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Article Info ABSTRACT

Article history: This study applies graph theory to optimize the placement of electric vehicle
(EV) charging stations in Banyumas Regency, Indonesia, using real geospatial
data from 27 sub-districts. Fach sub-district 1s modeled as a vertex, with edges
defined by a 10 km coverage radius. The domination number 1s employed to
identify the minimum number of charging stations required to ensure full spatial
coverage. Unlike prior EV infrastructure studies in Indonesia that primarily rely
Keywords: on demand-based heuristics or clustering methods, this research explicitly
guarantees coverage through graph domination theory. To enhance robustness,
the domination-based solution is compared with a Set Covering Problem solved
using Ant Colony Optimization (ACO). Both approaches consistently identify
six strategic locations, achieving 100% coverage while reducing infrastructure
requirements by approximately 78% compared to a one-station-per-sub-district
strategy. The results provide practical guidance for policymakers and urban
planners by supporting cost-efficient, scalable, and equitable EV charging
mfrastructure deployment in regions with early-stage EV adoption.
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1. INTRODUCTION

Graph theory plays a vital role in computer science and applied mathematics by providing a rigorous
framework for modeling complex systems and solving optimization problems, particularly in network-based
decision making and facility location planning. Rather than emphasizing its broad theoretical scope, graph theory
1s increasingly valued for its ability to support applied optimization tasks such as infrastructure planning, resource
allocation, and spatial coverage problems. Within this discipline, graph domination theory represents an
important approach concerned with selecting a minimal subset of vertices, known as a dominating set, such that
every vertex in the graph is either included in this set or adjacent to one of its members. The domination number,
defined as the minimum cardinality of all dominating sets, is especially relevant in optimization contexts where
facilities must be placed efficiently to ensure complete service coverage.

In recent years, domination theory has been applied in a range of optimization and resource allocation
problems. Gayathri et al. (2020) used domination principles to optimize school transportation routes, while
Hamidi and Taghinezhad (2023) applied them to improve communication and healthcare network reliability.
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Similarly, Bibi et al. (2017) and Yegnanarayanan et al. (2013) utilized distance-based domination to enhance
signal coverage in wireless and sensor networks. Ahmad and Batool (2023) implemented domination concepts
i city-level commodity distribution, and Rehman et al. (2023) optimized hospital location planning using
domination-based models. These studies demonstrate that domination numbers are effective optimization tools
for minimizing infrastructure redundancy while guaranteeing coverage, yet most existing works rely on abstract
graph structures or simulated networks. Consequently, the application of domination theory using real geospatial
data, particularly in transportation infrastructure planning, remains limited.

In Indonesia, the rapid growth of the electric vehicle (EV) market has created a pressing need for efficient
and accessible charging infrastructure. According to the AC Ventures Electric Vehicle Outlook (July 2023), the
country currently operates 1,431 charging stations, with a target of 2,500 by 2025. Distributed evenly across 514
regencies and cities, this implies a minimum of five stations per region. Yet, Banyumas Regency covering 1,327.59
km? and home to approximately 1.77 million residents currently operates only two charging stations. This
disparity highlights the need for an optimization-driven planning framework that determines not only how many
stations are required, but also where they should be strategically located to maximize coverage and cost efficiency.

To address this challenge, this study applies graph domination theory to determine the minimum number
of EV charging stations required to cover all sub-districts within Banyumas Regency. The 27 sub-districts are
modeled as vertices in a graph, and edges are established between pairs of sub-districts. The domination number
derived from this model represents the minimal number of stations needed to ensure that every sub-district is
either directly served or within range of a nearby station. This approach provides a mathematically grounded
framework for spatial decision-making using real geographic data.

For comparison and validation, the results obtained from the dominating set model are evaluated against
those generated by the Set Covering Problem (SCP) solved using the Ant Colony Optimization (ACO) algorithm.
The Set Covering Problem is a classical optimization model that seeks the smallest number of facilities required
to ensure that every demand vertex in a region is covered by at least one facility. The ACO algorithm, a
population-based metaheuristic inspired by the foraging behavior of ants, 1s used to solve this problem efficiently
through iterative pheromone updating and heuristic selection. By contrasting domination theory with an ACO-
based SCP approach, this study situates graph-based optimization within a broader applied optimization context,
balancing theoretical rigor and heuristic adaptability.

Accordingly, this research aims to answer the following question:

How can graph domination theory be applied to determine the optimal placement of EV charging stations
i Banyumas Regency, and how do its results compare with those produced by the Set Covering Problem solved
using Ant Colony Optimization (ACQO)?

Through this approach, the study contributes both theoretically and practically. From a theoretical
perspective, it demonstrates one of the first applications of domination number theory using real geospatial
mfrastructure data in Indonesia. Practically, it provides comparative insights into how graph-based and
metaheuristic optimization models can support policymakers and urban planners in designing efficient, equitable,
and sustainable EV charging networks aligned with Indonesia’s energy transition goals.

2. RESEARCH METHOD
2.1 Dominating Set in the Context of EV Charging Station Placement

In a graph G = (V, E), the domination number y(G)refers to the smallest cardinality of a dominating set,
which 1s a subset of vertices ensuring that every vertex outside the set 1s adjacent to at least one member within it.
Thus, y(G)represents the minimum number of vertices required to dominate the entire graph (Khan et al.,
2024). Recent studies have increasingly applied graph-based and metaheuristic methods to optimize electric
vehicle charging infrastructure. Chen et al. (2024) utilized spatial graph clustering to determine efficient station
placement in urban environments, emphasizing accessibility and network balance. Complementing this, Mousavi
et al. (2024) proposed a hybrid metaheuristic algorithm that accounts for demand uncertainty when determining
optimal charging locations. Metaheuristic approaches continue to gain traction; for example, Gautam and Singh
(2024) demonstrated that ant colony optimization can effectively balance mnstallation cost and spatial coverage in
smart city environments.

In this application, we aim to determine the optimal locations for EV charging stations 1n a city by modeling
the city's road network as a graph. In this graph, each vertex (V) represents a city center or a strategic location,
while each edge (E) represents a road connecting two locations. For example, consider the graph V =
{A, B,C, D, E}, which represents five strategic locations, and E = {(4, B), (B, C), (C,D), (D, E), (E,A), (B, D)},
which represents the roads connecting these locations. In this context, a dominating set refers to a subset of
locations where charging stations will be installed. The goal is to ensure that every location in the network either
has a charging station or is adjacent to a location with a charging station.

Zero: Jurnal Sains, Matematika dan Terapan



Zero: Jurnal Sains, Matematika dan Terapan a 717

To determine the minimum number of locations required for charging stations, we follow a structured
approach:
1. Select Candidate Locations: We begin by identifying possible subsets of vertices as candidate locations for

the charging stations. These subsets represent potential sets of locations where charging stations might be
mstalled.

2. Validate the Set: For each candidate set, we check if every vertex in the graph is either part of the candidate
set or has a neighboring vertex in the set. This ensures that all locations are covered by the charging stations,
either directly or through adjacency.

3. Find the Minimum Set: We then determine the smallest subset of vertices that satisfies the coverage
condition. This is the optimal set of locations where charging stations should be installed to minimize the
total number of stations required.

4. Calculate the Domination Number: The size of this minimum subset is called the domination number,
which represents the minimum number of charging stations needed to cover the entire network.

The following Python pseudocode illustrates this approach:

from itertools import combinations

# Function to check if a candidate set is a dominating set
def 1s_dominating_set(G, S):
for vertex in G:
if vertex not in S and all(neighbor not in S for neighbor in Glvertex]):
return False
return True

# Function to find the domination number
def find_dominating_number(G):

vertices = list(G.keys())

n = len(vertices)

for k in range(1, n+1):

for subset in combinations(vertices, k):
if 1s_dominating_set(G, subset):
return subset, k
return vertices, n # Worst case, the whole set is required

# Example graph for a transportation network
G-{

‘At B 'E],

B: [A,'C, D],

'C: [B, D,

D: [B,'C, 'El,

T: [A, 'D]

# Find the domination number and optimal locations for charging stations
dominating_set, domination_number = find_dominating_number(G)
print(f'"Optimal locations for charging stations: {dominating_set}")
print(f"The domination number of the transportation network is:
{domination_number}")

Interpreting the Results:

Suppose the results of the above code are as follows: Optimal Locations: {4, B} and Domination Number:
2. This means that placing EV charging stations at locations A and B ensures that all other locations (C, D, E') are
either directly equipped with a station or are adjacent to a location that is. The domination number of 2 indicates
that only two charging stations are required to cover the entire network. This minimizes infrastructure costs while
maintaining full accessibility for EV users. By applying this method, we can efficiently determine the optimal
placement of EV charging stations, ensuring that the network is fully covered with the least number of stations.
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This approach can be scaled to larger networks and adapted for practical applications in urban planning and
transportation infrastructure development.

The step-by-step procedure used to determine the domination number is illustrated in Figure 1, which
provides a clear visual representation of how candidate vertex subsets are evaluated. The process begins by
examining all possible subsets in an incremental manner, starting from the smallest subset size to ensure that the
minimum dominating set 1s identified.

In Steps 1 to 5, the algorithm evaluates all single-vertex subsets, namely {4}, {B}, {C}, {D}, and {E}. For
each subset, the algorithm checks whether all vertices in the graph are either included in the subset or adjacent
to at least one vertex within it. As shown in Figure 1, none of these single-vertex subsets are able to dominate the
entire graph, because at least one vertex remains uncovered in each case. Consequently, these subsets are
classified as invalid and marked as False.

The algorithm then proceeds to Step 6, where it evaluates the two-vertex subset {4’ B}. At this stage, the
coverage condition is satisfied: every vertex in the graph is either a member of the subset or directly adjacent to
vertex Aor B. As a result, this subset 1s identified as a valid dominating set and marked as True.

Because the algorithm evaluates subsets in ascending order of size, the identification of {4’ B}as a valid
dominating set guarantees that no smaller subset can achieve full domination. Therefore, the algorithm terminates
at this point and concludes that the domimation number of the graph is 2. This stepwise evaluation, as depicted
in Figure 1, demonstrates how the domination number 1s derived in a systematic and exhaustive manner.

Step 1: Checking Subset ['A’] (Dominating Set: False) Step 2: Checking Subset ['B'] (Dominating Set: False)
B B
E E
A A
© ©
D D
Step 3: Checking Subset ['C'] (Dominating Set: False) Step 4: Checking Subset ['D'] (Dominating Set: False)
B B
E E
A A
© ©
D D
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Step 5: Checking Subset ['E'] (Dominating Set: False) Step 6: Checking Subset ['A', 'B'] (Dominating Set: True)
B B
E E
A A
C c
D D

Figure 1. Step-by-step Evaluation of Dominating Set Candidates in the Graph

2.2 Set Covering Problem and Ant Colony Optimization in Comparison with the Dominating Set
Approach

The Set Covering Problem (SCP) is one of the fundamental models in facility location and public
mfrastructure optimization. It aims to determine the smallest number of facilities needed to ensure that all
demand vertices are served within a specific coverage distance. In practical terms, the SCP ensures that every city,
neighborhood, or service area lies within the operational range of at least one facility, such as a hospital, bus stop,
or EV charging station. This model 1s widely used by planners and policymakers to balance accessibility and
mstallation cost (Daskin & Schilling, 2011).

Mathematically, the SCP 1s expressed as follows:

Minimize Z = Zje 5 i
subject to ZjeNi xp=21Vviel ()

x; €{0,1},vj €]

where I represents demand vertices, ] is the set of candidate facility sites, ¢; denotes the installation cost at
site j, and x; is a binary decision variable (1 if a facility is placed, 0 otherwise). The constraint ensures that each
demand vertex i 1s covered by at least one facility within the service radius.

In this study, the SCP is applied to determine optimal locations for EV charging stations in Banyumas
Regency. Each candidate site represents a subset of demand vertices within a specified radius, and the objective
1s to minimize the number of stations while ensuring complete regional coverage. Compared with the dominating
set approach which focuses on network adjacency and ensures that each vertex 1s either selected or connected to
a selected vertex the SCP emphasizes spatial coverage based on distance. The dominating set approach supports
network connectivity, whereas the SCP enhances spatial efficiency. Together, they provide a complementary
framework for developing EV infrastructure that is both robust and equitable (Yang et al., 2023; Awasthi &
Venkitachalam, 2021).

To solve the SCP efficiently, this research employs the Ant Colony Optimization (ACO) algorithm, a
metaheuristic inspired by the foraging behavior of ants. ACO i1s particularly effective for solving combinatorial
problems with large and interdependent search spaces. In this context, each potential EV charging station acts as
a “set,” and artificial ants construct feasible solutions by selecting subsets of stations that ensure complete
coverage.

The probability that an ant k moves from location i to j at iteration t is defined as:

()% B
[7i;(©)]% 5] ) ll] € Nik'
PE(t) = {ZLEN,;[ma)]“[nu]B ©)
0, otherwise.

where 7;;(t) is the pheromone intensity, 1);; is the heuristic desirability (often the inverse of distance), and
a and B control their relative influence. The pheromone update follows:
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m
Tyt +1) = (1 - p)ry() + Zk_lmg;(t), ©)
where p 1s the evaporation rate, m is the number of ants, and A‘L’f‘j (t) is defined as:

Qo .
—=, 1 (i,)) 1s part of ant k’s solution,

b = @ T ‘ !

i otherwise.

Here, Q 1s a constant pheromone quantity and L, represents the cost (or total number of stations) of the
solution generated by ant k. Over several iterations, pheromone trails guide ants toward promising solutions while
evaporation prevents premature convergence.

In this study, the ACO parameters a, f, p, and Q were selected based on established practices in
transportation and infrastructure optimization literature and refined through trial-based experimentation
(Armond et al., 2022; Yang et al., 2023). Parameters aand Swere configured to balance pheromone exploitation
and heuristic exploration, while the evaporation rate pwas used to prevent premature convergence. Several
parameter combinations were evaluated, and the final configuration was chosen due to its stable convergence and
consistent number of selected charging stations, in line with the domination number obtained from the graph-
based analysis.

By integrating ACO with the SCP formulation, this study complements the dominating set approach. While
the dominating set provides a theoretical lower bound based on adjacency, the ACO-SCP framework introduces
adaptive learning to explore alternative spatial configurations within the same coverage constraints. This
combination results in an efficient and practically adaptable strategy for EV charging station placement.

2.3 Integrated Framework of Dominating Set, SCP, and ACO

Figure 2 illustrates how the domination number analysis, Set Covering Problem (SCP), and Ant Colony
Optimization (ACO) are integrated in this study. The domination number analysis is first applied to establish a
theoretical baseline based on graph adjacency. The problem is then reformulated as an SCP to incorporate
distance-based spatial coverage constraints. Finally, the SCP is solved using ACO, which applies heuristic and
iterative optimization to efficiently identify feasible solutions. The results from these three components are
compared and integrated to derive an optimal and practical EV charging station placement strategy.

e o A
Domination Number Analysis L SCP Forn ulation ACO Algorithm

« Graph-Based Domination « Spatial Coverage Constraints « Heuristic Search Process

« Calculate Domination Number y(G) [ Reformulate Problem =/, Facility Location Model « Parameter Adjustment

« Iterative Optimization

L Optimal EV Charging l
Theoretical Baseline —» 3 <4— Solve via ACO
Station Strategy

Minimum Domination Set SCP Optimization Model ACO Solution

Comparison & Integration of Methods

Figure 2. Integrated Framework of Dominating Number, Set Covering Problem, and Ant Colony
Optimization

2.4 Data Source and Distance Computation

The dataset used in this study consists of latitude and longitude coordinates of 27 sub-districts in Banyumas
Regency, Indonesia. The coordinates were obtained exclusively from Google Maps and represent the
approximate geographic centers of each sub-district. Google Maps was chosen as the data source because this
research focuses on the application of dominating graph theory, which requires spatial point representations to
model vertices and adjacency relationships. Unlike studies that depend on detailed administrative boundaries or
road-network structures, this approach does not require polygon-based data or routing information; therefore,
point-based coordinates from Google Maps are sufficient and appropriate. Prior to analysis, all coordinate data
were standardized into decimal degree format to ensure consistency. The dataset contained no missing or
duplicate entries, and no additional preprocessing steps were required.

Adjacency between sub-districts was defined based on a fixed coverage radius of 10 km, reflecting the
assumed service range of an electric vehicle charging station. Pairwise distances between sub-districts were
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calculated using the haversine formula, which computes geodesic distances on the Earth’s surface based on
latitude and longitude coordinates. GIS-based distance tools were not employed, as the haversine formula
provides sufficient accuracy for regional-scale analysis and aligns well with the abstract graph representation
adopted in dominating set theory. Two sub-districts were considered adjacent if their computed distance was less
than or equal to 10 km.

All computational experiments were conducted using Python 3.12. Graph construction and domination set
evaluation were implemented using custom Python scripts. Standard scientific ibraries were employed, including
NumPy for numerical operations, itertools for systematic subset generation, and NetworkX for graph
representation and traversal.

3. RESULT AND ANALYSIS

The rapid rise of EVs around the world has created an urgent need for charging infrastructures that are
both efficient and strategically located. In Banyumas Regency, Central Java, Indonesia, the growing movement
toward sustainable transportation calls for thoughtful planning to ensure that EV users have convenient access to
charging facilities. To address this challenge, the present study uses geospatial data from 27 sub-districts, including
their geographic coordinates and coverage areas, to determine where charging stations should be placed. Graph
theory particularly the concept of dominating sets 1s applied to minimize the number of required stations while
still ensuring that every sub-district is adequately covered within a given radius.

The purpose of this analysis 1s to design a charging network that not only meets sustainability goals but also
enhances the experience of EV users, both residents and travelers. The findings aim to offer useful guidance for
local governments and planners in developing EV infrastructure in a data-driven and cost-efficient way. The
latitude and longitude information for each sub-district used in this analysis 1s shown in Table 1.

Table 1. Latitude and Longitude of Sub-district in Banyumas Regency

City Number Sub-district Latitude, longitude

1 Lumbir -7.444511296981006, 108.95857112326865
2 Wangon -7.514867419643897, 109.05745812889467
3 Jatilawang -7.53025650215728, 109.12234472584886

4 Rawalo -7.5366286417874395, 109.17930846741757
5 Kebasen -7.530963266717582, 109.20159819625306
6 Kemranjen -7.592977031978278, 109.30726972324067
7 Sumpiuh -7.612277969650419, 109.36492176741862
8 Tambak -7.612265143879308, 109.40829027906337
9 Somagede -7.5186389704498895, 109.3369437232398
10 Kalibagor -7.47400886499621, 109.29720562323921

11 Banyumas -7.514876622165727, 109.29373965207522
12 Patikraja -7.487863269711498, 109.21436352139064
13 Purwojati -7.493643197279994, 109.1217479790617
14 Ajibarang -7.4075924603849135, 109.07845902693585
15 Gumelar -7.37574115168661, 108.98088077906023
16 Pekuncen -7.366960546982623, 109.07218783857994
17 Cilongok -7.403108286425383, 109.13638953673167
18 Karanglewas -7.417469711538135, 109.1842191078964
19 Kedungbanteng -7.390394358794332, 109.20059459440267
20 Baturraden -7.362349125418204, 109.23827494042867
21 Sumbang -7.380081553352308, 109.27684555207361
22 Kembaran -7.401543164426998, 109.28734515207388
23 Sokaraja -7.457269106964582, 109.30014308091

24 Purwokerto Selatan -7.44414080921876, 109.23835359440332
25 Purwokerto Barat -7.420553490978125, 109.21175859440288
26 Purwokerto Timur -7.4210137184294105, 109.25502357906085
27 Purwokerto Utara -7.415922898099641, 109.24453652323841

Each sub-district 1s identified by its coordinates, which are used to calculate the geodesic distance between
cities. This ensures that all spatial measurements represent the actual distance on the Earth’s surface. The dataset
spans both urban and rural areas from densely populated regions like Purwokerto Selatan to remote areas such
as Lumbir and Ajibarang illustrating the geographic diversity of Banyumas Regency. Because of this variation,
placing charging stations evenly across the region would not be effective. Instead, a customized strategy is
required, one that adapts to the population density and spatial characteristics of each sub-district. Using accurate
coordinates allows the results to be implemented directly in real-world planning.
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A 10 km coverage radius was chosen to represent a realistic distance for EV users to travel to the nearest
station. This distance provides a good balance between accessibility and infrastructure costs: it ensures
convenience for drivers without requiring an excessive number of stations to be built. The optimization process
uses the dominating set approach, where each city 1s represented as a vertex, and two cities are connected if they
are within the 10 km coverage radius. The goal 1s to find the smallest set of cities that can cover all others either
directly or through their connections. By checking every possible subset, the algorithm identifies the configuration
that ensures complete coverage with the fewest stations. Using geodesic distance calculations helps maintain
accuracy by accounting for the Earth’s curvature.

Optimal Locations for Charging Stations
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Figure 3. Optimal Locations of EV Charging Stations Using the Dominating Set Method

As shown in Figure 3, the map visualizes the spatial distribution of all 27 sub-districts in Banyumas Regency
and highlights the optimal charging station locations 1dentified using the dominating set method. Fach point on
the map represents a sub-district, plotted according to its geographic coordinates. The selected charging station
locations are distinguished visually from the remaining sub-districts, allowing a clear comparison between covered
and uncovered areas.

This figure was generated directly from the output of the Python-based implementation of the dominating
set algorithm, where geodesic distances were computed and adjacency relationships were constructed
programmatically. The visualization reflects the final solution produced by the algorithm rather than a conceptual
lustration, thereby providing a direct link between the computational results and their spatial interpretation.

‘While Figure 3 provides a spatial overview of the optimal solution for a fixed coverage radius, further
analysis 1s required to examine how changes in the coverage radius influence the number of selected locations
and computational performance. To address this, Table 2 presents a quantitative comparison of the dominating
set results under different coverage radius scenarlios.
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Table 2. Comparison of Optimal Locations with Different Coverage Radius
Using Dominating Set

Trial Coverage  Number Selected Cities Computing
Radius of Selected Time
(km) Cities
1 5 No result [No result] > 5h
(process
terminated)
2 7.5 8 [Cityl, City2, City4, City7, 23m
City10, Cityl4, Cityl), City27]
3 10 6 [Cityl, City3, City6, City7, 2m
City14, City24]
4 15 3 [Cityl, City6, City18| 0s

At a 5 kim radius, the algorithm could not produce a valid solution even after five hours of processing,
indicating that the radius was too small to cover all cities effectively. Increasing the radius to 7.5 km allowed
coverage with eight stations after 23 minutes of computation. When the radius was extended to 10 km, only six
stations were required, and the computation time dropped sharply to two minutes. At a 15 km radius, the model
needed only three stations, completing the process almost instantly. These results show that larger radii make
coverage easier and faster, but at the expense of accessibility, especially for users in remote areas who might have
to travel longer distances to charge.

To further evaluate the solution, the Ant Colony Optimization (ACO) algorithm was implemented,
formulated as a Set Covering Problem (SCP). ACO mimics the behavior of ants searching for food and depends
on parameters such as the number of ants, the number of iterations, and weighting factors (a, 3, p, and Q). The
algorithm was initialized with the following parameters: number of ants = 20, number of iterations = 100, a = 1,
B=2,p=0.1,and Q = 1. The coverage radius was set to 10. Different parameter combinations were tested to
see how they affect the final result. The outcomes are summarized in Table 3.

Table 3. Comparison of Optimal Locations with Different ACO parameters
Using The Set Covering Problem

Trial Parameter (num_ants, Number Selected Cities
num_iter, «, B, p, Q)  of Selected
Cities
1 (30, 50,1,3,0.2,1) 6 [City27, City13, City8,
Cityl1, Cityl7, Cityl]
2 (50, 30, 1,4, 0.3, 1) 6 [City27, City13, City6,
Cityl7, Cityl5, City8]
3 (100, 20, 1, 5, 0.5, 1) 6 [City25, City3, Cityl 1,

Cityl, City8, Cityl4]

Across all three trials, the algorithm consistently produced six selected cities, even though the exact locations
varied slightly. This indicates that the solution 1s robust to changes in parameter settings and that six stations form
a stable optimum for the Banyumas case. Figure 4 shows the spatial distribution of all sub-districts and the optimal
EV charging station locations selected by the ACO-based set covering model. Blue points represent all candidate
cities, while red star markers indicate the selected charging station locations. This figure was generated from the
final output of the Python-based ACO implementation using the selected parameter configuration. The
visualization confirms that the configuration with 100 ants, 20 iterations, a = 1, 3 =5, p = 0.5, and Q = 1 produces
a well-balanced solution, achieving full regional coverage with six strategically distributed stations. This result
demonstrates stable convergence and supports the effectiveness of the chosen ACO parameters.
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Best Solution from ACO for Set Cover Problem
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Figure 4. Best Solution from ACO Using the Set Cover Problem

To better understand how algorithmic settings interact with spatial constraints, the selected ACO
parameters were tested with varying coverage radii. The combined results are displayed in Table 4.

Table 4. Comparison of Optimal Locations with Different ACO parameters and Different Coverage
Radius Using The Set Covering Problem
Trial Parameter (num_ants, Coverage Number Selected Cities
num_iter, a, 3, p, Q) Radius of
(km) Selected

Cities
1 (100, 20, 1, 5, 0.5, 1) 5 13 [City25, Cityl14,
City21, City8, Cityl1,
Cityl3, City), City2,
City, City10, Cityl5,
Cityl, Cityl7]
2 (100, 20, 1, 5, 0.5, 1) 7.5 8 [City27, City4, Cityl 1,
Cityl4, City7, City3,
Cityl), Cityl]
3 (100, 20, 1, 5, 0.5, 1) 10 6 [City25, City3, Cityl 1,
Cityl, City8, City14]
4 (100, 20, 1, 5, 0.5, 1) 15 3 [City12, City9, Cityl14]

The results confirm the same pattern observed earlier: when the coverage radius increases, fewer stations
are needed. Specifically, 13 stations were required for a 5 km radius, eight for 7.5 km, six for 10 km, and only
three for 15 km. These findings demonstrate an inverse relationship between coverage radius and network
density. However, while a larger radius reduces costs, it may limit equal access for users in peripheral areas.
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Therefore, a 10 km radius with six charging stations represents the most balanced and practical configuration,
combining cost efficiency with adequate accessibility.

The robustness of the proposed solution 1s evaluated through sensitivity analysis rather than statistical
validation. Specifically, the number of selected charging stations is examined under varying coverage radii and
ACO parameter configurations. As shown in Tables 2-4, the solution consistently converges to six charging
stations for the 10 km coverage radius across both the dominating set and SCP-ACO approaches. This consistent
outcome demonstrates that the identified configuration is stable within the defined spatial and algorithmic
assumptions and is not dependent on a single parameter setting.

In terms of performance metrics, the selected configuration achieves 100% spatial coverage, as all sub-
districts fall within the specified service radius of at least one charging station. The maximum and average travel
distances are inherently bounded by the coverage radius, which represents a realistic accessibility constraint for
EV users. These metrics are consistent with the theoretical objectives of dominating set and set covering
formulations, which emphasize guaranteed coverage rather than demand-weighted distance minimization.

Due to the early stage of EV adoption in Banyumas Regency, validation using actual charging demand data
remains limited. Currently, only two charging stations are operational, both located at the state-owned electricity
company office. As a result, this study 1s positioned as a strategic planning and theoretical optimization analysis
rather than an operational demand-based evaluation. This approach is consistent with prior graph-based and
optimization-driven studies conducted in regions with low EV penetration, where spatial coverage serves as the
primary planning criterion.

The consistent identification of six optimal charging locations across different methods and parameter
settings provides internal robustness and serves as a form of comparative benchmarking within the study scope.
From a practical perspective, reducing the number of charging stations from a one-per-sub-district strategy to six
strategically located hubs offers substantial potential for cost savings in infrastructure deployment and long-term
maintenance. For implementation, local governments and the state-owned electricity company can apply the
proposed framework to support phased deployment, prioritizing the identified locations and expanding the
network incrementally as EV adoption increases. Although emission reductions are not directly quantified,
mmproved charging accessibility supports long-term EV uptake and aligns with broader sustainability and
transportation decarbonization policies.

4. CONCLUSION

This study presents a practical integration of graph domination theory, the set covering problem, and Ant
Colony Optimization (ACO) to identify optimal locations for EV charging stations using real geospatial data from
Banyumas Regency, Indonesia. Unlike prior domination-based studies that are largely theoretical, this research
demonstrates the applicability of graph-based optimization for real-world infrastructure planning, thereby
bridging mathematical theory and sustainable urban development.

The results show that six strategically located charging stations are sufficient to achieve 100% spatial coverage
of all 27 sub-districts within a 10 km service radius. Compared to a baseline scenario of deploying one station per
sub-district, this configuration reduces infrastructure requirements by approximately 78%, indicating substantial
potential savings in installation, grid connection, and maintenance costs while maintaining equitable accessibility.

From a policy and implementation perspective, the identified locations provide a clear reference for phased
deployment. Local governments and the state-owned electricity company can prioritize these high-impact hubs
and expand the network incrementally as EV adoption increases. While previous empirical studies in Indonesia
have mainly relied on demand-based heuristics or clustering approaches, this study contributes a coverage-
guaranteed framework based on domination and set covering formulations.

Several limitations remain. The model assumes homogeneous demand and static conditions and does not
account for population density, traffic flow, or power grid constraints. Future research should incorporate multi-
criteria and dynamic models, as well as hybrid machine learning-metaheuristic approaches, to enhance scalability
and practical applicability across broader regions.
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