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1. INTRODUCTION

Rainfall is a fundamental component of the Farth’s climate system, playing a pivotal role in hydrological
processes [1], [2], water resource sustainability [3], agricultural productivity [4], urban planning [5], and disaster
risk mitigation [6]. In tropical countries such as Indonesia, rainfall exhibits high spatiotemporal variability and
frequent extreme events [7], [8], which introduce significant uncertainty into water management and climate
adaptation planning. This variability complicates the prediction of hydrological responses and increases the risk
of floods, landslides, and droughts [9], [10], especially in ecologically sensitive and economically vital regions such
as the Toba Lake area in North Sumatra.

The Toba Lake region is characterized by a complex hydrometeorological setting influenced by volcanic
topography, steep elevation gradients, and a large caldera lake that affects local weather dynamics [11], [12].
Monthly rainfall in this area shows substantial temporal fluctuation and spatial heterogeneity [13], often with high
positive skewness and heavy-tailed distributions. These statistical characteristics present significant challenges for
traditional probabilistic models, which generally rely on assumptions of symmetry and light-tailed behavior.

Rainfall modeling is not only of academic nterest but also directly informs practical decision-making
systems, including reservoir operation planning [14], agricultural scheduling [15], [16], and hydrometeorological
early warning systems [17], [18]. Accurate representation of extremes is essential for managing flood risk [19],
[20], while reliable estimates of central tendencies support water allocation and long-term resource planning [21],
[22]. Classical probability distributions such as the Gamma [23], Lognormal [24], and Generalized Extreme
Value [25] have been widely employed in modeling rainfall data due to their mathematical simplicity and
analytical convenience. However, their ability to capture the full complexity of empirical rainfall distributions is
often limited [26], particularly in tropical regions where extremes and distributional asymmetry are common. To
overcome these shortcomings, more flexible approaches like mixture distributions [27], [28] and copula-based
models [29], [30] have been explored, offering improved fit at the expense of substantially higher computational
demands. These limitations underscore the need for more flexible probability models that can provide a better
fit to observed data and enhance statistical inference.

To address this gap, the present study investigates the Alpha Power Transformed X-Lindley (APTXL)
distribution [31], a two-parameter model derived from the X-Lindley distribution through an alpha power
transformation. Through this transformation, an additional shape parameter 1s introduced, enabling the model
to accommodate a broader range of skewness and kurtosis. Unlike the Alpha Power Transformed Lindley (APT-
Lindley) distribution [32], which modifies the standard Lindley baseline, APTXL is constructed from the X-
Lindley distribution, thereby offering distinct flexibility in handling heavier tails and asymmetry while still
maintaining analytical tractability. This distinction 1s important because the X-Lindley baseline itself has different
tail properties compared to the Lindley distribution, which makes the transformed version (APTXL) better suited
for highly variable rainfall data.

This study presents an analytical mnvestigation of the statistical properties of the APTXL distribution,
including its probability density function, cumulative distribution function, and quantile function. Moreover, the
estimation performance of the model parameters using Maximum Likelihood Estimation (MLE) is evaluated
through simulation experiments under varying sample sizes. The practical motivation for applying APTXL arises
from evidence that classical distributions such as Gamma, Lognormal, and Generalized Extreme Value often
underestimate rainfall extremes and fail to capture heavy skewness in tropical climates [23], [24], [26]. Such
shortcomings have been documented in various studies of Indonesia and other tropical regions, where rainfall
exhibits marked asymmetry and frequent extreme values [9], [10]. To evaluate its effectiveness in this context,
this study applies the APTXL model to long-term monthly rainfall data from the Toba Lake region and compares
its performance with Gamma, Lognormal, and GEV distributions using multiple goodness-of-fit metrics (AIC,
RMSE, KS, and CM).

Recent advances in alpha-power-type transformations have considerably broadened the Lindley/X-Lindley
family for environmental applications. Beyond the classical Lindley distribution, newer variants such as the alpha
power transformation of the Lindley distribution (APTLD) formalize a multi-parameter generalization with richer
tail behavior and flexible hazards, demonstrating improved fits on skewed data sets [33]. Related extensions
include the alpha power-transformed extended power Lindley (APTEPL) model, which shows tangible gains
over earlier Lindley-type baselines [34]. Within the X-Lindley lineage, 2024 developments such as the power
new X-Lindley distribution likewise reinforce the utility of power-transformation strategies to control skewness
and kurtosis with minimal parameter overhead [35]. These advances align with our choice to employ an alpha-
power transformation over the X-Lindley baseline for tropical rainfall, where right-tail realism 1s essential.
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Parallel progress has occurred in stochastic rainfall modelling. A contemporary review synthesizes temporal
and space-time point-process formulations and fitting strategies, underscoring the role of mechanistic structure
when representing extremes [36]. New generators—e.g., STORM v.2—enable controlled exploration of climate-
change mmpacts at hydrologically relevant scales [37], and serial-type stochastic rainfall generators emphasize
unprecedented events in daily sequences, improving design-oriented hydrological analysis [38]. Complementing
generators, comparative distributional studies continue to benchmark candidates for extremes; a 1972-2022
assessment shows when log-Gumbel or three-parameter log-normal outperform competitors for different return-
period ranges, illustrating why flexible, tail-aware models remain necessary [39]. Within the X-Lindley sphere
itself, an XLindley extension with rainfall application further validates the practical relevance of this baseline for
precipitation data [31].

From a hydrological applications and optimal design perspective, recent international works emphasize
decision support under data and network constraints. Large-scale rain-gauge network optimization workflows
have been proposed to balance computational tractability with coverage of heterogeneous terrains [40], while
entropy-copula frameworks and MADM-style approaches provide rank-based criteria for network design and
prioritization in operational contexts [41]. On the analysis side, updated IDF-curve derivations informed by
distributional testing enhance flood-risk diagnostics in rapidly urbanizing regions [42]. Collectively, these
contributions motivate rainfall models that are (i) parsimonious yet tail-responsive, (i) compatible with stochastic
generators and design studies, and (i11) robust across stations with varying hydro-climatic regimes—criteria satisfied
by the APTXL formulation evaluated here.

2. RESEARCH METHOD

The methodological framework of this study 1s structured to present both the theoretical formulation of the
proposed model and its empirical application to rainfall data. The section begins with a detailed exposition of
the Alpha Power Transformed X-Lindley (APTXL) distribution, including its probability functions and key
statistical properties. Following this, the procedures for parameter estimation are outlined, with emphasis on the
maximum likelihood approach and the numerical optimization routine used. Goodness-of-fit evaluation criteria
are then introduced to assess the adequacy of the APTXL distribution in comparison with classical alternatives
such as the Gamma, Lognormal, and Generalized Extreme Value models. Finally, simulation experiments and
empirical applications are described to validate the consistency of the estimation method and to demonstrate the
practical relevance of the distribution for hydrological data.

2.1. Alpha Power Transformed X-Lindley (APTXL) Distribution

Mahdavi and Kundu [43] introduced a family of lifetime distributions known as the Alpha Power
Transformation (APT) method, which generalizes a baseline distribution by incorporating an additional shape
parameter. Since its introduction, the APT method has been widely adopted by researchers to develop more
flexible probabilistic models. For instance, Nassar et al. [44] proposed the alpha power Weibull distribution,
Basheer [45] introduced the alpha power inverse Weibull distribution, Dey et al. [32] suggested the alpha power
transformed Lindley distribution, and in a separate study, Dey et al. [46] developed the alpha power transformed
mverse Lindley distribution. Furthermore, Thtisham et al. [47] explored the alpha power Pareto distribution,
while Zeineldin et al. [48] proposed the alpha power inverse Lomax distribution.

The Alpha Power Transformed X-Lindley (APTXL) distribution [31] is a two-parameter probability model
developed to enhance the modeling flexibility of the original X-Lindley distribution [49]. Introduced as part of
the alpha power transformation family, this model incorporates an additional shape parameter that regulates the
tail behavior and asymmetry of the distribution. Such a transformation enables the APTXL to represent a wider
variety of empirical data patterns, particularly those exhibiting positive skewness and heavy tails, characteristics
commonly observed in environmental and hydrological variables.

Definition 1. Let X be a random variable following the alpha power transformed X-Lindley distribution with
parameter @ > 0 and 8 > 0. Its probability density function (pdf) is given by:

6 —_ox| p2 —-0x
In(a) a[l_(Hﬁ)e 6 ] 0°(2+ 60 +x)e ’ —
_ _Ja-1 (1+6)2
flxa,0) = 022+ 60 4 x)e M
a1y ) ifa=1

and the corresponding cumulative distribution function (cdf) is:
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The random variable X has support x € (0, o), governed by shape parameter @ > 0 and scale parameter
6 > 0. When a = 1, the distribution reduces to the original X-Lindley model. The additional parameter a gives
APTXL great flexibility: for @ > 1, the pdf becomes more right-skewed and heavy-tailed, and for 0 < a < 1,
the pdf shifts mass to the left, producing lighter upper tails.

The quantile function Q(u) = F~1(u),0 < u < 1, is required in stochastic simulation and statistical
applications, and is given by:

, ifa#1
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Using the quantile function, the random variable X = Q(V; a, 8) has density function (Eq. 1), where V is a
uniform random variable over the interval (0, 1).

These properties demonstrate that the APTXL distribution provides a flexible yet analytically tractable
framework for modeling skewed and heavy-tailed data. Its ability to adjust both scale and tail behavior through
the parameters fand amakes it particularly suitable for hydrological applications where extremes are of central
concern. Having established the theoretical basis of the model, the next step is to discuss the estimation of its
parameters and the procedures used to assess its empirical adequacy.

2.2. Parameter Estimation

Let the random variables Xy, X5, ..., X,, ~ APTXL(a, 0) with observed values x4, x,, .., X,. From (Iq.1),
the log-likelihood function can be written as
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To estimate the maximum likelihood values of parameters a and 6, Equation 4 can be directly maximized with
respect to both parameters. Since the function is nonlinear, the maximum value of the log-likelihood can be
determined using numerical optimization methods. One such method 1s the Nelder-Mead simplex algorithm
[50]. The task of maximizing the likelihood is reformulated as minimizing the negative log-likelihood function,
making the objective function to be minimized as:

a,8 = min—I(a, 8) )
a0

To estimate the parameters @ and 8, the negative log-likelihood function (Eq. 5) was minimized using the
Nelder-Mead simplex algorithm, a derivative-free optimization routine widely applied in likelihood-based
estimation. The algorithm iteratively updates a simplex of candidate solutions through reflection, expansion,
contraction, and shrinkage operations until convergence. Convergence was declared when successive iterations
satisfied both (i) a relative change in the objective function below 1078 and (ii) a relative change in parameter
values below 1078, or when the maximum number of iterations (10,000) was reached. To avoid local optima,
the optimization was nitialized with multiple starting values obtained from method-of-moments estimates and
from uniform random draws within plausible parameter ranges (@, 8 > 0). In practice, stable convergence was
consistently achieved across all stations, and the final solutions were insensitive to the choice of initial values.
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2.3. Goodness-of-Fits Test

To evaluate whether the APTXL distribution provides an adequate representation of monthly rainfall data,
a set of complementary goodness-of-fit criteria was applied. The Akaike Information Criterion (AIC) was used
to balance model parsimony and quality of fit, defined as

AIC =2k —2InlL, (6)

where k denotes the number of estimated parameters and L is the maximized likelihood function. The Root
Mean Square Error (RMSE) was considered to measure the magnitude of predictive errors, expressed as

n
1
RMSE = ;Z(PEL- — Pp)?, (7)
i=1

with n denoting the sample size, Pg; the empirical frequencies, and Pr; the theoretical frequencies. The
Kolmogorov-Smirnov (KS) statistic was employed to capture the maximum absolute difference between the
empirical and theoretical distributions, given by
KS = max |Pg — Prl.
=1,2,...,n| Ei Tll (8)

1

Finally, the Cramér-von Mises (CM) statistic was used to assess overall discrepancies between the empirical and
fitted cumulative distribution functions, computed as

1 wpRi-1 2

2n

where F(x;) is the theoretical cumulative distribution evaluated at the ordered sample values x;. Together, these
metrics provide a comprehensive assessment of model adequacy, since each emphasizes a distinct dimension of
fit quality, from parsimony and error magnitude to local and global distributional differences.

To perform a comprehensive and objective comparison across all 13 rainfall stations and multiple statistical
criteria, this study adopts the Comprehensive Rating Index (CRI) [51], [52]. The CRI is a normalized index that
aggregates the ranks of each distribution across all stations and all metrics:

L s M
=1 . 10
CRI; =1 SxMxNZZRank”k (10)

i=1 k=1

where CRI; is comprehensive rating index for distribution j, Rank; is rank of distribution j at station { under
metric k (1 = best to 4 = worst), S 1s number of stations (13), M 1s number of evaluation metrics (4), and N 1s
number of candidate distributions (4: APTXL, Gamma, Lognormal, GEV).

The decision to employ aggregated ranks rather than direct normalization offers clear methodological
advantages for evaluating competing distributions. By converting raw values of AIC, RMSE, KS, and CM to
ranks, differences in measurement scales and units are eliminated, which allows each criterion to contribute
equally to the overall assessment. This approach ensures that a metric expressed in large absolute numbers, such
as AIC, does not overshadow another metric like KS or CM, which typically yields smaller values. Moreover,
rank aggregation provides a more robust summary by reducing the undue influence of extreme values. For
mstance, 1f one distribution produces an unusually high RMSE at a single station, normalization of raw scores
would heavily penalize that model across the entire evaluation. In contrast, when using ranks, the impact of this
anomaly is imited to one criterion at one station, preserving the fairness of the overall index. The Comprehensive
Rating Index (CRI) derived from aggregated ranks therefore captures the consistency of model performance
across stations and metrics, rather than being driven by isolated outliers. In hydrological applications, where
rainfall distributions can vary widely across space and time, such stability 1s particularly valuable because it reflects
general reliability rather than sensitivity to extreme local fluctuations.

3. RESULTS AND DISCUSSION
8.1. Simulation

To evaluate the accuracy of the estimation method, we employ a Monte Carlo simulation approach with
10,000 replications, adopted from [53]. Three scenarios are considered, using sample sizes n = {50, 100, 500}.
Random samples are generated based on Eq. 3, with true parameter values set to a = 0.5 and 6 = 0.5 for Scenario
I, a=0.5and b =1 for Scenario 2, and a = 1.5 and b = 1.5 for Scenario 3. They provide a controlled variation
in both shape («) and scale (0) that allows assessment of estimation performance across light-tailed, moderate,
and heavy-tailed conditions. Thus, while simplified, the scenarios approximate realistic rainfall characteristics,
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enabling the simulation study to be both interpretable and relevant to the empirical application. Table 1 presents
the simulation results across all scenarios, including the average estimator (AE) over 10,000 replications, the bias
of AE relative to the true parameter values, and the mean squared error (MSE) for each sample. As expected,
the MLE estimates converge to the true values, and both bias and MSE decrease as the sample size n increases.

Table 1. Simulation results (Average estimator AE, Absolute bias AB, and MSE) for different sample sizes n
and scenarios.

Scenario 1 Scenario 2 Scenario 3

n Parameters  Estimation (o =0.5,0 =0.5) (@=0.5,0-1) (=-1.5,0-1.5
50 o AE 11117 1.0767 92.6100
AB 0.6117 0.5767 1.1100
MSE 2.8719 17.002 11.030
0 AE 0.5289 1.0597 1.5521
AB 0.0289 0.0597 0.0521
MSE 0.0240 0.1069 0.1355
100 o AE 0.7798 0.7674 1.9646
AB 0.2798 0.9674 0.4646
MSE 0.6334 15.005 9.9450
0 AE 0.5078 1.0149 1.5269
AB 0.0078 0.0149 0.0269
MSE 0.0147 0.0609 0.0608
500 o AE 0.5440 0.5401 1.5835
AB 0.0440 0.0401 0.0835
MSE 0.0638 0.0516 0.9479
0 AE 0.5001 1.0012 1.5045
AB 0.0001 0.0012 0.0045
MSE 0.0030 0.0121 0.0111

Table 1 summarizes the results of a Monte Carlo simulation study designed to assess the performance of
the maximum likelihood estimation (MLE) method for the APTXL distribution under three different parameter
settings and varying sample sizes. For each scenario, the table reports the average estimator (AE), absolute bias
(AB), and mean squared error (MSE) based on 10,000 simulated samples of size n = 50, 100, and 500. The
simulation results confirm that the maximum likelihood estimators for both parameters of the APTXL
distribution are consistent and asymptotically unbiased. Both the absolute bias and MSE decrease systematically
with increasing sample size, validating the reliability of the proposed estimation method in practical applications.
The results also highlight that while estimation of @ can be more sensitive to sample size, particularly in heavy-
tailed settings, the estimation of 6 remains comparatively stable and efficient. To aid interpretation, we
complement Table 1 with line plots of AE. and MSE. against sample size n for a and 8 across the three scenarios.
Figure 1 highlight the expected consistency of MLE (AFE. approaching the true parameters) and efficiency gains
(MSE decreasing with n).

Modeling Monthly Rainfall Data Using the Alpha Power Transformed X-Lindley Distribution in the Toba Lake Region (Mohamad Khoiran Najib)



758 O E-ISSN : 2580-5754; P-ISSN : 2580-569X

Average Estimator (AE) for a Mean Squared Error (MSE) for a
Scenario 1 (a=0.5, 8=0.5) 17.5 Scenario 1 (a=0.5, 6=0.5)
25} —e— Scenario 2 (a=0.5, 8=1) —e— Scenario 2 (a=0.5, 8=1)
—e— Scenario 3 (a=1.5, 8=1.5) 15.0 —8— Scenario 3 (a=1.5, 8=1.5)
2ol 12,5
10.0
w @
<1s s L5l
5.0f
1.0
25}
0.5¢ L 0.0 I 1 L I
100 200 300 400 500 100 200 300 400 500
Sample size (n) Sample size (n)
Average Estimator (AE) for 6 Mean Squared Error (MSE) for 6
161
—_ 0.14 Scenario 1 (a=0.5, 8=0.5)
Scenario 2 (a=0.5, 8=1)
Lal 012} —e— Scenario 3 (a=1.5, 8=1.5)
0.10
1.2r
0.08
w w
< 10f &
0.06[
0.8F 0.041
0.6 Scenario 1 (¢=0.5, 8=0.5) 0.02
: Scenario 2 (=0.5, 8=1)
—0—‘ Scenario 3 (a=1.5, 6=1.5) ¢ 0.00} i 1 i i
100 200 300 400 500 100 200 300 400 500
Sample size (n) Sample size (n)

Figure 1. Monte Carlo simulation results showing AE and MSE for @ and 0 across three scenarios, illustrating
convergence of MLE estimates to true parameters and decreasing MSE with larger sample sizes.

Figure 1 provides a visual validation of the theoretical properties of the MLE for APTXL parameters. In
all scenarios, the AE. curves for both & and 8 move closer to the true parameter values as the sample size grows,
indicating unbiasedness in large samples. Simultaneously, the MSE curves decline sharply with increasing nnn,
showing efficiency gains and reduced estimation variability. Notably, scenarios with heavier tails (e.g., @ =
1.5,68 = 1.5) exhibit larger deviations at smaller sample sizes, but these stabilize rapidly as n increases. Overall,
the figure illustrates that MLE remains reliable for both shape and scale parameters of the APTXL distribution,
with performance improving markedly as the amount of data grows.

In practical terms, the simulation results highlight how the two parameters of the APTXL distribution, aand
6, govern different aspects of rainfall behavior. The parameter aprimarily controls the heaviness of the
distribution’s tail and thus reflects the probability of observing extreme rainfall events. Larger values of agenerate
heavier right tails, implying an increased likelihood of unusually high rainfall totals, while smaller values of ashift
the mass toward the body of the distribution, reducing the probability of extremes. This interpretation is
particularly important in hydrological applications, since tail behavior directly affects flood risk assessment and
early warning systems. The parameter 8, on the other hand, acts as a scale factor that determines the overall
spread of rainfall values. Higher values of Ocorrespond to broader variability and larger expected totals, whereas
lower values compress the distribution, producing lower mean rainfall. When considered jointly, aand 8provide
a flexible way of characterizing both the typical monthly rainfall levels and the likelihood of extreme events. The
simulation confirms that their maximum likelihood estimates converge toward the true values as sample size
mcreases, reinforcing the reliability of these parameters as interpretable indicators of rainfall intensity and
variability.

3.2. Application to Monthly Rainfall Data

To demonstrate the practical applicability of the APTXL distribution, this section presents an empirical
analysis of long-term monthly rainfall data from the Toba Lake region in North Sumatra, Indonesia. The
objective 1s to evaluate the goodness-of-fit performance of the proposed model in capturing the distributional
characteristics of real-world hydrological data, particularly in a tropical seting with known variability and
extremes. The region is well suited for this purpose, as its complex topography and climatic conditions produce
highly skewed and heavy-tailed rainfall patterns. By comparing APTXL with classical models, the analysis assesses
not only its ability to describe average behavior but also its effectiveness in representing extreme rainfall events
that are critical for hydrological risk management.
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3.2.1. Dataset

This study utilizes a comprehensive monthly rainfall dataset from 13 meteorological observation stations
located in the Toba Lake region, North Sumatra, Indonesia. The dataset spans a 34-year period, from January
1981 to December 2014, resulting in 408 monthly observations per station. Fach station record includes metadata
such as station name, geographical coordinates (latitude and longitude), and a continuous time series of monthly
rainfall totals (in millimeters). The selection of the Toba Lake region is motivated by its complex topography and
hydrometeorological importance. The area features a large volcanic caldera lake surrounded by steep highlands,
which significantly influence local precipitation patterns. Consequently, rainfall in this region tends to exhibit high
temporal variability, spatial heterogeneity, and extreme values, conditions that challenge standard statistical
models and motivate the use of more flexible probability distributions such as the APTXL. The 13 observation
stations used in this analysis include: Dolok Sanggul, Merek, Onanrunggu, Pangururan, Stage of Parapat,
Siborongborong, Laguboti, Lumban Julu, Silaen, Sidamanik, Parlilitan, Sitinjo, and Gabe Hutaraja.

Table 2. Simplified descriptive statistics of monthly rainfall (in mm) per station (1981-2014).

Station Mean Std. Min. Median Max. Skewness Excess Kurtosis
Dolok Sanggul 176.05  105.77 3 163 715 0.78 1.13
Merek 182.44  111.74 8 163 916 1.74 6.66
Onanrunggu 161.67 96.30 7 152 490 0.74 0.32
Pangururan 155.90 90.79 0 145 542 0.78 0.67
Stageof Parapat 175.34 95.73 2 164 577 0.73 0.65
Siborong-borong 181.07  111.15 2 164 548 0.72 0.22
Laguboti 145.97 88.64 2 133 513 0.84 1.04
Lumban Julu 211.36  120.82 4 198 647 0.66 0.22
Silaen 145.23 87.18 2 128 461 0.78 0.22
Sidamanik 239.49  122.74 6 222 840 1.06 1.94
Parlilitan 336.26  173.68 14 312 900 0.65 0.14
Sitinjo 210.71  105.88 17 200 584 0.51 -0.01
Gabe Hutaraja 175.58  102.50 2 162 464 0.50 -0.26

To further characterize the rainfall patterns across the Toba Lake region, Table 2 presents a statistical
summary of monthly rainfall data from 1981 to 2014 for each observation station. The results reveal substantial
spatial heterogeneity in rainfall behavior, with stations such as Parlilitan, Sidamanik, and Merek recording the
highest mean rainfall values, large standard deviations, and extreme maximum values that exceed 800 mm. These
characteristics are indicative of pronounced inter-annual variability and distributional asymmetry. Most stations
exhibit strong positive skewness and heavy right tails, particularly at Merek, Sidamanik, and Lagubot, reflecting
asymmetric rainfall distributions. In addition, several stations show substantial excess kurtosis, such as Merek and
Dolok Sanggul, suggesting a heightened probability of extreme rainfall events. The standard deviations are also
notably large relative to the mean at stations like Parlilitan and Lumban Julu, further underscoring the variability
i monthly totals. These statistical features collectively emphasize the inadequacy of traditional symmetric models
and underscore the need for more flexible probability distributions that can accommodate skewness, heavy tails,
and high variability when modeling rainfall in this hydrologically complex region.

3.2.2. Fitted distribution

The APTXL distribution will be fitted to the monthly rainfall data of all 13 stations, using the 34-year period
from January 1981 to December 2014. Parameter estimation will be carried out using the maximum likelihood
estimation (MLE) method, which provides statistically consistent estimates under regular conditions. To evaluate
the performance of the APTXL distribution, it will be compared against several well-established distributions,
such as the Gamma, Lognormal, and Generalized Extreme Value (GEV) distributions.

Figure 2 shows the statistical advantages of the APTXL distribution in representing the empirical
characteristics of rainfall data. It highlights the ability of the APTXL model to accommodate positive skewness
and heavy tails, features commonly observed in tropical rainfall regimes. The comparative density curves show
that while classical models provide reasonable fits in moderate ranges, they often underestimate or fail to
capture extreme events and sharp peaks. The close alignment of the APTXL distribution with empirical data
reinforces its suitability for modeling rainfall phenomena with complex distributional properties, thereby
providing a more accurate probabilistic framework for hydrological and climate-related risk analysis.
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Figure 2. Comparison of fitted probability density functions (PDFs) of monthly rainfall data at selected stations
using the APTXL, Gamma, Lognormal, and GEV distributions.

Beyond the overall visual fit, Figure 2 also reveals important station-specific insights. At locations such as
Merek and Sidamanik, where the empirical histograms exhibit strong right skewness and high variability, the
APTXL distribution clearly tracks the upper tail more closely than the Gamma or Lognormal models. In
contrast, the GEV distribution occasionally follows the empirical tail but tends to deviate around the central body
of the data, indicating a trade-off between fitting extremes and representing average behavior. The robustness of
APTXL across diverse stations—including those with moderate rainfall regimes like Pangururan and those with
highly variable regimes like Parlilitan—illustrates its adaptability to heterogencous hydrological conditions. This
consistency underscores the practical value of the distribution in multi-station analyses, where a single model
must adequately capture a broad spectrum of rainfall characteristics without sacrificing accuracy in either the
center or the tails of the distribution.

Table 3 presents a comparative evaluation of four probability distributions applied to monthly rainfall data
at selected stations in the Toba Lake region, such as Dolok Sanggul, Merek, and Onanrunggu. To enhance
mterpretability, each metric value is accompanied by its corresponding rank in parentheses, with rank 1 indicating
the best performance among the four models. The results indicate that the APTXL distribution consistently
achieves top rankings across multiple criteria and stations. At all three stations, APTXL ranks first in AIC, KS,
and CM, and either first or second in RMSE. These results reflect its superior ability to capture both central and
tail behaviors in rainfall distributions. In contrast, although classical distributions such as Gamma, Lognormal,
and GEV are widely used in hydrological modeling [54], [55], their performance is highly variable across stations.
The Lognormal distribution performs poorly across all criteria, consistently receiving the lowest ranks. While
Gamma and GEV occasionally show competitive results, particularly in RMSE and KS.

Table 3. Comparison of distribution fitting criteria and rankings (in parentheses) for monthly rainfall at Dolok
Sanggul, Merek, and Onanrunggu stations.

Station Distribution AIC RMSE KS CM
Dolok Sanggul APTXL 4910.2° 0.0187% 0.0417° 0.1505°
Gamma 4926.6" 0.0339" 0.0617" 0.4725"
GLEV 4924.8" 0.0178" 0.0480" 0.1646"
Lognormal 4924.0% 0.0627" 0.0886" 1.0181"
Merek APTXL 4875.1° 0.0167" 0.0314° 0.10738°
Gamma 4908.1" 0.0172% 0.0447" 0.1707%
GEV 4894.4" 0.0180" 0.0338" 0.1370"
Lognormal 4883.5" 0.1210" 0.3052" 1.4057"
Onanrunggu APTXL 4821.8° 0.0188" 0.0295° 0.1208"
Gamma 4826.7" 0.0272° 0.0400" 0.1986"
GLEV 4823.8" 0.0112" 0.0355" 0.1467%
Lognormal 4882.7" 0.1291" 0.2367" 1.2568"
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To synthesize the results across all stations and metrics, the distributions were ranked using the
Comprehensive Rating Index (CRI), which aggregates performance across multiple criteria. To illustrate how the
Comprehensive Rating Index was derived, consider the rainfall data from Dolok Sanggul station. For this station,
each of the four candidate distributions—APTXIL, Gamma, GEV, and Lognormal—was evaluated under four
statistical criteria: AIC, RMSE, KS, and CM. For every criterion, the models were ranked from best (rank 1) to
worst (rank 4), with lower values indicating superior performance. At Dolok Sanggul, the APTXL distribution
obtained rank 1 for AIC, rank 2 for RMSE, rank 1 for KS, and rank 1 for CM. Summing these values gives a
total score of five. By contrast, the Gamma distribution scored much higher, with ranks of four, three, three, and
three, for a total of thirteen, while the Lognormal distribution accumulated the worst score of fourteen. The GEV
distribution occupied an intermediate position with a total score of nine. Once ranks have been assigned for each
metric and station, they are aggregated across all thirteen stations and all four criteria, producing a cumulative
rank sum for every distribution. The CRI value 1s then calculated by normalizing this sum against the maximum
and minimum possible rank totals, thereby ensuring comparability across stations and metrics. A distribution
with consistently good performance will achieve a low aggregate rank sum and thus a higher CRI value. For Dolok
Sanggul alone, the partial comparison already reveals the advantage of the APTXL distribution, and when the
scores from all stations are combined, APTXL emerges as the overall best performer with the highest CRI value,
confirming its superior ability to represent rainfall data across diverse conditions. Table 4 summarizes the total
rank scores, CRI values, and overall rankings for each distribution across all stations and metrics.

Table 4. Summary of distribution performance based on total rank and Comprehensive Rating Index (CRI)
across all stations and metrics.

Distribution Sum Rank CRI Ranking
APTXL 62 0.7019 Ist
GLEV 120 0.4231 2nd
Gamma 137 0.3413 3rd
Lognormal 192 0.0769 4th

The results demonstrate that the APTXL distribution is the most consistent and superior performer,
achieving the highest CRI value and the lowest total rank. This confirms the earlier station-level findings, where
APTXL often ranked first or second across all four-evaluaion metrics. The GEV distribution ranks second
overall, indicating relatively good but less consistent performance. The Gamma distribution ranks third, while
the Lognormal distribution ranks last, with a CRI close to zero, highlighting its poor adaptability to the rainfall
data in this study.

Overall, these findings validate the effectiveness of the APTXL distribution as a robust probabilistic model
for representing monthly rainfall patterns in the Toba Lake region. Its ability to consistently outperform
established models across diverse metrics and locations makes it a strong candidate for future hydrological
modeling and climate-related applications.

4. CONCLUSION

This study introduced and evaluated the Alpha Power Transformed X-Lindley (APTXL) distribution as a
flexible probability model for representing monthly rainfall in the Toba Lake region. By mcorporating an
additional shape parameter through the alpha power transformation, APTXI. was able to capture the
pronounced skewness, heavy tails, and variability that characterize tropical rainfall data. Comparative analysis
against the Gamma, Lognormal, and Generalized Extreme Value (GEV) distributions demonstrated that APTXL
consistently achieved superior performance across multiple goodness-of-fit criteria, a result further supported by
the Comprehensive Rating Index. Based on these findings, the APTXL distribution is recommended in practice
as a robust alternative for hydrological and climatological applications where accurate characterization of
extremes is essential, such as flood risk management, reservoir operation, and agricultural water allocation.

Despite its strong performance, the present analysis 1s subject to several limitations. The model fitting
assumed temporal independence of monthly rainfall series and stationarity of the underlying distribution over
the 34-year period. These assumptions simplify estimation but may not hold under real climate variability and
long-term climate change, where autocorrelation and shifting rainfall regimes are expected. Furthermore, the
evaluation relied on maximum likelihood estimation under the frequentist framework, which does not explicitly
quantify parameter uncertainty beyond asymptotic properties.

Future research could address these limitations in several ways. Bayesian estimation techniques would
provide a natural framework for incorporating prior knowledge and quantifying full parameter uncertainty.
Regionalization approaches that pool information across neighboring stations could improve stability of
parameter estimates in data-scarce areas, while explicitly accounting for spatial dependence. Finally, extending
the APTXL distribution to non-stationary settings—where parameters evolve over time in response to climate
drivers—would broaden its applicability to climate change impact studies and long-term water-resource planning.
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