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Volatility forecasting is crucial for financial risk management, yet traditional 

models like GARCH struggle with nonlinearities and asymmetric effects. This 

study leverages Long Short-Term Memory (LSTM) neural networks to enhance 

symmetric and asymmetric GARCH models, addressing these limitations. By 

integrating LSTM with GARCH, GARCH-X, and Realized GARCH 

frameworks, we propose hybrid models (Baseline and Extended versions) to 

improve forecasting accuracy. Using daily data from FTSE 100, Nikkei 225, and 

S&P 500 indices (2000–2020), we compared hybrid models against traditional 

models. Results show that the Extended LSTM hybrid model outperforms both 

traditional GARCH-type models and the Baseline LSTM, capturing complex 

volatility patterns more effectively. The Extended model’s architecture, 

featuring ReLU, GRU, and dropout layers, mitigates over-smoothing and 

enhances responsiveness to market fluctuations. This research demonstrates 

LSTM’s potential to refine volatility forecasting, offering valuable insights for 

investors and risk managers. 
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1. INTRODUCTION 

The Generalised Autoregressive Conditional Heteroskedasticity (GARCH) model, see [1], has been 

recognized as one of the most popular volatility models. However, this model fails to account for asymmetric 

effects, where positive and negative returns exhibit different volatility behaviors. To address this limitation, 

asymmetric GARCH models such as the Exponential GARCH (EG) in [2] and GJR (Glosten-Jagannathan Runkle) 

in [3], [4] were developed, offering better alignment with the complexities of financial markets.  

Despite these advancements, traditional GARCH models still face challenges in capturing nonlinearities and 

dynamic market patterns, particularly when high-frequency data is involved. For instance, while models like 
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GARCH with exogenous variables (GX) in [5], [6] and Realized GARCH (RG) in [7] integrated realized measures, 

which are calculated from intra-day data, to improve forecasting accuracy, they remain constrained by their linear 

frameworks. This limitation becomes evident in highly volatile or non-stationary market conditions, where 

traditional models often underperform.  

The rise of deep learning, particularly Recurrent Neural Networks (RNNs) and their variants like Long Short-

Term Memory (LSTM), has offered a new approach to time series forecasting. For example, in investigating the 

daily stock price prediction of the top five companies in Thailand 50 (SET50) index, study [8], [9] showed that 

LSTM is suitable for predict future stock market values. Furthermore, LSTM offers several advantages over 

traditional GARCH models, including the ability to capture non-linearity in time series, not requiring stationarity 

for modeling, and demonstrating superior performance in volatility forecasting compared to GARCH-type models. 

Study [10], [11] showed that volatility predictions using LSTM can outperform GARCH models. Meanwhile, study 

[12] introduced a Baseline LSTM model and an Extended LSTM model to predict stock price volatility. However, 

these studies have three notable gaps in previous studies that limit their practical applicability and generalizability: 

a limited empirical scope that often restricts analysis to short time frames or a single asset, inadequate feature 

engineering, and a lack of comprehensive comparative analysis against a wide range of traditional GARCH variants. 

This study systematically addresses these limitations through three key innovations. First, we significantly 

expand the empirical scope by analyzing three major stock indices, including Financial Times Stock Exchange 100 

(FTSE100—United Kingdom), the Nikkei Stock Average (N225—Japan), and the Standard and Poor’s 500 

(SP500—United States), representing economies ranked among the top 10 by nominal GDP as of 2024, thus 

providing a comprehensive representation of the global economy. Our dataset spans two decades (2000–2020), 

capturing multiple economic cycles including the dot-com bubble, global financial crisis, and periods of economic 

expansion, ensuring robust conclusions across diverse market conditions. Second, we implement sophisticated 

feature engineering by incorporating high-frequency realized volatility measures and developing novel hybrid 

architectures that combine LSTM with multiple GARCH variants (GX, EG, GJR, and RG). Third, we establish a 

rigorous comparative framework using three error metrics and four volatility proxies to provide unambiguous 

performance evaluations. These advancements not only deliver more accurate volatility forecasts but also create a 

standardized methodology for future research in financial machine learning, particularly in exploring advanced 

neural architectures and their application to emerging asset classes. 

Building upon this, this study aims to answer key questions regarding the development of hybrid models. 

Specifically, we investigate how a hybrid model, particularly an Extended LSTM architecture, can be developed to 

improve volatility forecasting accuracy compared to traditional GARCH variants. We also seek to determine the 

extent to which the proposed hybrid model’s performance surpasses that of traditional models in capturing 

complex volatility patterns and asymmetric effects across different market conditions and stock indices. 

Furthermore, we explore how the implementation of advanced feature engineering and a hierarchical architecture 

in the LSTM model can effectively mitigate over-smoothing and enhance responsiveness to market fluctuations. 

The remainder of this paper is structured as follows. The Research Methods section details the methodology 

used in this analysis, including both traditional GARCH and LSTM hybrid models. The Result and Analysis 

section presents the performance comparison of the models, while the Conclusion section summarizes the key 

findings and provides recommendations for future study. 

 

2. RESEARCH METHOD 
2.1. Traditional models 

Consider a time series {𝑅𝑡}𝑡≥1 that represents a vector of returns on individual asset and is typically calculated 

as the natural logarithm of the price relative. This means 𝑅𝑡 = log(
𝑃𝑡

𝑃𝑡−1
), where 𝑃𝑡 is the asset price at time t and 

𝑃𝑡−1 is the price at the previous time step. This is then expressed as a percentage change by multiplying the result 

by 100. Assume that the return series 𝑅𝑡 has a normal distribution with mean of zero and variance of 𝜎𝑡
2 as follows: 

 

 𝑅𝑡 = 𝜀𝑡,  𝜀𝑡 ∼ 𝒩(0, 𝜎𝑡
2),  (1) 

 

where 𝒩 denotes a Normal distribution. In the original GARCH model, the conditional variance 𝜎𝑡
2 is 

indeed determined by three parameter: 𝜔, 𝛼, 𝛽. These parameters govern the dynamics of volatility in the 

GARCH(1,1) process: 

 

 𝜎𝑡
2 = 𝜔 + 𝛼𝑅𝑡−1

2 + 𝛽𝜎𝑡−1
2 .   (2) 
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In a GARCH(1,1) model, the first 1 refers to the most recent lagged value of the squared return, and the 

second 1, refers to the most recent lagged value of the conditional variance. A more flexible dependence of return 

and volatility (square root of variance) shocks is offered by the EG(1,1) and GJR(1,1) models. 

The increasing availability of high-frequency transaction data for financial assets has enabled researchers to 

develop a more accurate volatility estimator known as realized volatility. It results in a near-real-time estimate of  

”true” volatility, providing a more immediate and dynamic picture of market fluctuations [13], [14]. These 

improvements have allowed researchers to incorporate realized measures into volatility models directly. For 

example, GX-type models, such as the GX in [5], [6], GJRX in [4] and EGX in [2], [15]. Studies [2], [16] extended 

the EGX model to Log-linear Realized GARCH (LRG) specification. Study [17] confirmed the predictive 

advantage of LRG over the EG model. Meanwhile, studies [18], [19] developed the Realized Exponential GARCH 

(REG) model by incorporating multiple measurement equations. Recently, study [20] proposed the G@C 

(GARCH with Conditional AutoRegressive Realized volatility structure) model using a multiplicative error model 

structure to the measurement equation. The G@C model stands out for its simpler specification than the other 

variants and provide better forecasts. Table 1 summarizes the traditional GARCH-family models examined in this 

study, while Figure 1 depicts the evolutionary progression of these models—from symmetric variance specifications 

to asymmetric and realized-measure variants. 

 

 

Table 1. Overview of the GARCH-family Models 

Model Short Description & Formula 
Parameters to be Estimated 

& Conditions 

EG Take the natural logarithm of squared volatility and capture the 

asymmetric volatility effect 𝛼2. 

log(𝜎𝑡
2) = 𝜔 + 𝛼1 |

𝑅𝑡−1
𝜎𝑡

| + 𝛼2
𝑅𝑡−1
𝜎𝑡

+ 𝛽 log(𝜎𝑡−1
2 ) 

No restrictions on parameters 

𝜔, 𝛼1, 𝛼2, 𝛽 

GJR Capture the asymmetric volatility effect 𝛼2. 

𝜎𝑡
2 = 𝜔 + (𝛼1 + 𝛼21[𝑅𝑡−1<0])𝑅𝑡−1

2 + 𝛽𝜎𝑡−1
2  

𝜔, 𝛼1, 𝛼2, 𝛽 > 0, 
0 < 𝛼1 + 𝛼2 < 1,  

0 < 𝛼1 + 𝛼2 +
1

2
𝛽 < 1; 

𝛼2 = 0: GARCH 

GX Not considers the asymmetric effect, but include the past 

exogenous variable. 

𝜎𝑡
2 = 𝜔 + 𝛼𝑅𝑡−1

2 + 𝛽𝜎𝑡−1
2 + 𝛾𝑋𝑡−1 

𝜔, 𝛼, 𝛽, 𝛾 > 0, 
𝛼 + 𝛽 < 1; 

𝛾 = 0: GARCH 

EGX Not only considers the asymmetric effect, but also include the past 

exogenous variable. 

log(𝜎𝑡
2) = 𝜔 + 𝛼1 |

𝑅𝑡−1
𝜎𝑡

| + 𝛼2
𝑅𝑡−1
𝜎𝑡

+ 𝛽 log(𝜎𝑡−1
2 ) + 𝛾𝑋𝑡−1 

No restrictions on parameters 

𝜔, 𝛼1, 𝛼2, 𝛽, 𝛾; 

𝛾 = 0: EG 

GJRX Not only considers the asymmetric effect, but also include the past 

exogenous variable. 

𝜎𝑡
2 = 𝜔 + (𝛼1 + 𝛼21[𝑅𝑡−1<0])𝑅𝑡−1

2 + 𝛽𝜎𝑡−1
2 + 𝛾𝑋𝑡−1 

𝜔, 𝛼1, 𝛼2, 𝛽, 𝛾 > 0, 

0 < 𝛼1 + 𝛼2 < 1,  

0 < 𝛼1 + 𝛼2 +
1

2
𝛽 < 1; 

𝛾 = 0: GJR 

LRG Add a measurement equation that relates the observed realized 

measure to latent volatility. 

{
 
 

 
 log(𝜎𝑡

2) = 𝜔 + 𝛽 log(𝜎𝑡−1
2 ) + 𝛿(𝜀𝑡−1) + 𝛾 log(𝑋𝑡−1) ,

log(𝑋𝑡) = 𝜉 + 𝜙 log(𝜎𝑡
2) + 𝜏(𝜀𝑡) + 𝑢𝑡,   𝑢𝑡 ∼ 𝑁(0, 𝜎𝑢

2),

where 𝑝(𝜀𝑡) = 𝑝1
𝑅𝑡
𝜎𝑡
+ 𝑝2 (

𝑅𝑡
2

𝜎𝑡
2
 − 1)

 

𝜎𝑢
2 > 0, 

no restrictions on parameters 

𝜔, 𝛽, 𝛾, 𝜉, 𝜙, 𝛿1, 𝛿2, 𝜏1, 𝜏2; 

𝜉, 𝜙, 𝜏1, 𝜏2, 𝜎𝑢
2 = 0: EGX 

REG Utilize multiple realized measures. 

{
log(𝜎𝑡

2) = 𝜔 + 𝛽 log(𝜎𝑡−1
2 ) + 𝛿(𝜀𝑡−1) + 𝛾𝑢𝑡−1,

log(𝑋𝑡) = 𝜉 + 𝜙 log(𝜎𝑡
2) + 𝜏(𝜀𝑡) + 𝑢𝑡, 𝑢𝑡 ∼ 𝑁(0, 𝜎𝑢

2)
 

𝜎𝑢
2 > 0, 

no restrictions on parameters  
𝜔, 𝛽, 𝛾, 𝜉, 𝜙, 𝛿1, 𝛿2, 𝜏1, 𝜏2; 

𝛾, 𝜉, 𝜙, 𝜏1, 𝜏2, 𝜎𝑢
2 = 0: EG 

G@C Specify a multiplicative error model to the measurement equation. 

{
 
 

 
 𝑅𝑡 = 𝜌𝑧𝑡𝜀𝑡,

log(𝑧𝑡) = 𝜔 + 𝛽 log(𝑧𝑡−1) + 𝛿(𝜀𝑡−1) + 𝛾 log(𝑞𝑡−1) ,

𝑞𝑡 = 𝑧𝑡𝜖𝑡 , 𝜖𝑡 ∼ 𝐿𝑁 (− 
𝜎𝑞
4

2
 , 𝜎𝑞
2) , 𝑞𝑡 = √𝑋𝑡

 

𝜎𝑞
2 > 0, 

no restrictions on parameters 

𝜌,𝜔, 𝛽, 𝛾, 𝜉, 𝜙, 𝛿1, 𝛿2 
G@C model is a restricted 

REG. 
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2.2. MCMC 

Although Maximum Likelihood Estimation (MLE) is the most commonly used method for estimating the 

parameters of GARCH-type models, the Markov Chain Monte Carlo (MCMC) method has emerged as a strong 

alternative due to its ability to sample randomly from unknown distributions [21]. The MCMC method is based 

on Bayes' rule, where the model parameters (e.g. 𝜃) are estimated from the posterior distribution:  

 

 posterior(𝜃|data) ∝ likelihood(data|𝜃) × prior(𝜃). (3) 

 

One of the MCMC methods that can be applied is the Adaptive Random Walk Metropolis (ARWM), as 

described in detail in [2], [4], [5]. This method has been statistically proven to be efficient for estimating GARCHX, 

RG, GJRX models. 

 
Figure 1. Development Flow of GARCH Volatility Models 

 

2.3. Motivation for LSTM Integration 

While GARCH models provide theoretically grounded volatility estimates, their linear parametric forms 

struggle with three key challenges: (1) nonlinear market dynamics during extreme events, (2) complex interactions 

between volatility drivers, and (3) structural breaks in financial time series. Traditional approaches often address 

these issues through ad-hoc modifications—manual adjustments to model specifications (e.g., adding asymmetry 

terms like 𝛼2 in EGARCH or threshold effects in GJR) that are case-specific and lack generalizability. LSTM 

networks address these limitations through: 

• Nonlinear function approximation: Ability to model complex patterns without predefined equations 

(unlike GARCH’s fixed 𝜎𝑡
2 formulations). 

• Memory cells: Selective retention of long-term dependencies through forget/input gates. 

• Adaptive feature extraction: Automatic feature extraction from raw inputs, eliminating manual 

specification of asymmetry terms. 

2.4. LSTM Architecture 

LSTM is a variant of RNN designed to capture temporal dependencies in time series data [15], [22]. The 

basic LSTM architecture, as illustrated in Figure 2, consists of memory cells that include three main components: 

the Forget Gate (𝑓𝑡), the Input Gate (𝑖𝑡), and the Output Gate (𝑜𝑡). LSTM manages information through the Cell 

State (𝐶𝑡), which stores long-term information, and the Hidden State (ℎ𝑡). 
For each time step 𝑡, the LSTM computes as follows: 
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𝑓𝑡 = 𝑠(𝑊𝑓  ⋅ [ ℎ𝑡−1  , 𝑦𝑡  ] + 𝑏𝑓)

𝑖𝑡 = 𝑠(𝑊𝑖
 ⋅ [ ℎ𝑡−1  , 𝑦𝑡  ] + 𝑏𝑖)

�̃�𝑡 = tanh(𝑊𝑐  ⋅ [ ℎ𝑡−1  , 𝑦𝑡  ] + 𝑏𝑐)

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡
𝑜𝑡 = 𝑠(𝑊𝑜  ⋅ [ ℎ𝑡−1  , 𝑦𝑡  ] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) }
  
 

  
 

 (4) 

In the equations above, 𝑓𝑡  decides which part of the previous information to retain, while 𝑊𝑓  and 𝑏𝑓  are the 

weight and bias of the forget gate, respectively. The term [ℎ𝑡−1, 𝑦𝑡] represents the concatenation of the current 

input and the previous hidden state. The function 𝑠 is the sigmoid activation function. The symbol ⊗ denotes 

point-wise multiplication, and the symbol ∗ denotes element-wise multiplication. 

 
Figure 2. Standard Architecture of LSTM. Recreated Based on [23] 

2.5. Hybrid Model 

The LSTM architecture in this study is based on two architectures proposed in [12], see Figure 3. Such 

models are referred to as hybrid models. For example, a Baseline LSTM prediction model based on GARCH is 

named Baseline Neural-GARCH.  

 
Figure 3. LSTM Architecture [12] 

In this study, the Baseline LSTM model in Figure 3(a) employs a streamlined structure beginning with an 

InputLayer that receives two key features: (1) predicted volatility from a GARCH-type model (e.g., �̅�1
2, �̅�2

2, …, �̅�𝑇
2) 

and (2) exogenous realized volatility measures (e.g., 𝑋1, 𝑋2, …, 𝑋𝑇). These are formatted as a 2D input matrix 𝑈𝑡 =
[�̅�1

2 𝑋𝑡]. The LSTM layer processes these inputs with 4 hidden units (where [12] uses five hidden units), 

generating hidden states: 

ℎ𝑡 = LSTM(𝑈𝑡;𝑊𝑓 , 𝑊𝑖 , 𝑊𝑜 ,𝑊𝑐 , 𝑏𝑓 , 𝑏𝑖, 𝑏𝑜 , 𝑏𝑐), 
through gating mechanisms (forget, input, and output gates) to capture temporal dependencies in volatility 

patterns. This feeds directly into a final Dense layer (a fully connected neural layer) with linear activation that 

generates the volatility forecast as the output layer:  

�̂�𝑡
2 = 𝑊𝑑ℎ𝑡 + 𝑏𝑑 

where 𝑊𝑑 and 𝑏𝑑 are learned during training via backpropagation. While computationally efficient, this 

minimalist design may oversimplify complex market dynamics.  
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In contrast, the Extended model in Figure 3(b) features a more sophisticated pipeline: its InputLayer 

normalizes the same inputs. The first LSTM layer employs 20 hidden to capture long-term dependencies, 

outputting sequential hidden states for first layer: 

ℎ𝑡
(1)
= LSTM(𝑈𝑡;𝑊𝑓

(1)
,𝑊𝑖

(1)
,𝑊𝑜

(1)
,𝑊𝑐

(1)
, 𝑏𝑓
(1)
, 𝑏𝑖
(1)
, 𝑏𝑜
(1)
, 𝑏𝑐
(1)
) 

These features then undergo nonlinear transformation through a 10-unit Dense layer with ReLU activation 

(Rectified Linear Unit, which introduces nonlinearity while maintaining gradient flow): 

𝑧𝑡 = ReLU(𝑊𝑑ℎ𝑡
(1)
+ 𝑏𝑑). 

A subsequent 10-unit GRU (Gated Recurrent Unit) layer  further refines temporal features into multiscale 

representations: 

ℎ𝑡
(2)
= GRU(𝑧𝑡;𝑊𝑓

(2)
,𝑊𝑖

(2)
,𝑊𝑜

(2)
,𝑊𝑐

(2)
, 𝑏𝑓
(2)
, 𝑏𝑖
(2)
, 𝑏𝑜
(2)
, 𝑏𝑐
(2)
) 

before final dropout regularization and output. The output layer maps ℎ𝑡
(2)

 to �̂�𝑡
2 through a final dense unit: 

�̂�𝑡
2 = 𝑊𝑜ℎ𝑡

(2)
+ 𝑏𝑜 . 

This hierarchical design—particularly the ReLU-activated Dense layer’s ability to model complex interactions 

and the GRU’s multi-scale processing—proves essential for accurately reproducing volatility spikes while filtering 

market noise, as quantitatively demonstrated in our forecasting error metrics (Tables 2-4) and qualitatively shown 

in the trajectory comparisons (Figure 5). The architectural differences directly explain the Extended model’s 

superior performance in handling asymmetric shocks and structural breaks that challenge traditional GARCH 

specifications. 

The choice of 4 hidden units for the Baseline LSTM and 20 hidden units for the Extended LSTM was based 

on preliminary experiments and a trade-off between model complexity and computational efficiency. It should be 

noted that the variation in hidden units is not the primary focus of this study. Rather, this study aims to demonstrate 

that hybrid models, even with a specific number of hidden units, can outperform traditional GARCH-type models 

in volatility forecasting. The Baseline LSTM serves as a simple benchmark, while the Extended LSTM, with its 

increased capacity, shows improved performance in capturing complex volatility patterns to learn intricate 

nonlinear relationships, as evidenced by our empirical results. 

2.6. Error Metrics 

No universal loss function is suitable for all machine learning model. Since the type of problem worked on 

in LSTM is regression, the forecasting is evaluated based on regression losses as defined in[24], [25]. The loss 

functions used in this study are loss functions that always give non-negative values, namely Sum of Squared Errors 

(SSE), Mean Absolute Errors (MAE), and Root Mean Squared Error (RMSE). Lower error values indicate better 

model performance, representing smaller differences between predicted and actual values. 

 

3. RESULT AND ANALYSIS 
This section studies the performance of the Neural-GARCH(1,1)-type models and compares it to traditional 

GARCH-type using three stock indices, including the FTSE100, N225, and SP500, spanning the daily time period 

from January 2000 to December 2020. The selection of the 2000–2020 study period was carefully chosen to ensure 

comprehensive market coverage, encompassing multiple structural breaks including the dot-com bubble (2000–

2002), global financial crisis (2007–2009), European debt crisis (2010–2012), and the COVID-19 market shock 

(2020). This extended timeframe spans both pre- and post-implementation periods of the Markets in Financial 

Instruments Directive (MiFID), the European Union’s regulatory framework that significantly altered market 

transparency and trading practices when introduced in 2007. According to classifications by the International 

Monetary Fund, this period captures three complete business cycles, providing a balanced representation of various 

market conditions while avoiding potential recency bias. The inclusion of major indices from different economic 

systems further strengthens the study’s robustness. 

For the exogenous variables in our traditional models, we primarily employ 5-minute RV as it optimally 

balances accuracy and computational efficiency. Higher frequency data (e.g., 1-minute RV) tends to introduce 

microstructure noise that can distort volatility estimates, lower frequency measures (e.g., 10-minute RV10) may fail 

to capture important short-term market fluctuations. This choice aligns with established market microstructure 

theory and empirical findings demonstrating RV5's superior performance in volatility forecasting across different 

market conditions and asset classes [26]. 

3.1. Forecasting Construction 

We evaluated the one-day-ahead conditional return volatility forecasting ability of competing GARCH models 

using a 500-day (approximately 2-year) test set for each daily return. Models were fitted to training data using the 

ARWM method in an MCMC algorithm, and the resulting parameter estimates were used for forecasting on the 

test data. All implementation was done in MATLAB. 

Next, the Neural-GARCH-type models were compiled with an ADAM optimizer and a Mean Squared Error 

(MSE) loss function. The hyperparameters for both the Baseline and Extended LSTM architectures were 
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determined through a manual and iterative fine-tuning process, rather than a formal grid or random search. This 

pragmatic approach allowed for direct control over the model's complexity and architecture, enabling us to adapt 

the models based on preliminary training observations. The implementation was employed by using the Keras 

framework in Google Colaboratory, along with Pandas, Numpy, and Matplotlib. Both architectures consistently 

applied a dropout rate of 0.1 after each recurrent layer to mitigate overfitting, and were trained for 50 epochs with 

a batch size of 32. This manual tuning strategy was selected to achieve a balance between computational efficiency 

and model performance. 

A flowchart of the forecasting steps is shown in Figure 4. Table 2–4 summarize the forecast performance of 

the traditional and hybrid models according to the three loss functions above. The bold numbers indicate the best 

predictive scores across the four volatility proxies, namely 5-minute Realized Volatility (RV5), 10-minute Realized 

Volatility (RV10), Two-Scale Realized Kernel (TSRK), and Parzen-type Realized Kernel (RKP), see [27] for the 

formula. 

 

 
Figure 4. The Conceptual Framework of Forecasting 

 

3.2. Performance Comparison between Traditional GARCH-type and Neural-GARCH-type Models 

Table 2 presents the comparative evaluation results between traditional GARCH-type and Neural-GARCH-

type models. The forecasting performance of competing models varies across stock indices and loss functions. The 

only exception is for the Extended version models adopting SP500, where the model consistently provide the best 

forecasting performance for all lost functions and all proxies. 

The detailed analysis is as follows: 

1. Comparing GARCH with Neural-GARCH, both Baseline and Extended versions show improvement in 

reducing errors across stock indices. Here, the Extended version outperforms the Baseline, suggesting 

better adaptability in capturing volatility dynamics. 

2. For EG versus Neural-EG, EG outperforms Neural-EG on the adoption of FTSE100 data, especially in 

SSE and RMSE. On the other data adoptions, the Neural-EG models consistently outperform EG. In 

this regard, the Extended version demonstrates improvements across most indices and volatility proxies, 

confirming its effectiveness in refining predictions.  

3. In the case of GJR versus Neural-GJR, the performance of GJR competes with Neural-GJR, especially in 

SSE and RMSE, in the adoption of FTSE100 data. GJR consistently performs better than the Baseline 

version of Neural-GJR in the SP500. However, in the adoption of N225 data, both Neural-GARCH 

models outperformed GJR in all cases. Overall, the Extended Neural-GJR model has the most accurate 

forecasts compared to the Baseline Neural-GJR and GJR models in many cases, highlighting its superior 

forecasting capability.  

Overall, the comparison between GARCH-type traditional and their hybrid models indicates that hybrid 

models generally improve forecasting accuracy, particularly when using the Extended version. 
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Table 2. Forecasting Evaluation for the GARCH-type Models with RV5 as Exogenous Variable 

Model 
FTSE100 N255 SP500 

Volatility Proxy: 

  RV5 RV10 
TSR

K 
RKP RV5 RV10 

TSR

K 
RKP RV5 RV10 

TSR

K 
RKP 

Loss function: 

SSE 
            

GARCH 116.7 157.4 121.1 139.4 68.0 83.8 58.4 92.6 105.5 108.7 74.5 102.0 

Baseline Neural-

GARCH 
109.0 158.1 48.3 134.6 49.0 66.4 35.8 74.5 82.2 83.9 59.4 77.5 

Extended 

Neural-GARCH 
100.4 145.4 65.0 123.6 47.8 67.0 34.1 77.5 74.2 77.0 47.2 69.1 

EG 91.4 135.5 80.0 115.4 52.8 69.3 42.1 78.0 95.3 98.4 64.1 90.6 

Baseline Neural-

EG 
103.7 148.1 73.7 126.3 47.6 65.1 35.0 72.3 87.2 85.9 57.7 77.2 

Extended 

Neural-EG 
99.3 145.1 64.0 122.9 47.4 67.6 33.4 77.5 70.1 73.8 43.1 66.6 

GJR 103.5 128.1 128.7 116.5 58.1 73.9 48.4 82.9 84.6 87.8 60.2 83.5 

Baseline Neural-

GJR 
103.4 143.5 56.1 123.5 50.0 66.6 37.5 74.7 88.8 90.0 70.9 86.0 

Extended 

Neural-GJR 
98.6 142.8 56.0 121.5 48.5 68.5 34.8 79.4 71.3 74.7 44.5 67.3 

Loss function: 

MAE 
            

GARCH 0.320

6 

0.336

8 

0.386

1 

0.322

7 

0.254

8 

0.268

6 

0.250

1 

0.292

1 

0.290

2 

0.302

1 

0.278

4 

0.310

1 

Baseline Neural-

GARCH 
0.2647 0.2963 0.2182 0.2768 0.1846 0.2080 0.1591 0.2371 0.2725 0.2821 0.2511 0.2853 

Extended 

Neural-GARCH 
0.2632 0.2928 0.2679 0.2720 0.1742 0.1993 0.1469 0.2293 0.2271 0.2325 0.1980 0.2366 

EG 0.2659 0.2912 0.3181 0.2721 0.2180 0.2363 0.2076 0.2636 0.2673 0.2788 0.2570 0.2857 

Baseline Neural-

EG 
0.2933 0.3203 0.3121 0.3010 0.1913 0.2147 0.1678 0.2407 0.2553 0.2623 0.2265 0.2644 

Extended 

Neural-EG 
0.2592 0.2893 0.2613 0.2687 0.1749 0.1992 0.1460 0.2283 0.2218 0.2303 0.1947 0.2371 

GJR 0.2899 0.3067 0.3700 0.2925 0.2397 0.2554 0.2339 0.2824 0.2694 0.2806 0.2608 0.2887 

Baseline Neural-

GJR 
0.2615 0.2877 0.2273 0.2711 0.1861 0.2062 0.1574 0.2284 0.2983 0.3090 0.2876 0.3117 

Extended 

Neural-GJR 
0.2551 0.2834 0.2424 0.2659 0.1810 0.2063 0.1547 0.2374 0.2227 0.2314 0.1968 0.2372 

Loss function: 

RMSE 
            

GARCH 0.4831 0.5610 0.4920 0.5280 0.2689 0.4093 0.3417 0.4304 0.4593 0.4663 0.3861 0.4517 

Baseline Neural-

GARCH 
0.4669 0.5623 0.3107 0.5188 0.3130 0.3645 0.2677 0.3860 0.4055 0.4097 0.3446 0.3938 

Extended 

Neural-GARCH 
0.4482 0.5393 0.3606 0.4972 0.3094 0.3661 0.2612 0.3937 0.3854 0.3924 0.3071 0.3716 

EG 0.4275 0.5206 0.3999 0.4803 0.3249 0.3723 0.2901 0.3949 0.4367 0.4436 0.3580 0.4258 

Baseline Neural-

EG 
0.4554 0.5442 0.3838 0.5026 0.3087 0.3609 0.2646 0.2646 0.4176 0.4144 0.3397 0.3930 

Extended 

Neural-EG 
0.4456 0.5388 0.3579 0.4959 0.3078 0.3677 0.2583 0.3936 0.3746 0.3841 0.2936 0.3651 

GJR 0.4551 0.5061 0.5072 0.4827 0.3409 0.3844 0.3112 0.4071 0.4114 0.4190 0.3469 0.4087 

Baseline Neural-

GJR 
0.4550 0.5357 0.3357 0.4971 0.3161 0.3649 0.2737 0.3866 0.4215 0.4243 0.3767 0.4148 

Extended 

Neural-GJR 
0.4441 0.5345 0.3347 0.4929 0.3114 0.3701 0.2638 0.2638 0.3776 0.3866 0.2985 0.3668 

 Notice: Bold-italic numbers indicate the smallest error, while bold numbers indicate the second smallest error. 

a.   Performance Comparison between Traditional GX-type and Neural-GX-type Models 

Next, Table 3 presents the evaluation results of the comparison between traditional GX-type and Neural-GX- 

type models. Based on the results in Table 3, the comparison of forecasting performance among the GX-

type models with exogenous variables highlights the advantages of  Neural-based approaches. 
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The detailed analysis is as follows: 

1. GX and Neural-GX, both Baseline and Extended Neural-GX improve forecasting accuracy across stock 

indices. The Extended version consistently reduces errors in all error metrics, making it the best-

performing variant. The only exception is for the FTSE100 data series with the MAE metric, where the 

Baseline version outperforms the Extended version.  

2. Comparing EGX with Neural-EGX, the Neural-EGX is superior with the exception of FTSE100 data 

with SSE and RMSE metrics. In the SP500 case, the Baseline version consistently reduces error better 

than the Extended version. In the other cases, the Extended version demonstrates significant error 

reductions across most loss functions and proxies, confirming its robustness in volatility forecasting.  

3. In the case of GJRX versus Neural-GJRX, the Neural-GJRX shows improved accuracy in almost all 

cases.  

Overall, the Extended version outperforms Baseline version, reinforcing the effectiveness of Extended 

version in enhancing volatility forecasting. 

 

Table 3. Forecasting Evaluation for the GX-type Models with RV5 as Exogenous Variable 

Model 
FTSE100 N255 SP500 

Volatility Proxy: 

  
RV5 RV10 TSR

K 

RKP RV5 RV10 TSR

K 

RKP RV5 RV10 TSR

K 

RKP 

Loss function: SSE 
            

GX 128.7 181.7 102.2 156.8 69.9 90.2 57.3 101.4 109.5 112.6 72.6 102.3 

Baseline Neural-GX 106.9 153.9 46.0 131.2 51.8 68.5 39.7 75.7 85.5 83.4 60.6 76.8 

Extended Neural-

GX 

102.5 147.8 63.0 126.4 50.7 70.0 36.7 79.8 73.2 75.4 45.1 66.8 

EGARCHX 104.9 147.2 86.5 126.7 54.5 72.8 42.8 84.4 94.3 96.5 71.6 91.4 

Baseline Neural-

EGX 

108.2 155.0 45.1 132.5 51.8 69.3 39.1 75.7 75.3 75.5 52.3 68.0 

Extended Neural-

EGX 

91.6 132.6 60.3 112.5 51.1 71.4 36.0 80.9 86.9 85.3 62.8 78.2 

GJRX 124.9 161.8 104.1 143.5 60.3 80.4 46.1 87.6 97.7 98.9 60.6 86.3 

Baseline Neural-

GJRX 

102.9 142.6 59.8 122.4 46.2 63.3 33.5 72.1 84.1 84.4 53.7 73.6 

Extended Neural-

GJRX 

99.0 143.5 56.6 122.4 44.1 61.9 31.1 71.7 72.8 75.9 47.7 68.6 

Loss function: MAE             

GX 0.3178 0.3405 0.3618 0.3244 0.2600 0.2752 0.2465 0.3040 0.2915 0.3034 0.2751 0.3090 

Baseline Neural-GX 0.2615 0.2907 0.2126 0.2729 0.1902 0.2131 0.1649 0.2396 0.2613 0.2704 0.2384 0.2718 

Extended Neural-

GX 

0.2696 0.3025 0.2540 0.2818 0.1746 0.1993 0.1468 0.2247 0.2295 0.2372 0.2019 0.2399 

EGX 0.2685 0.2940 0.3099 0.2769 0.2101 0.2343 0.1980 0.2656 0.2756 0.2868 0.2651 0.2945 

Baseline Neural-

EGX 

0.2602 0.2889 0.1968 0.2720 0.1990 0.2215 0.1739 0.2459 0.2505 0.2613 0.2254 0.2594 

Extended Neural-

EGX 

0.2562 0.2869 0.2622 0.2663 0.1759 0.1997 0.1440 0.2242 0.2743 0.2846 0.2581 0.2866 

GJRX 0.2935 0.3139 0.2928 0.3035 0.1926 0.2124 0.1747 0.2305 0.2600 0.2682 0.2276 0.2689 

Baseline Neural-

GJRX 

0.2640 0.2897 0.2345 0.2714 0.1907 0.2128 0.1627 0.2388 0.2580 0.2653 0.2253 0.2630 

Extended Neural-

GJRX 

0.2582 0.2881 0.2464 0.2702 0.1704 0.1967 0.1413 0.2231 0.2227 0.2300 0.1964 0.2346 

Loss function: 

RMSE 

            

GX 0.5074 0.6028 0.4522 0.5600 0.3739 0.4248 0.3386 0.4504 0.4680 0.4746 0.3811 0.4524 

Baseline Neural-GX 0.4624 0.5547 0.3033 0.5123 0.3220 0.3702 0.2828 0.3891 0.4136 0.4083 0.3481 0.3919 

Extended Neural-

GX 

0.4527 0.5437 0.3550 0.5029 0.3185 0.3742 0.2710 0.3995 0.3827 0.3884 0.3004 0.3655 

EGX 0.4581 0.5426 0.4158 0.5034 0.3300 0.3816 0.2927 0.4107 0.4343 0.4393 0.3785 0.4275 

Baseline Neural-

EGX 

0.4652 0.5568 0.3003 0.5148 0.3219 0.3723 0.2797 0.3892 0.3882 0.3886 0.3235 0.3688 

Extended Neural-

EGX 

0.4281 0.5150 0.3474 0.4743 0.3196 0.3779 0.2685 0.4022 0.4169 0.4131 0.3543 0.3954 

GJRX 0.4997 0.5689 0.4564 0.5357 0.3474 0.4011 0.3035 0.4186 0.4420 0.4447 0.3481 0.4155 
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Baseline Neural-

GJRX 

0.4535 0.5341 0.3459 0.4948 0.3040 0.3557 0.2590 0.3798 0.4102 0.4110 0.3276 0.3836 

Extended Neural-

GJRX 

0.4450 0.5358 0.3366 0.4948 0.2969 0.3520 0.2496 0.3788 0.3817 0.3897 0.3090 0.3705 

Notice: Bold-italic numbers indicate the smallest error, while bold numbers indicate the second smallest error. 

 

b. Performance Comparison between Traditional RG-type and Neural-RG-type Models 

Table 4 presents the evaluation results of forecasting comparison between traditional RG-type and Neural-

RG-type models. The results highlights the advantages of Neural-based models. 

The detailed analysis is as follows: 

1. Between LRG and Neural-LRG, both Baseline and Extended versions improve forecasting accuracy, 

with the Extended version provide better predictive capability (except for SP500 data measured by SSE).  

2. Comparing REG and Neural-REG, the Baseline version performs similarly to REG in the SP500 case 

and outperforms REG in the other data cases, but the Extended version significantly improves accuracy 

across all three indices, especially when adopting FTSE100 and N225 data. This reinforces the 

robustness of the Extended version in capturing volatility dynamics.  

3. In the case of G@C versus Neural-G@C, G@C has the highest forecasting errors, while the Neural-G@C 

models substantially reduce errors, making them perform better across all loss functions.  

Overall, Extended version demonstrate its superior ability to forecast volatility effectively.  

Based on the analysis results from Tables 2–4, the Extended Neural models generally demonstrate improved 

performance compared to traditional models. Empirically, the performance of the Extended versions proves to be 

superior to both traditional models and the Baseline model. These findings differ from those in [12] due to 

variations in experimental settings. 

 

Table 4. Forecasting Evaluation for the RG-type Models with RV5 as Exogenous Variable 

Model 
FTSE100 N255 SP500 

Volatility Proxy: 

  
RV5 RV10 TSR

K 

RKP RV5 RV10 TSR

K 

RKP RV5 RV10 TSR

K 

RKP 

Loss function: 

SSE 

            

LRG 105.7 149.4 84.4 128.4 55.6 75.1 42.9 87.1 80.7 84.7 58.7 78.5 

Baseline Neural-

LRG 

106.0 145.0 78.9 125.1 49.7 66.9 37.1 74.8 84.8 84.2 55.8 76.5 

Extended Neural-

LRG 

99.4 143.6 50.9 121.7 48.6 68.6 34.5 79.0 72.1 75.8 47.0 69.6 

REG 105.9 149.3 85.5 128.3 55.5 75.0 42.8 87.0 80.6 84.6 58.6 78.4 

Baseline Neural-

REG 

102.1 142.3 72.7 121.8 49.4 65.6 37.1 32.8 85.1 84.8 57.0 76.4 

Extended Neural-

REG 

98.2 140.6 57.4 119.6 48.9 68.7 35.4 79.9 68.0 71.0 44.6 64.9 

G@C 168.5 244.3 90.4 209.7 92.7 115.3 76.2 128.0 160.1 163.8 111.5 145.3 

Baseline Neural- 

G@C 
101.1 137.3 75.0 118.8 48.9 66.6 35.4 75.5 87.4 84.7 59.0 75.9 

Extended Neural- 

G@C 
99.7 143.6 66.8 122.0 47.7 67.6 33.7 78.0 72.9 74.7 43.8 66.6 

Loss function: 

MAE 

            

LRG 0.2693 0.2937 0.3103 0.2767 0.2185 0.2429 0.2032 0.2732 0.2573 0.2707 0.2454 0.2789 

Baseline Neural- 

LRG 
0.2831 0.3061 0.2977 0.2890 0.1962 0.2199 0.1716 0.2468 0.2548 0.2621 0.2262 0.2641 

Extended Neural- 

LRG 

0.2509 0.2795 0.2150 0.2603 0.1744 0.2001 0.1440 0.2291 0.2344 0.2434 0.2146 0.2514 

REG 0.2701 0.2945 0.3129 0.2775 0.2179 0.2425 0.2024 0.2727 0.2573 0.2708 0.2454 0.2789 

Baseline Neural- 

REG 
0.2771 0.3032 0.2896 0.2841 0.1838 0.2034 0.1581 0.1989 0.2633 0.2730 0.2403 0.2758 

Extended Neural- 

REG 

0.2546 0.2832 0.2310 0.2646 0.1875 0.2125 0.1619 0.2437 0.2222 0.2306 0.1945 0.2337 

G@C 0.3316 0.3607 0.3352 0.3418 0.3182 0.3364 0.3074 0.3602 0.3399 0.3512 0.3231 0.3517 
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Baseline Neural- 

G@C 
0.2750 0.3002 0.2910 0.2821 0.1917 0.2161 0.1658 0.2447 0.2527 0.2585 0.2232 0.2584 

Extended Neural- 

G@C 
0.2705 0.3005 0.2807 0.2788 0.1786 0.2032 0.1504 0.2334 0.2204 0.2267 0.1887 0.2297 

Loss function: 

RMSE 

            

LRG 0.4599 0.5467 0.4109 0.5067 0.3334 0.3875 0.2931 0.4173 0.4017 0.4115 0.3427 0.3962 

Baseline Neural- 

LRG 
0.4604 0.5386 0.3971 0.5003 0.3153 0.3659 0.2724 0.3869 0.4118 0.4103 0.3339 0.3911 

Extended Neural- 

LRG 

0.4459 0.5359 0.3192 0.4933 0.3117 0.3703 0.2627 0.3976 0.3797 0.3894 0.3067 0.3731 

REG 0.4602 0.5464 0.4136 0.5066 0.3330 0.3872 0.2924 0.4170 0.4016 0.4114 0.3432 0.3960 

Baseline Neural- 

REG 
0.4518 0.5335 0.3813 0.4935 0.3143 0.3621 0.2723 0.2562 0.4125 0.4117 0.3377 0.3910 

Extended Neural- 

REG 

0.4433 0.5302 0.3390 0.4890 0.3128 0.3708 0.2659 0.3998 0.3687 0.3768 0.2987 0.3603 

G@C 0.5805 0.6990 0.4251 0.6476 0.4306 0.4802 0.3904 0.5059 0.5659 0.5723 0.4722 0.5391 

Baseline Neural- 

G@C 
0.4496 0.5241 0.3872 0.4874 0.3128 0.3649 0.2662 0.3886 0.4180 0.4116 0.3435 0.3896 

Extended Neural- 

G@C 
0.4464 0.5359 0.3656 0.4941 0.3088 0.3677 0.2597 0.3949 0.3819 0.3866 0.2959 0.3648 

Notice: Bold-italic numbers indicate the smallest error, while bold numbers indicate the second smallest error. 

 

c. Visualization of Forecasting Dynamics 

Figure 5 illustrates daily volatility forecasts for the S&P 500 index using RG-type and hybrid models. Unlike 

other GARCH and GX models, the G@C model fails to capture extreme volatility spikes and is outperformed by 

LRG and REG (contrary to [20] due to data differences). Both hybrid models offer smoother predictions while 

retaining main volatility trends. The Extended hybrid model closely tracks actual volatility and remains reactive, 

whereas the Baseline model's over-smoothing stems from its simpler architecture (single dropout, no ReLU or 

GRU). 

d. Practical Implementation Insights 

Our comparative analysis of GARCH-type and Neural-GARCH models reveals several key practical 

implications: 

• Superior volatility forecasting: Neural-GARCH models, particularly the Extended versions, consistently 

provide more accurate volatility forecasts than traditional GARCH models across all stock indices 

examined. This demonstrates deep learning's (LSTM) effectiveness in capturing complex financial 

volatility patterns. 

• Refined risk management: Enhanced forecast accuracy directly improves risk assessment for financial 

institutions and investors, leading to: 

o Precise derivatives pricing: Minimizing mispricing errors. 

o Optimized portfolio management: Enabling better asset allocation and hedging strategies. 

o Proactive capital protection: Serving as an early warning for volatility spikes. 

• Robust decision-making: The sophisticated architectures of Extended hybrid models (e.g., ReLU, GRU, 

dropout layers) offer more responsive and accurate predictions, supporting confident and timely strategic 

decisions in dynamic markets. 

In essence, these findings strongly recommend adopting Neural-GARCH models, especially their Extended 

configurations, as a more reliable tool for financial forecasting, offering significant advantages for risk management, 

investment optimization, and market stability. 
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Figure 5. Time Series Plot of REG-type Models Forecasts 

4. CONCLUSION 
This study compared GARCH, GARCH-X, and Realized GARCH models with hybrid GARCH-LSTM 

models (Baseline and Extended LSTM) for volatility forecasting. Analyzing FTSE 100, Nikkei 225, and S&P 500 

predictions, we found hybrid models generally offered improved performance. The Extended hybrid model was 

the most accurate, addressing the Baseline's over-smoothing with ReLU, GRU, and additional dropout layers. 

These findings offer valuable practical applications for financial practitioners. First, portfolio managers can 

leverage more precise volatility predictions to optimize risk-adjusted asset allocation, particularly during periods of 

market turbulence. Second, derivatives traders can utilize improved volatility estimates to enhance option pricing 

models where volatility serves as a critical input parameter. Third, risk management teams can benefit from the 

model’s enhanced responsiveness to volatility spikes when calculating dynamic Value-at-Risk metrics and 

determining margin requirements. From a regulatory perspective, our framework could strengthen stress testing 

scenarios by better capturing the nonlinear volatility dynamics that conventional models often miss. 

Future research in financial time series forecasting should focus on several key areas. First, broader feature 

engineering is essential; incorporating sentiment indicators derived from news analytics (e.g., earnings call 

transcripts) and social media (Twitter/X financial sentiment indices) could capture important behavioral drivers of 

volatility that price data alone may miss. Second, we recommend investigating different asset classes like foreign 

exchange and cryptocurrencies, as neural networks may not generalize across diverse market dynamics. Third, 

evaluating hybrid models' forecasting capability for Value-at-Risk (VaR) estimation is a critical next step for financial 

risk management. Lastly, refining model architectures through hyperparameter tuning (e.g., epochs, batch sizes, 

memory lengths, forget gates, LSTM layers, dropout layers, activation functions) would further bridge the gap 

between academic research and industry practice. 
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