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 Smart agriculture leverages Internet of Things (IoT) technology to develop 
intelligent greenhouses capable of monitoring and responding to environmental 
changes in real time. This study proposes the use of machine learning to analyze 
real-time sensor data—such as temperature, humidity, water level, and soil 
nutrient levels (N, P, K)—to determine the optimal timing for activating 
actuators, including fans, irrigation systems, and water pumps. In the initial stage, 
the study utilized the "IoT Agriculture 2024" dataset from Kaggle, which consists 
of 37,922 records and 13 attributes describing crop and environmental 
conditions. This dataset was used to train a robust machine learning model 
based on gradient boosting to support intelligent actuator control decisions. The 
model demonstrated strong predictive accuracy, achieving 99.62%. In the final 
stage, the model was evaluated in a simulated IoT-based agricultural system 
using synthetic sensor data designed to mimic real-world readings of 
temperature, humidity, soil moisture, and nutrient concentrations. The model 
achieved a high validation accuracy of 99.55%, indicating its reliability and 
robustness within the simulated environment. These results demonstrate that 
the integration of machine learning with real-time sensor data is an effective 
strategy for automating actuator control in smart greenhouses. The proposed 
approach has the potential to reduce manual intervention, optimize resource 
utilization, and improve overall agricultural productivity. This study contributes 
to the advancement of adaptive, data-driven precision agriculture systems that 
support long-term food security. 
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1. INTRODUCTION 

Smart agriculture has been widely used to address increasingly complex challenges in the agricultural sector, 
such as unpredictable climate change, limited natural resources, and increasing global food needs [1], [2]. The 



 
 

Zero: Jurnal Sains, Matematika dan Terapan  r    151 
  

 

                                                Intelligent Actuator Control in Smart Agriculture through Machine Learning and Sensor Data Integration(Amir Saleh) 

most significant technology in the smart agriculture revolution is the smart greenhouse, which integrates Internet 
of Things (IoT) technology to monitor and control environmental conditions automatically and in real time. By 
utilizing various sensors installed in the greenhouse, this system can measure environmental parameters that greatly 
affect plant growth, such as temperature, soil moisture, water level, and soil nutrient content, such as nitrogen (N), 
phosphorus (P), and potassium (K) [3], [4], [5]. 

The data obtained from the sensors will be connected to the IoT system and then used to control various 
actuators in the greenhouse, such as fans, water pumps, and plant watering systems, with the aim of maintaining 
optimal conditions for plant growth. The fan will activate to cool the greenhouse temperature when it reaches a 
certain threshold. Likewise, if the soil moisture decreases, the watering system will automatically work to maintain 
the moisture needed by the plants. Thus, smart greenhouses reduce dependence on human intervention, allowing 
for more efficient and sustainable management [6]. 

However, although smart agriculture systems can collect large amounts of data and have automatic control 
capabilities, the main challenge faced is how to manage and analyze the data effectively to produce more accurate 
and efficient decisions [7]. The decision-making process based on sensor data is crucial because inappropriate 
decisions can lead to wastage of resources, such as energy and water, and reduce agricultural yields. Therefore, it 
is essential to develop an intelligent system that is capable of processing large and complex datasets to deliver 
reliable predictions and support optimal decision-making. 

In this context, machine learning becomes a potential solution that can be used to help untangle the 
complexity of big data and assist in real-time data-based decision-making [8]. By using machine learning methods 
like KNN, SVM, NB, and Random Forest, these models can learn to predict whether an actuator should be turned 
on or off based on the environmental data collected [9], [10], [11]. Machine learning algorithms enable faster 
predictions and provide the ability to analyze patterns that may not be directly visible in the data, such as interactions 
between temperature, humidity, and soil nutrients that can affect actuator control decisions [12]. 

Various studies have been conducted to improve the efficiency of smart agriculture by integrating Internet of 
Things (IoT) technology and machine learning algorithms. Platero-Horcajadas et al. [13] developed a 
reinforcement learning-based climate control system connected to an IoT sensor network. This system is able to 
automatically control fans and water pumps based on temperature and humidity predictions, resulting in 15% 
energy efficiency and maintaining temperatures within ±1°C. Airlangga et al. [14] proposed a hybrid model of 
Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to predict the status of fan 
actuators. This model utilizes the time pattern of temperature and humidity data and successfully achieves 96.8% 
accuracy in controlling greenhouse ventilation precisely. 

Meanwhile, another approach was taken by Kaur et al. [11], who developed an IoT and machine learning-
based automatic irrigation system. The study compared the Random Forest, Naïve Bayes, and KNN algorithms, 
with the best results achieved by Random Forest, which obtained 95.2% accuracy in classifying irrigation pump 
status based on soil moisture and weather. Meanwhile, Escamilla-García et al.  [15] applied Backpropagation 
Neural Network (BPNN) to analyze temperature and humidity patterns in a greenhouse. This model was able to 
predict temperature with an error of less than 1.5°C and was used to automatically control heating in a simulated 
environment. The study by Farooq et al. [16] designed an IoT-based smart agriculture framework controlled by a 
deep neural network (DNN). This system was able to increase temperature control efficiency by up to 20% and 
operated with a latency of less than 5 seconds, allowing ventilation and sprinklers to work automatically based on 
current environmental conditions. 

Based on previous research, machine learning-based approaches have enabled smart agriculture systems to 
operate more autonomously, reduce unnecessary resource usage, and support timely decision-making in 
environmental management. This study aims to design and validate a simulated control system utilizing the gradient 
boosting algorithm and other machine learning techniques to manage smart agricultural devices based on real-time 
environmental sensor data. By using parameters such as temperature, humidity, and soil nutrient levels, the 
proposed system is designed to determine the appropriate timing and actions for controlling actuators such as fans, 
water pumps, and irrigation systems. 

In this architecture, environmental data collected by IoT-based sensors is represented in the form of synthetic 
data or simulated datasets, which is then transmitted to the machine learning model. The model analyzes the input 
and generates actuator control decisions that are then executed virtually within a simulation environment. The 
implementation of this system in a simulated scenario is expected to provide insights into its performance under 
real-world conditions, as well as help optimize the operation of agricultural devices, minimize waste, and improve 
productivity in a sustainable manner. 

 
2. RESEARCH METHOD 

This study aims to build a predictive model that can control smart agriculture actuators using machine learning 
algorithms, especially gradient boosting, based on data collected from various sensors in the greenhouse. The 
research methodology is divided into several main stages, which can be seen in Figure 1.  
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Figure 1. Flowchart of the Proposed Method 

 Each stage of Figure 1 can be described as follows: 
2.1 System Design 

At the system design stage, we developed an Internet of Things (IoT)-based architecture to enable intelligent 
monitoring and management in smart agriculture. The system employs various sensors with specific roles: a 
temperature sensor, which measures ambient temperature in degrees Celsius to monitor heat stress conditions; a 
humidity sensor, which measures air humidity in percentage to assess atmospheric moisture levels; a soil moisture 
sensor, which detects water content in the soil and outputs either a percentage or an analog value ranging from 0 
to 255, used to determine irrigation needs; and a water level sensor, which measures the height of water in storage 
containers in centimeters, ensuring sufficient water supply. These sensors are connected to an ESP32 
microcontroller, which reads and transmits the data in real time via Wi-Fi to a web-based database. The acquired 
data is used to formulate control rules and define precise thresholds for actuator activation. 

In addition, a web application is developed as a monitoring dashboard, allowing users to monitor sensor data. 
The actuators used include fans, water pumps, and watering plant pumps, which can be operated automatically 
based on machine learning predictions from sensor data. With this design, the system is able to optimize plant 
environmental conditions adaptively, efficiently, and based on data. Figure 2 shows the system design proposed in 
this study. 

 

 
Figure 2. Proposed System Design 

2.2 Prototype Development 
After the system design stage is complete, the next process is prototype development, which realizes the design 

into a physical and functional form. At this stage, the selected sensors, such as temperature, humidity, soil moisture, 
and water level sensors, are assembled and connected to the main microcontroller, such as ESP32 or Arduino, 
using cable connections or breadboards. Additionally, the microcontroller installs and configures actuators such as 
fans, water pumps, and watering plant pumps for digital output control. 

Next, initial programming is carried out on the microcontroller to read sensor data and test the basic 
capabilities of sending data to cloud storage using Wi-Fi connectivity. The system prototype is tested in a limited 
environment to ensure that all sensors are able to transmit data accurately and all actuators can function according 
to commands. This testing also includes sensor calibration and the preparation of environmental simulation 
scenarios to verify the actuator's response to various input conditions. Thus, the prototype development stage aims 
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to ensure that the entire IoT system works stably and is ready to be integrated with advanced data processing and 
web-based applications. Figure 3 shows the development of a prototype of a smart agriculture system. 

 

 
Figure 3. Prototype Development Design 

The prototype in Figure 3 is designed to manage actuators in a smart agriculture system using sensor data 
integration and machine learning. This system uses various environmental sensors, such as temperature and 
humidity sensors (DHT22), water level sensors, and NPK soil sensors. Data collected from these sensors is sent 
to the ESP32 microcontroller via communication protocols such as I2C. The data is then sent to a server or IoT 
platform to be analyzed using the gradient boosting model. The results of this analysis determine whether actuators 
such as fans, water pumps, and watering plant pumps need to be activated or deactivated, allowing for more efficient 
resource management, increased crop productivity, and reduced environmental impact. 
2.3 Data Collection 

The data used in this study comes from a smart agriculture equipped with various sensors to monitor 
environmental conditions such as temperature, humidity, and soil nutrient content (nitrogen, phosphorus, and 
potassium). Additionally, the dataset includes the status of several greenhouse actuators, specifically fans, water 
pumps, and plant watering systems, which indicate whether each actuator is active (ON) or inactive (OFF). This 
dataset consists of 13 features with 37,922 rows of data obtained from Kaggle, which can be accessed on the internet 
page at the address https://www.kaggle.com/datasets/wisam1985/iot-agriculture-2024, which includes parameters 
such as those in Table 1 below. 

Table 1. Dataset Used 
N

No. 
Feature Name Description Data Type 

1 Date Timestamp of data collection dateti
me 

2 temperature Temperature inside the greenhouse 
integ

er 

3 humidity Humidity level inside the greenhouse integ
er 

4 water_level Soil moisture level integ
er 

5 N Nitrogen level in the soil (scale 0–255) integ
er 

6 P Phosphorus level in the soil (scale 0–
255) 

integ
er 

7 K Potassium level in the soil (scale 0–255) integ
er 

8 Fan_actuator_OFF Fan actuator status indicator (OFF) Bool
ean 

9 Fan_actuator_ON Fan actuator status indicator (ON) Bool
ean 

1
0 

Watering_plant_pump_
OFF 

Plant watering pump status indicator 
(OFF) 

Bool
ean 

1
1 

Watering_plant_pump_
ON 

Plant watering pump status indicator 
(ON) 

Bool
ean 

1
2 

Water_pump_actuator_
OFF 

Water pump actuator status indicator 
(OFF) 

Bool
ean 

1
3 

Water_pump_actuator_
ON 

Water pump actuator status indicator 
(ON) 

Bool
ean 
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The dataset in Table 1 contains environmental features such as temperature, humidity, water level, and soil 
nutrient content (N, P, K), which are the main inputs for building machine learning models in smart agriculture 
systems. These features determine the ideal conditions for crop growth and are used to predict the status of 
actuators (fan, watering plant pump, water pump) represented by the binary feature ON/OFF. Using algorithms 
such as Random Forest, Gradient Boosting, or Neural Networks, models can be trained to automatically manage 
temperature, humidity, and nutrient needs based on real-time data, thereby improving energy efficiency and crop 
productivity. 
2.4 Machine Learning Model Building 

At this stage, a machine learning-based system design is carried out with the aim of developing an intelligent 
prediction system for managing greenhouse actuators. The process begins with identifying relevant environmental 
parameters, such as temperature, air humidity, soil water level, and soil nutrient content (N, P, and K). The system 
is then designed to integrate data from these sensors into a decision-making architecture based on a predictive 
model. 

The design process includes mapping the input data (from sensors) to the expected output (actuator 
responses), determining the types of actuators to be controlled (such as water pumps or ventilation fans), and 
adjusting the data structure for model training. Once the architecture and data flow are defined, the dataset is 
collected and divided into training and testing sets using a consistent split scheme (e.g., 80:20) to allow for objective 
model performance evaluation. 

The resulting model will be used to predict when actuators should be activated based on environmental 
conditions detected by the sensors, enabling more efficient and responsive greenhouse management. Gradient 
boosting was chosen as the main algorithm in this study because of its ability to handle non-linear and complex 
relationships between features, as well as produce models with high accuracy [17]. Gradient boosting builds a robust 
prediction model by gradually combining several small decision trees, where each new tree tries to correct the 
errors of the previous tree [18], [19]. The model at the	𝑀 − 𝑡ℎ	iteration can be expressed using the following in 
(1): 

 
																																																			𝐹!(𝑥) = 𝐹"(𝑥) + ∑ 𝛾#ℎ#!

#$% (𝑥) (1) 
Where, 

𝐹"(𝑥) is the initial model (bias, such as the target mean), 
ℎ# is the model at the 𝑚− 𝑡ℎ iteration (usually a small decision tree), 
𝛾# is the learning rate that controls the contribution of each model, 
𝑀 is the number of iterations or trees. 
 
In this study, other algorithms such as decision tree, random forest, KNN, SVM, logistic regression, and 

Naïve Bayes will also be used as comparison algorithms. Gradient boosting was chosen as the main approach 
because of its ability to produce more accurate and stable models in handling complex data [20], [21]. 
2.5 Testing and Evaluation 

The testing and evaluation stage is carried out to test the overall performance of the system that has been 
built, both in terms of hardware functionality and the accuracy of machine learning predictions in managing 
actuators. Testing starts with a set of checks on the IoT system to make sure the sensor accurately reads 
environmental data, the data is sent to cloud storage smoothly, and the actuator reacts properly to commands from 
both manual control and machine learning predictions. 

Next, the performance of the machine learning model was tested using a test dataset to measure accuracy, 
precision, recall, and F1-score in predicting actuator actions based on sensor data. The evaluation also includes a 
system reliability test during continuous operation under changing environmental simulation conditions to ensure 
that the system is able to respond to changing conditions quickly and accurately. In addition, the response time 
between sensor input, data processing, model prediction, and actuator activation was also analyzed to measure the 
operational efficiency of the system. This stage aims to ensure that the system works according to specifications, is 
stable, and is effective in supporting smart agricultural management. 

In the final stage, we will check how well the model works by looking at its predictions against the current 
actuator prediction results, using measures such as accuracy (ACC), precision (PREC), recall (REC), and F1-score 
(F1), which is calculated with a specific formula: (2), (3), (4), and (5) [22], [23]: 

 
𝐴𝐶𝐶 = &'(&)

&'(*'(&)(*)
      (2) 

𝑃𝑅𝐸𝐶 = &'
&'(*'

 (3) 

𝑅𝐸𝐶 = &'
&'(*)

 (4) 

𝐹1 = +	-	&'
+	-	&'(*'(*)

 (5) 
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Where: TP (true positive) refers to events that are truly positive and predicted as positive. TN (true negative) 
refers to cases that are truly negative and predicted as negative. FP (false positive) refers to cases that are negative 
but predicted as positive, while FN (false negative) refers to cases that are positive but predicted as negative. 
2.6  Web Application Development 

The next stage in this research is the development of a web-based application that functions as the main 
interface for monitoring and controlling the smart agriculture system. The web application is designed so that users 
can monitor sensor data in real time, view historical data, and control actuators such as fans, water pumps, and 
planting lights remotely. 

From the technology perspective, the web application was developed using Flask (Python) as the backend 
framework, which also integrates the machine learning model based on the gradient boosting algorithm. The front-
end interface was designed using Bootstrap to ensure a responsive and user-friendly experience. MySQL is used 
as the database system to store and manage environmental and actuator data. The integration between the backend, 
database, and frontend is established through RESTful APIs, enabling dynamic data visualization and real-time 
actuator control. Figure 4 illustrates the architecture of the proposed web-based system. 

 

 
Figure 4. Proposed System Dashboard Development Design  

 
The main features of this web application include a monitoring dashboard that displays graphs of changes in 

temperature, humidity, and soil nutrients, as well as an actuator page that is automatically controlled by activating 
or deactivating the actuator directly. The web application design is optimized to be responsive so that it can be 
accessed comfortably via computers, tablets, or smartphones. With this platform, greenhouse or agricultural area 
management can be done more efficiently, quickly, and based on actual data. 

 
3. RESULT AND ANALYSIS 

This study wants to create and test a machine learning model that can forecast when smart agriculture devices 
will turn on, using the gradient boosting algorithm. After conducting the machine learning model training stage, the 
results obtained from this study can be described as follows. 
3.1. Machine Learning Model Performance 

The dataset, consisting of 37,922 rows, will be cleaned and preprocessed prior to testing the machine learning 
model. The preprocessing steps include removing duplicate records, handling missing values using median 
imputation, normalizing numerical features using Min-Max scaling, and encoding boolean variables into binary 
format (e.g., True to 1, False to 0). These steps are essential to ensure the data is suitable for machine learning and 
to improve model accuracy and consistency.  

The machine learning model is trained using 60% of the dataset for training, 20% for testing, and 20% for 
validation. The algorithm is trained with various sensor parameters used, such as temperature, humidity, nitrogen, 
phosphorus, potassium, and water level, to predict the actuator status (ON/OFF) of the fans, water pumps, and 
watering plant pumps. The next stage will be evaluated using the accuracy, precision, recall, and F1-score metrics 
for each output, which shows that the model has good performance in predicting the ON/OFF condition of the 
actuator. Table 2 shows the results of the comparison of machine learning method tests for each metric that has 
been carried out. 

Table 2. Data Testing Results Using the Machine Learning Method  
Model Accuracy Precision Recall F1-Score 

Decision Tree 0.9954 0.9967 0.9965 0.9966 
Random Forest 0.9955 0.9965 0.9969 0.9967 
KNN 0.9897 0.9927 0.9933 0.9930 
SVM 0.9934 0.9963 0.9940 0.9951 
Logistic Regression 0.9925 0.9961 0.9930 0.9946 
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Naïve Bayes 0.9310 0.9456 0.9637 0.9541 
Gradient Boosting 0.9962 0.9977 0.9967 0.9972 

 
The evaluation results of seven machine learning algorithms show that the Gradient Boosting and Random 

Forest models have the best performance in predicting actuator status (such as fans, water pumps, and watering 
plant pumps) based on environmental sensor data. Gradient Boosting achieved an accuracy value of 0.9962, 
precision of 0.9977, recall of 0.9967, and F1-score of 0.9972. This value is very high and shows that the model is 
able to provide accurate and balanced predictions, both in recognizing positive and negative conditions. Random 
Forest showed results that were almost equivalent to Gradient Boosting, with an F1-score also reaching 0.9967 and 
an accuracy value of 0.9955. 

The decision tree model, although simple, also provides excellent results with an accuracy of 0.9954, 
indicating that this model is able to provide fairly accurate predictions but with a higher possibility of overfitting 
when compared to ensemble models such as random forest and gradient boosting. Meanwhile, algorithms such as 
K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Logistic Regression show very decent 
performance, with an F1-score above 0.9900, so they remain an alternative if computational efficiency is a primary 
consideration. The Naïve Bayes model shows the lowest performance among all models tested, with an accuracy 
of 0.9310 and an F1-score of 0.9541. Although its recall is quite high, its precision is lower, indicating the model's 
tendency to produce excessive positive predictions.  

Based on the overall results, the gradient boosting model was selected to be integrated into the IoT smart 
agriculture system. This model will be used to process sensor data in real-time and provide automatic decisions on 
actuator activation. Gradient boosting is a great choice for data-driven automation systems because it is very accurate 
and reliable, which helps improve the efficiency and flexibility of smart agricultural management. 
3.2. Model Integration with IoT System 

Integration of machine learning models with IoT systems is an important component of smart agriculture 
systems to ensure that sensor data can be collected, transmitted, and analyzed in realtime. In this study, IoT devices 
such as NodeMCU ESP32 are used to collect environmental data, including temperature, humidity, water level, 
and soil nutrients such as nitrogen (N), phosphorus (P), and potassium (K). This data is sent to the server using 
communication protocols such as HTTP, which is known to be fast and efficient for IoT data transfer. The display 
of the test results of IoT devices with machine learning integration can be seen in Figure 5 below. 

 

 
Figure 5. Prototype of IoT Device in Smart Agriculture System  

 
The hardware shown in Figure 5 connects sensors directly to the microcontroller to measure environmental 

parameters in real time. To ensure the device functions properly, testing was performed on each component to 
measure the accuracy of sensor readings, Wi-Fi connection stability, and response time for sending data to the 
server. The test results indicate that this device is able to send data to the server in less than 1 second, with a 
communication success rate of over 90%. 

After data is collected by the sensors, the IoT devices send the data to the server via a Wi-Fi connection, 
where a gradient boosting-based machine learning model is used to analyze the patterns and predict the status of 
the actuator, such as turning on the water pump, activating the fan, or opening the vents. Gradient boosting was 
chosen because of its ability to handle non-linear data, with high accuracy in recognizing complex patterns often 
found in environmental data. 

Once the data is received by the server, an analysis process is carried out to determine whether the actuator 
needs to be activated or deactivated. The results of this analysis are then sent back to the IoT device to automatically 
control the actuator. In addition, this data is also forwarded to a web-based monitoring dashboard, allowing users 
to monitor environmental conditions in real time. This dashboard usually includes graphs of temperature, 
humidity, and soil nutrient levels, with actuator status indicators such as pumps and ventilation. Figure 6 shows an 
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illustration of the results of real-time monitoring on the website dashboard display according to sensor input from 
the IoT devices used in the system. 

 

 
Figure 6. Monitoring Display on Website-Based Dashboard 

 
The test results indicate that the integration of machine learning models with IoT devices in this system has 

an average prediction accuracy rate of 99%, with an optimal response time of around 2 to 3 seconds for each 
decision. This time depends on the speed of the Wi-Fi network and signal quality, as well as server configuration. 
By using gradient boosting, the system is able to recognize complex relationship patterns between features, such as 
interactions between temperature, humidity, and soil nutrients, resulting in more precise and efficient decisions. 

The system also showed good stability during long-term testing, with a communication failure rate below 1%. 
This indicates that the gradient boosting-based approach is very effective in handling dynamic and varying sensor 
data, making it an ideal solution for smart agriculture systems. 
3.3. Machine Learning Model Evaluation 

Evaluating the performance of a machine learning model is essential to understanding how well it can 
accurately classify data. Some of the key metrics often used to measure model performance are accuracy, precision, 
recall, and F1-score. Accuracy measures the proportion of correct predictions to total predictions, precision shows 
how accurately the model predicts the positive class, recall measures how well the model captures all positive cases, 
and the F1 score is the harmonic mean between precision and recall, which provides a balanced picture of the 
accuracy and sensitivity of the model. Table 3 shows the results of evaluating several machine learning models 
based on these metrics. 

 
Table 3. Evaluation Results Using Machine Learning Method 

Model Accuracy Precision Recall F1-Score 
Decision Tree 0.9941 0.9967 0.9946 0.9956 
Random Forest 0.9950 0.9965 0.9962 0.9963 
KNN 0.9884 0.9921 0.9927 0.9924 
SVM 0.9920 0.9943 0.9938 0.9941 
Logistic Regression 0.9912 0.9943 0.9927 0.9935 
Naïve Bayes 0.9342 0.9496 0.9647 0.9566 
Gradient Boosting 0.9955 0.9978 0.9956 0.9967 

 
Table 2 shows the evaluation results of several machine learning models based on the accuracy, 

precision, recall, and F1-score metrics. The Gradient Boosting model has the best performance with an 
accuracy of 99.55% and an F1-score of 0.9967, indicating its excellent ability to capture complex patterns in 
the data. Random Forest also excels with an accuracy of 99.50% and an F1-score of 0.9963, reflecting its 
reliability in reducing overfitting compared to Decision Tree, which is slightly lower with an accuracy of 
99.41%. 

The KNN model has an accuracy of 98.84% and an F1-score of 0.9924, suitable for medium-sized data, 
although less than optimal for large data. SVM shows an accuracy of 99.20% and an F1-score of 0.9941, very 
good at avoiding false positives, but can be less efficient on large datasets. Logistic regression with an accuracy 
of 99.12% and an F1 score of 0.9935 shows competitive performance for linear data. Meanwhile, Naïve Bayes 
has a lower accuracy (93.42%) but is very fast and efficient, making it suitable for cases with many independent 
features, although it tends to produce more false positives. 
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To further highlight the consistency of the gradient boosting model, a detailed breakdown of its 
performance before and after the validation process is provided in Table 4. This table presents the values of 
accuracy, precision, recall, and F1-score, along with the percentage change for each metric. The results 
confirm that gradient boosting maintains excellent predictive capability with minimal performance fluctuation, 
reinforcing its reliability as the most robust model in this study. 

 
Table 4. Gradient Boosting Model Performance Before and After Validation 

Metric Before Validation After Validation Improvement (%) 
Accuracy 99.62% 99.55% −0.07% 
Precision 99.77% 99.78% 0.01% 

Recall 99.67% 99.56% −0.11% 
F1-Score 99.72% 99.67% −0.05% 

 
The comparison results indicate that the Gradient Boosting model maintained the highest overall 

performance, with a post-validation accuracy of 99.55% and an F1-score of 0.9967, experiencing only a slight 
accuracy decrease of 0.07%, which demonstrates excellent consistency and generalization capability. This 
comparison reinforces the robustness of the gradient boosting model, which not only delivered the best 
performance during testing but also remained stable after undergoing model validation. 

In addition, gradient boosting showed the smallest variation in performance across all metrics, with only a 
0.05% drop in F1-score and a 0.11% drop in recall, while still slightly improving in precision by 0.01%. This 
consistency across metrics indicates that gradient boosting is not only accurate but also reliable in minimizing both 
false positives and false negatives. Therefore, it is considered the most effective and dependable model for actuator 
control prediction in smart agriculture systems. 
3.4. Discussion 

According to the results of the machine learning model evaluation, gradient boosting emerged as the most 
effective model for integration with IoT-based smart agriculture systems. This model achieved the highest accuracy 
(99.62%) along with the best precision, recall, and F1-score values among all evaluated models. Its outstanding 
predictive power demonstrates a strong capability to capture complex, non-linear relationships in environmental 
sensor data—such as variations in temperature, humidity, soil nutrient levels, and water level. These characteristics 
are critical in smart agriculture systems, where high-precision predictions are essential for managing actuators such 
as fans, water pumps, and irrigation systems. In this simulation, gradient boosting showed significant potential to 
optimize resource usage, reduce waste, and ultimately improve crop productivity and energy efficiency. 

The superiority of gradient boosting is further validated by findings from previous studies. Airlangga et al. 
(2024) implemented the XGBoost algorithm in a smart greenhouse setting and achieved an accuracy of 94.47% 
for actuator control prediction [24]. Syed (2024) applied gradient boosting for smart agriculture using ensemble 
machine learning techniques in IoT environment and reported an accuracy of 99% [25]. Although the datasets and 
agricultural scenarios differ, the consistently high performance across these studies reinforces the robustness and 
reliability of gradient boosting as a leading model for real-time decision-making in data-driven agriculture. 

For applications that require higher interpretability or operate under limited computational resources, 
alternative models such as Random Forest and Decision Tree may be preferable. These models also showed strong 
performance in this study, with accuracy levels exceeding 99.5%, and are inherently more interpretable—making it 
easier for farmers or agricultural managers to understand the logic behind automated decisions. For example, 
Random Forest can provide insights into which sensor features (e.g., soil moisture or air temperature) most 
influence actuator decisions like activating pumps or opening ventilation systems. 

Ultimately, the choice of machine learning model for smart agriculture systems should be guided by the 
complexity of the data, hardware constraints, and the need for interpretability. While gradient boosting excels at 
modeling complex, non-linear systems with high accuracy, simpler models like decision trees or random forests 
offer greater transparency and faster computation, making them more suitable for real-time applications with 
limited resources. This study highlights the importance of aligning model selection with system requirements to 
achieve effective and scalable actuator management in IoT-enabled agriculture. 

Although this research was conducted as a simulation, it provides clear evidence of the potential of gradient 
boosting for real-time predictive decision-making in irrigation scheduling, nutrient management, and microclimate 
control. The simulation results demonstrate how IoT-based intelligent systems can enhance resource efficiency, 
reduce waste, and contribute to sustainable agricultural practices. 

The novelty of this study lies in the integration of real-time actuator control through simulation, environmental 
sensor fusion, and the application of the gradient boosting algorithm within a microcontroller-oriented, IoT-
enabled smart agriculture architecture. Unlike previous approaches that mainly focused on static datasets or offline 
predictions, this study proposes a fully simulated architecture where sensor data—such as temperature, humidity, 
soil nutrients, and water levels—are processed in real time using a gradient boosting model embedded within a 
Flask-based backend. The predicted outcomes are then used to simulate autonomous control of actuators (e.g., 
fans, pumps, irrigation systems), enabling the system to respond adaptively and intelligently to environmental 
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changes. This approach not only improves predictive accuracy and system responsiveness but also demonstrates a 
viable direction for enhancing operational efficiency and sustainability in precision agriculture. 

 
4. CONCLUSION 

This study aimed to develop an intelligent actuator management system for smart agriculture by integrating 
sensor data with machine learning techniques. The experimental results demonstrate that the use of the gradient 
boosting model significantly improves actuator control performance, achieving a test accuracy of 99.62% and an 
evaluation accuracy of 96.55%. These results outperform other machine learning algorithms tested, confirming the 
superiority of gradient boosting in handling complex, multivariate sensor data within IoT-based agricultural 
environments. The main contribution of this study lies in its integration of environmental sensing and predictive 
modeling to support real-time, data-driven decision-making in agriculture. The novelty of this work lies in the 
implementation of a high-performing, interpretable machine learning model—gradient boosting—within a 
simulated, microcontroller-oriented IoT system for real-time actuator control. Unlike many prior studies that focus 
solely on data analysis or offline prediction, this study simulates a fully connected framework that fuses multiple 
environmental sensor inputs—such as temperature, humidity, soil nutrients, and water levels—and processes them 
in real-time to drive actuator decisions. From a practical perspective, the proposed system can enhance agricultural 
productivity by enabling precise and timely actuator responses, reducing water and energy consumption, and 
minimizing environmental impact. Theoretically, this research provides insights into the selection and adaptation 
of machine learning models for IoT ecosystems in agriculture. To achieve optimal performance, model selection 
must consider system goals, computational capacity, and data complexity. Overall, this research demonstrates a 
promising direction for intelligent automation in agriculture and offers a scalable approach for sustainable resource 
management. 
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