optimized planting schedules,” 
Manufacturing and Service Operations Management, vol. 22, no. 6, pp. 1165–1180, 2020, doi: 
10.1287/MSOM.2020.0941. 

[17] I. G. Prihanto et al., “A technology acceptance model of satellite-based hydrometeorological hazards early 
warning system in Indonesia: an-extended technology acceptance model,” Cogent Business and 
Management, vol. 11, no. 1, 2024, doi: 10.1080/23311975.2024.2374880. 

[18] A. Susandi et al., “Development of hydro-meteorological hazard early warning system in Indonesia,” 
Journal of Engineering and Technological Sciences, vol. 50, no. 4, pp. 461–478, 2018, doi: 
10.5614/j.eng.technol.sci.2018.50.4.2. 

[19] L. Alfieri and J. Thielen, “A European precipitation index for extreme rain-storm and flash flood early 
warning,” Meteorological Applications, vol. 22, no. 1, pp. 3–13, 2015, doi: 10.1002/met.1328. 

[20] W. Yuan et al., “Study on the Early Warning for Flash Flood Based on Random Rainfall Pattern,” Water 
Resources Management, vol. 36, no. 5, pp. 1587–1609, 2022, doi: 10.1007/s11269-022-03106-3. 

[21] D. Li, Z. Liu, D. Wang, and X. Liu, “Rainfall temporal variability-oriented optimization of urban water 
resources allocation,” Journal of Hydrology: Regional Studies, vol. 61, 2025, doi: 
10.1016/j.ejrh.2025.102694. 

[22] M. Ali, R. C. Deo, Y. Xiang, Y. Li, and Z. M. Yaseen, “Forecasting long-term precipitation for water 
resource management: a new multi-step data-intelligent modelling approach,” Hydrological Sciences 
Journal, vol. 65, no. 16, pp. 2693–2708, 2020, doi: 10.1080/02626667.2020.1808219. 



          r                                                                                              E-ISSN : 2580-5754; P-ISSN : 2580-569X 
 

Zero: Jurnal Sains, Matematika dan Terapan 

764 

[23] P. de S. M. P. Ximenes, A. S. Alves da Silva, F. Ashkar, and T. Stosic, “Best-fit probability distribution 
models for monthly rainfall of Northeastern Brazil,” Water Science and Technology, vol. 84, no. 6, pp. 
1541–1556, 2021, doi: 10.2166/wst.2021.304. 

[24] N. F. E. M. Johar, A. Senawi, and N. A. A. A. Ghani, “An assessment of rainfall distribution in Kuantan 
river basin using generalized extreme value distribution and Gamma distribution,” in AIP Conference 
Proceedings, 2024. doi: 10.1063/5.0192286. 

[25] G. Arriola, L. Villegas, J. Fernandez, J. Vallejos, and C. Idrogo, “Assessment of Parameters of the 
Generalized Extreme Value Distribution in Rainfall of the Peruvian North,” Revista Politecnica, vol. 52, 
no. 2, pp. 99–112, 2023, doi: 10.33333/rp.vol52n2.10. 

[26] B. Moccia, C. Mineo, E. Ridolfi, F. Russo, and F. Napolitano, “Probability distributions of daily rainfall 
extremes in Lazio and Sicily, Italy, and design rainfall inferences,” Journal of Hydrology: Regional Studies, 
vol. 33, p. 100771, 2021, doi: 10.1016/j.ejrh.2020.100771. 

[27] Y. Hundecha, M. Pahlow, and A. Schumann, “Modeling of daily precipitation at multiple locations using 
a mixture of distributions to characterize the extremes,” Water Resources Research, vol. 45, no. 12, 2009, 
doi: 10.1029/2008WR007453. 

[28] J. Y. Shin, T. Lee, and T. B. M. J. Ouarda, “Heterogeneous mixture distributions for modeling multisource 
extreme rainfalls,” Journal of Hydrometeorology, vol. 16, no. 6, pp. 2639–2657, 2015, doi: 10.1175/JHM-
D-14-0130.1. 

[29] M. K. Najib, S. Nurdiati, and A. Sopaheluwakan, “Copula-based joint distribution analysis of the ENSO 
effect on the drought indicators over Borneo fire-prone areas,” Modeling Earth Systems and Environment, 
vol. 8, no. 2, pp. 2817–2826, 2022, doi: 10.1007/s40808-021-01267-5. 

[30] S. Liu and X. Dong, “The return period analysis of heavy rainfall disasters based on copula joint statistical 
modeling,” Geomatics, Natural Hazards and Risk, vol. 16, no. 1, 2025, doi: 
10.1080/19475705.2025.2483799. 

[31] N. Alsadat, “A new extension of XLindley distribution with mathematical properties, estimation, and 
application on the rainfall data,” Heliyon, vol. 10, no. 19, 2024, doi: 10.1016/j.heliyon.2024.e38143. 

[32] S. Dey, I. Ghosh, and D. Kumar, “Alpha-Power Transformed Lindley Distribution: Properties and 
Associated Inference with Application to Earthquake Data,” Annals of Data Science, vol. 6, no. 4, pp. 623–
650, 2019, doi: 10.1007/s40745-018-0163-2. 

[33] S. J. Dugasa, A. T. Goshu, and B. G. Arero, “Alpha Power Transformation of the Lindley Probability 
Distribution,” Journal of Probability and Statistics, vol. 2024, no. 1, 2024, doi: 10.1155/2024/9068114. 

[34] F. Y. Eissa and C. D. Sonar, “Alpha Power Transformed Extended power Lindley Distribution,” Journal 
of Statistical Theory and Applications, vol. 22, no. 1–2, pp. 1–18, 2023, doi: 10.1007/s44199-022-00051-3. 

[35] A. M. Gemeay et al., “The power new XLindley distribution: Statistical inference, fuzzy reliability, and 
applications,” Heliyon, vol. 10, no. 17, 2024, doi: 10.1016/j.heliyon.2024.e36594. 

[36] P. J. Northrop, “Stochastic Models of Rainfall,” Annual Review of Statistics and Its Application, vol. 11, 
no. 1, pp. 51–74, 2024, doi: 10.1146/annurev-statistics-040622-023838. 

[37] M. F. R. Gaona, K. Michaelides, and M. B. Singer, “STORM v.2: A simple, stochastic rainfall model for 
exploring the impacts of climate and climate change at and near the land surface in gauged watersheds,” 
Geoscientific Model Development, vol. 17, no. 13, pp. 5387–5412, 2024, doi: 10.5194/gmd-17-5387-2024. 

[38] T. Rasool, S. Sahoo, R. Das Bhowmik, and D. Nagesh Kumar, “Development of a stochastic rainfall 
generator to yield unprecedented rainfall events,” Journal of Hydrology, vol. 641, 2024, doi: 
10.1016/j.jhydrol.2024.131809. 

[39] R. Montes-Pajuelo, Á. M. Rodríguez-Pérez, R. López, and C. A. Rodríguez, “Analysis of Probability 
Distributions for Modelling Extreme Rainfall Events and Detecting Climate Change: Insights from 
Mathematical and Statistical Methods,” Mathematics, vol. 12, no. 7, 2024, doi: 10.3390/math12071093. 

[40] R. L. T. Henriksen, J. B. Hubrechts, J. K. Møller, P. Knudsen, and J. W. Pedersen, “Large-scale rain gauge 
network optimization using a kriging emulator,” Journal of Hydrology, vol. 637, 2024, doi: 
10.1016/j.jhydrol.2024.131360. 

[41] S. M. Tabatabaei, M. Dastourani, S. Eslamian, and M. Nazeri Tahroudi, “Ranking and optimizing the rain-
gauge networks using the entropy–copula approach (Case study of the Siminehrood Basin, Iran),” Applied 
Water Science, vol. 12, no. 9, 2022, doi: 10.1007/s13201-022-01735-y. 

[42] A. H. Hussein and M. N. Kasim, “Utilizing statistical distribution tests to develop rainfall intensity–
duration–frequency curves for enhanced hydrological analysis in Kirkuk city, Iraq,” Water Practice and 
Technology, vol. 19, no. 11, pp. 4378–4389, 2024, doi: 10.2166/wpt.2024.258. 

[43] A. Mahdavi and D. Kundu, “A new method for generating distributions with an application to exponential 
distribution,” Communications in Statistics - Theory and Methods, vol. 46, no. 13, pp. 6543–6557, 2017, 
doi: 10.1080/03610926.2015.1130839. 

[44] M. Nassar, A. Alzaatreh, M. Mead, and O. Abo-Kasem, “Alpha power Weibull distribution: Properties 
and applications,” Communications in Statistics - Theory and Methods, vol. 46, no. 20, pp. 10236–10252, 
2017, doi: 10.1080/03610926.2016.1231816. 

[45] A. M. Basheer, “Alpha power inverse Weibull distribution with reliability application,” Journal of Taibah 



Zero: Jurnal Sains, Matematika dan Terapan  r 
 

 Modeling Monthly Rainfall Data Using the Alpha Power Transformed X-Lindley Distribution in the Toba Lake Region (Mohamad Khoirun Najib) 

765 

University for Science, vol. 13, no. 1, pp. 423–432, 2019, doi: 10.1080/16583655.2019.1588488. 
[46] S. Dey, M. Nassar, and D. Kumar, “Alpha power transformed inverse Lindley distribution: A distribution 

with an upside-down bathtub-shaped hazard function,” Journal of Computational and Applied 
Mathematics, vol. 348, pp. 130–145, 2019, doi: 10.1016/j.cam.2018.03.037. 

[47] S. Ihtisham, A. Khalil, S. Manzoor, S. A. Khan, and A. Ali, “Alpha-Power Pareto distribution: its properties 
and applications,” PLoS ONE, vol. 14, p. e0218027, 2019. 

[48] R. A. Zeineldin, M. Ahsan Ul Haq, S. Hashmi, and M. Elsehety, “Alpha Power Transformed Inverse 
Lomax Distribution with Different Methods of Estimation and Applications,” Complexity, vol. 2020, pp. 
1–15, 2020, doi: 10.1155/2020/1860813. 

[49] S. Chouia and H. Zeghdoudi, “The X-Lindley distribution: properties and application,” Journal of 
Statistical Theory and Applications, vol. 20, no. 2, pp. 318–327, 2021. 

[50] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead 
simplex method in low dimensions,” SIAM Journal on Optimization, vol. 9, no. 1, pp. 112–147, 1998, doi: 
10.1137/S1052623496303470. 

[51] M. A. Baig et al., “Evaluation and Projection of Temperatures Over Pakistan: Insights from the Downscaled 
NEX-GDDP-CMIP6 Models,” Earth Systems and Environment, 2025, doi: 10.1007/s41748-024-00554-2. 

[52] Z. Jiang, W. Li, J. Xu, and L. Li, “Extreme precipitation indices over China in CMIP5 models. Part I: 
Model evaluation,” Journal of Climate, vol. 28, no. 21, pp. 8603–8619, 2015, doi: 10.1175/JCLI-D-15-
0099.1. 

[53] L. D. Ribeiro-Reis, “The kagebushin-beta distribution: an alternative for gamma, Weibull and 
exponentiated exponential distributions,” Journal of the Egyptian Mathematical Society, vol. 30, no. 1, 
2022, doi: 10.1186/s42787-022-00158-7. 

[54] M. Farooq, M. Shafique, and M. S. Khattak, “Flood frequency analysis of river swat using Log Pearson type 
3, Generalized Extreme Value, Normal, and Gumbel Max distribution methods,” Arabian Journal of 
Geosciences, vol. 11, no. 9, 2018, doi: 10.1007/s12517-018-3553-z. 

[55] W. Szulczewski and W. Jakubowski, “The Application of Mixture Distribution for the Estimation of 
Extreme Floods in Controlled Catchment Basins,” Water Resources Management, vol. 32, no. 10, pp. 
3519–3534, 2018, doi: 10.1007/s11269-018-2005-6. 

 


