
Zero: Jurnal Sains, Matematika, dan Terapan 
E-ISSN: 2580-5754 

P-ISSN: 2580-569X 

Vol. 8, No. 1, June 2024 

DOI: 10.30829/zero.v8i1.19947 

pp. 01-07           1 

  

 

 

Home journal : http://jurnal.uinsu.ac.id/index.php/zero/index 

Algebras of Interaction and Cooperation 
 

1

 Ulrich Faigle, 
2 

Alexander Schonhuth   
1 

Department of Applied Mathematics, University of Twente, Enschede, Netherlands 
2 

Faculty of Technology, Bielefeld University, Bielefeld, Germany 

Article Info  ABSTRACT 

Article history: 

Received 04 28, 2024 

Revised 05 30, 2024 

Accepted 06 30, 2024 

 Systems of cooperation and interaction are usually studied in the context of real 

or complex vector spaces. Additional insight, however, is gained when such 

systems are represented in vector spaces with multiplicative structures, i.e., in 

algebras. Algebras, on the other hand, are conveniently viewed as polynomial 

algebras. In particular, basic interpretations of natural numbers yield natural 

polynomial algebras and offer a new unifying view on cooperation and 

interaction. For example, the concept of Galois transforms and zero-dividends 

of cooperative games is introduced as a nonlinear analogue of the classical 

Harsanyi dividends. Moreover, the polynomial model unifies various versions 

of Fourier transforms. Tensor products of polynomial spaces establish a 

unifying model with quantum theory and allow to study classical cooperative 

games as interaction activities in a quantum-theoretic context.  
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1. INTRODUCTION 

What is a game? While ”playing” is often understood as an activity involving one or more human 

players, we take here the general game-theoretic approach of [1] and think of an underlying system that is 

characterized by the states it can assume. The states typically depend on certain actions that players may or 

may not take in order to achieve other states. We do not necessarily require players to be human beings 

with human interests and feelings etc. and thus might refer to the players also simply as agents. The agents 

my act, interact or cooperate according to the rules within specified contexts. 

A mathematical analysis of games, of course, requires mathematical models for the underlying systems 

and their states. States have to be described as mathematical objects. Similarly, observations on systems 

should be modeled accordingly as mathematical functions on the collection of states. The present paper 

concentrates on these aspects. In particular, we refer to quantum games if the underlying systems fit or 

extend standard mathematical models of physical quantum systems. 

Questions about optimal strategies for the achievement of certain goals or about the existence of Nash 

equilibria etc. are disregarded. Given appropriate models, such questions lead to mathematical optimization 

problems that can be studied in their own right.  

In all of mathematical application analysis, and in game theory in particular, linear models have been 

proven to be of utmost importance. These models could be formulated and studied as abstract structures. 

The key in our analysis is the representation of relevant system parameters by polynomials as this point of 

view ties together many otherwise seemingly different models. Our polynomials are not polynomial 

functions in variables xi at the outset, but formal polynomials in indeterminates xi. Appropriate 
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interpretations of and substitutions into the indeterminates then reveal fundamental aspects of various game-

theoretic models. 

 

2. RESEARCH METHODS 

The algebraic structures in our analysis are suggested naturally when one repre- sents system states as 

polynomials rather than vectors. The idea of expressing mathematical system characteristics via polynomials 

has a long tradition in gen- eral algebra (see, e.g., [2]). In fact, classical algebra arose from the wish to solve 

polynomial equations. The study of cooperative games in terms of an associated polynomial function in n 

variables was initiated in [3]. Polynomial functions, however, typically imply just one particular algebraic 

structure: the addition and multiplication rules of scalar-valued functions. 

 A substantially improved modeling flexibility is gained withh formal poly- nomials rather than 

polynomial functions. In this case, one deals with indeterminates instead of variables. Depending on the 

interpretation of the indeterminates, one is then led to various natural algebraic structures. 

 The present approach is based on the three fundamental aspects of natural numbers: cardinalities of 

finite sets, binary representation of finite sets and representation of information in terms of (0,1) sequences. 

Each of these aspects implies its own multiplication rule for formal polynomials. 

 The polynomial model is then applied to cooperative games and activity sys- tems. Section 6 links 

polynomials to linear transforms and, in particular, to Fourier transforms. Moreover, the new concept of 

Galois transforms is shown to appear naturally and yields nonlinear transforms of cooperative games. 

Interaction games are treated  with the emphasis on the role of a valuation on a game-theoretic system as a 

particular state-dependent Heisenberg type measure on the system. A discussion with a perspective on 

future work concludes the presentation. 

Relation to Earlier Work 

 Often, game theory is regarded as a scientific discipline in its own right. Moreover, cooperative games 

and strategic games with non-cooperative players are treated separately. However, as questions about the 

computation of strategies became more and more of interest, the many connections of game theory with 

other mathematical fields (e.g., mathematical optimization) became prominent. Computational questions 

have furthermore led to the emergence of game-theoretic re- search in computer science. Moreover, a 

seemingly new area of game theory has been initiated where the games are supposed to be played according 

to the physical laws of quantum mechanics. 

 As it turns out, a comprehensive approach to mathematical game theory is possible which ties together 

various areas of applied mathematics and includes the different aspects above as special cases5. In 

particular, the relationship between game-theoretic cooperation and quantum mechanics has been 

recognized. In this sense, the present work is a continuation of the mathematical game theory research 

program begun in [4, 5]. As in the classical foundations of mathematical optimization6, our mathematical 

model is essentially linear. However, it is observed that quadratic (and thus geometric, but nonlinear) 

measurement mod- els arise naturally from the projection of linear operators onto lower dimensional 

spaces. 

 While [6] explores some first aspects, the present analysis pursues more generally the realization that 

the employment of polynomial algebras instead of pure abstract vector spaces as modeling tools offers a 

distinctly more refined mathematical analysis and, furthermore, relates game theory to classical algebra. No 

previous mathematical game-theoretical model seems to have taken this route before. 

 

3. RESULTS AND ANALYSIS 

3.1 Mathematical preliminaries 

Let ℕ = {0,1,2, … , 𝑛, … }denote the set of natural numbers
7

. ℝ is the field of real numbers and C the field 

of complex numbers, i.e., numbers of the form 

𝑧 = 𝑎 + 𝑖𝑏 where 𝑎, 𝑏, ∈ ℝ and 𝑖2 = −1. 

The complex number 𝑧 = 𝑎 + 𝑖𝑏 admits a representation in the form of de Moivre: 

𝑧 = 𝑟𝑒𝑖𝑡 = 𝑟(𝑐𝑜𝑠 𝑡 + 𝑖 𝑠𝑖𝑛 𝑡) with real numbers 𝑟, 𝑡 ≥ 0. (1) 

The number �̄� = 𝑎 − 𝑖𝑏 = 𝑟𝑒𝑖𝑡is the conjugate of 𝑧 = 𝑎 + 𝑖𝑏 and has the property 

𝑧�̄� = 𝑎2 + 𝑏2 = 𝑟2 = |𝑧|2. 

For arbitrary sets X and Y, XY is the set of all pairs (x, y) of elements 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌. 𝑌𝑋 is the 

collection of all functions 𝑓: 𝑋 → 𝑌, which may be thought of as valuations of the elements of X with values 

from Y. 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&
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The set ℂ𝑋 
of all complex valuations of X is a vector space under the usual addition and scalar 

multiplication of complex-valued functions. The support of  𝑓 ∈ ℂ𝑋is the set 

𝑠𝑢𝑝 𝑝 (𝑓) = {𝑥 ∈ 𝑋|𝑓(𝑥) ≠ 0}. 
If 𝑋 = {𝑥1, … , 𝑥𝑛}is a finite set, ℂ𝑋 

may conveniently be identified with the n-dimensional coordinate 

space ℂ𝑛and, similarly, ℂ𝑋×𝑋with the space of all complex n × n matrices. 

a. Polynomials 

A (formal) polynomial relative to the set X is an element 𝑓 ∈ ℂ𝑋 
with finite support. In order to 

emphasize the polynomial aspect, we write elements 𝑓 ∈ ℂ𝑋as formal sums 

𝑓 = ∑ 𝑓𝑥𝑥𝑥∈𝑋  with the coefficients 𝑓𝑥 = 𝑓(𝑥) 

In the case 𝑠𝑢𝑝 𝑝 (𝑓) ⊆ {𝑥0, 𝑥1, … , 𝑥𝑛} , we write the polynomial f also in the    form 

𝑓 ∑ 𝑓𝑘𝑥𝑘
𝑛
𝑘=0 or, uisng superscripts 𝑥𝑘 = 𝑥𝑘, 𝑓 ∑ 𝑓𝑘𝑥𝑘𝑛

𝑘=0 . 

We denote by ℂ(𝑋) the complex vector space of all polynomials in ℂ𝑋 
. The elements 𝑥 ∈ 𝑋are formally 

just indeterminates without a numerical meaningin their own right. However, they can be given particular 

functional meaning in applications of the polynomial model. 

Remark For notational convenience, we will often identify the indeterminate x X with the polynomial 

b. Polynomial functions 

If X = {x0(t), x1(t), x2(t), … }is a family of complex-valued functions xk(t) in the variable t, one may 

think of a polynomial p C(X) as a complex-valued function in the variable t, 

p(t) = ∑ ckxk(t),

k≥0

 

which arises as the corresponding linear combination of the functions in X. In the special case of the 

functions xk(t) = t
k

, p(t) is a standard polynomial function: 

p(t) = c0 + c1x + c2t2 + ⋯ + cntn. 
Remark 2 The representation of polynomials as functions allows the application of the methods of 

differentiation and intergration in their analysis. For modeling purposes, however, it is important to retain 

the flexibility of formal polynomials. 

c. Power series and generating functions 

In the case 𝑋 = {𝑥0, 𝑥1, 𝑥2, … , } of indeterminates that are indexed by the nat- ural numbers, we think of 

𝑓 ∈ ℂ𝑋as a (formal power series) with the notational representation 

𝑓 = ∑ 𝑓𝑥𝑥

𝑘≥0

𝑘

. 

Assuming 𝑋 = {1, 𝑡, 𝑡2, … }as a set of polynomial functions x(t) = t
k

, on the other hand, the vector 𝑓 ∈
ℂ𝑋may define a complex function 

𝑓(𝑡) = ∑ 𝑓𝑥𝑥

𝑘≥0

𝑘

. 

if the sum has a well-defined region of convergence in C. In this case, the function         𝑓(𝑡) is interpreted as 

generating the numerical parametes 𝑓𝑘 ∈ ℂvia evaluations of derivatives: 

𝑓𝑘 =
𝑓(𝑘)(0)

𝑘!
(𝑘 = 0,1,2, … ) 

Generating functions have proven useful in probability theory or in the asymp- totic analysis of 

combinatorial parameter sequences
8

. If X is finite, a generating function is just a polynomial function. 

3.2 Algebra of natural numbers 

We denote the usual standard sum of natural numbers 𝑖, 𝑗 ∈ ℕ by 𝑖 + 𝑗 and their product by 𝑖. 𝑗 or 

simply 𝑖𝑗. However, other important algebraic structures on ℕ also offer themselves, depending on 

the representation of natural numbers. 

a. Binary representation and algebra 

Every natural number 𝑘 < 2𝑛 has a unique representation with n binary digits ki: 

𝑘 = ∑ 𝑘𝑖2
𝑘   (𝑘𝑖 ∈ {0,1})

𝑛−1

𝑖=0

 

So, every (0, 1)-string 𝛼 ∈ {0,1}ℕ with finite support corresponds to a unique natural number 

𝑎 ∑ 𝛼𝑖2
𝑖

∞

𝑖=0
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Endowing the set {0, 1} with the binary addition rule 1 ⊕ 1 = 0, 

one obtains a binary addition rule for all natural numbers: 

(∑ 𝛼𝑖2
𝑖)

∞

𝑖=0

⊕ (∑ 𝛽𝑖2
𝑖)

∞

𝑖=0

=  ∑(𝛼𝑖 ⊕ 𝛽𝑖)2𝑖 (

∞

𝑖=0

𝛼𝑖𝛽𝑖 ∈ {0,1}) 

which is commutative and associative. Moreover, 0 is the neutral element (as under the standard addition 

rule). 

Consider now a set 𝑋 = {𝑥0, 𝑥1, … , 𝑥𝑛 , … } of indeterminates 𝑥𝑛 with in- dices 𝑛 ∈ ℕ. The binary 

addition suggests a commutative and associative multi- plication on 𝑋: 

𝑥𝑖 ⊙ 𝑥𝑗 = 𝑥𝑖⊙𝑗 

with the neutral element 1 = 𝑥0. The monoid (X, ⊙) implies the polynomial algebra (ℂ(𝑋),⊙) where the 

(binary) product of the polynomials 𝑓, 𝑔 ∈ ℂ(𝑋) is the polynomial 𝑓 ⊙ 𝑔 with the coefficients 

(𝑓 ⊙ 𝑔)𝑛 = ∑ 𝑓𝑖𝑔𝑖𝑖⊙𝑗=𝑛  

IMPARTIAL GAMES. We illustrate binary algebra with the example of the well-known 2-person 

game Nim, which involves two players and a finite set N that is partitioned into k blocks 𝑁𝑖 with 𝑛𝑖 =
|𝑁𝑖| bjects each. A move of a player consists in the choice of a non-empty block 𝑁𝑖 and the subsequent 

removal of at least one object from Ni. The players move alternatingly. A player loses if he cannot move 

on his turn. We associate with the Nim game its characteristic 

polynomial as the binary monomial 

𝑝(𝑁) = 𝑥𝑛1 ⊙ 𝑥𝑛2 ⊙ … ⊙ 𝑛𝑛𝑘 = 𝑥𝑛1⊙𝑛2⊙…+⊙𝑛𝑘 

By the Sprague-Grundy theory of combinatorial 2-person games
9

 one then finds: 

• The second player has a winning strategy  𝑖𝑓 𝑝(𝑁) = 𝑥0). 

• If 𝑝(𝑁) ≠ 1, the first player has a winning strategy. 

Remark  An actual winning strategy for the Nim game N is easily computed: The current player moves, if 

possible, the game into a Nim situation N′ with characteristic polynomial p(N′) = 1. Nim games are 

prototypical impartial 2-person games as each impartial game is strategically equivalent to a Nim game. 

b. Set representations and Boolean algebra 

Each (0, 1)-string 𝛼 ∈ {0,1}ℕ with components 𝛼𝑖 describes a unique subset A of ℕ via 

𝐴 = 𝑠𝑢𝑝𝑝(𝛼) = {𝑖 ∈ ℕ|𝛼𝑖 = 1} (9) 

In fact, (9) establishes a one-to-one correspondence between {𝑜, 1}ℕ and the sub- sets of ℕ. Moreover, strings 

with finite support correspond to finite subsets and, simultaneously, to natural numbers via their binary 

representation (7). 

Consider now an arbitrary 𝑛-element set 𝐸 = {𝑒1, … , 𝑒𝑛}Each subset 𝐴 ⊆ 𝐸 corresponds to a unique (0, 

1)-string α of length 𝑛, 

𝛼 = 𝛼1 … 𝛼𝑛 w ith 𝛼𝑖 = 1 ↔ 𝑒𝑖 ∈ 𝐴, 
and also, to a natural number 

𝑎 = ∑ 𝛼𝑖2
𝑖−1 < 2𝑛

𝑛

𝑖=1

 

Consequently, the family ε of all subsets 𝐴 ⊆ 𝐸 corresponds to the set 

ℕ𝑛 = 𝑘 ∈  ℕ|𝑘 < 2𝑛 

of natural numbers or to the family 𝔹𝑛 = {0,1}𝑛of (0,1)-strings of length n. 

Hence, if 𝑚 = 2𝑛 , each polynomial of the form 

𝑝 = 𝑝0𝑥0 + 𝑝1𝑥2 + ⋯ + 𝑝𝑚−1 𝑥𝑚−1
 

may equally well be indexed by the subsets of the n-element set ε or the binary 

𝑛-strings: 

𝑝 = ∑ 𝑝𝑘𝑥𝑘 ↔ ∑ 𝑝𝐴𝑥𝐴 ↔ ∑ 𝑝𝛼𝑥𝛼

𝛼∈𝔹𝑛 𝐴∈𝜀

𝑚−1

𝑘=0

 

The set-theoretic interpretation suggests a polynomial algebra based on Boolean lattice operations: 

𝑥𝐴 ∨ 𝑥𝐵 = 𝑥𝐴∪𝐵 and 𝑥𝐴 ∧ 𝑥𝐵 = 𝑥𝐴∩𝐵 
(𝑋, 𝑉) a monoid with neutral element  𝑥𝜙. (X,⋀)  is  a monoid with neutral element 𝑥𝐸 if attention is 

restricted to polynomials indexed by the subsets of E. 
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3.3 Interaction Games 

Consider a set 𝑁 = {1, … , 𝑛} of general entities 𝑖 and specify an interaction game on 𝑁 as a valuation 

𝑉: 𝑁 × 𝑁 → ℝ 

where 𝑉𝑖𝑗 = 𝑉(𝑖, 𝑗) is the interaction worth of 𝑖, 𝑗 ∈ 𝑁. Where 𝑋 is a set of 𝑁 
indeterminates 𝑥𝑖, the associated characteristic polynomial is 

𝑋𝑉 = ∑ ∑ 𝑉𝑖𝑗(𝑥𝑖 ⊗ 𝑥𝑗),

𝑛

𝑗=1

𝑛

𝑖=1

 

which means that interaction games refer to the tensor product space  

ℂ(𝑋 ⊗ 𝑋) 

 (And not to the vector space ℂ(𝑋)) or, more precisely, to the real tensor space  ℝ(𝑋 ⊗ 𝑋). Abstractly, V is 

given as a real 𝑛 × 𝑛 matrix with the coefficients 𝑉𝑖𝑗 . 

Let 𝐴 ∈ ℝ𝑁×𝑁be an arbitrary real matrix whose coefficients 𝑉𝑖𝑗  have the interpretation of enhancing the 

interaction worth relative to V: 

If 𝑖 and 𝑗 interact at level 𝐴𝑖𝑗, their interaction produces the value𝑉𝑖𝑗𝐴𝑖𝑗 

Hence the interaction instance A produces the game’s overall value as 

𝑋𝑉(𝐴) = ∑ 𝑉𝑖𝑗𝐴𝑖𝑗 = 𝑡𝑟(𝐴𝑇𝑉)𝑖,𝑗∈𝑁  (15) 

where the trace 𝑡𝑟(𝐶) of a matrix C is the sum of its diagonal coefficients. In other words, 𝑋𝑉(𝐴) equals the 

usual euclidean inner product (𝑉|𝐴)of the two matrices V, A, considered as 𝑛2 dimensional parameter vectors. 

This fact yields the dual interpretations: 

1. An interaction game V is a linear functional on the space of all interaction instances A. 

2. An interaction instance A is a linear functional on the space of all interac- tion games V. 

a. The Hermitian Perspective 

Setting A+ = (A + A+)/2, one finds that a matrix A ∈ ℝn×n decomposes into a symmetric matrix A+ 

and a skew-symmetric matrix A−:
 

A = A+ + A− where (A+)T = A+, (A−)T = −A− (16) 

Moreover, is it straightforward to check that the symmetry decomposition (16) of 

A is unique. Associate now with A ∈ R
n×n 

the well-defined hermitian matrix 

Â = A+ + iA− ∈ ℂn×n 

and let ℍn ⊆ ℂn×n be the family of all hermitian n × n matrices. 

Clearly, ℍn is isomorphic to ℝn×nwith respect to the field ℝ of real scalars. (ℍn is not a complex vectors 

space, however.) Recall that the adjoint C∗ of the complex matrix  C ⊆ ℂn×n  is the tranose C−T
 
of the 

conjugated matrix C and note 

Lemma For any matrices C ⊆ ℂn×n and A, B ∈ ℝn×n, one has 

1. C ∈ ℍn if and only if C∗ = C (I,e., C is self-adjoint. 

2. (A|B) = tr (BTA) = tr(BÂ) = (Â|B) 

Hence: 

Interaction games can equally well be studied within the context of the her- mitian matrix space ℍn. 

The adjoint u∗of the (column) vector u ∈ ℂn 
is the row vector of conjugated components of n. So uu∗is a 

self-adjoint n × n matrix. Indeed, an important general characterization of self-adjoint matrices is: 

Lemma The matrix C ∈ ℂn×n is self-adjoint if and only if there are real scalars 

λk and vectors uk ∈ ℂn such that 

C = ∑ λkukuk
∗ .

k

 

Proof.  Because the matrices uku∗k  are self-adjoint, a matrix C of the form (17) is self-adjoint. To see the 

converse, recall that ℝn×nand  ℍn are isomorphic. So, it suffices to consider (0, 1)-matrices A ∈ ℝn×n 

with exactly one non-zero entry Aij = 1. Moreover, we may assume n = 2. 

If A is diagonal, one has  Â=A, for which the claim is obviously true.  So, assume for example, 

A = (
0 1
0 0

) and hence C = Â =
1

2
(

0 1 + i
1 − i 0

) 

With the two real eigenvalues λ1 = +√2 and λ2 = −√2. Consequently, the 2-dimensional space 

ℂ2admits a basis of eigenvectors of C, wjich imply the claim. 

Remark The spectral decomposition of self-adjoint matrices shows that the vectors uk in can be chosen as 

eigenvectors of C with real eigenvalues λk also in the case n > 2. 
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Consider, for example, an activity system AN as in Section 5.2 relative to the valuation v ∶  N → ℝ. Let 

u ∈ ℂN 
be a state vector of norm ||u|| = 1 with the associated self-adjoint m × m matrix U = uu∗ of 

complex coefficients V = diag(v) is the diagonal interaction matrix with diagonal coefficients 

VSS = v(S) one now observes: 

(V|U) = ∑ v(S)uSuS = ∑ v(S)|uS|2 = Ev(u)

⊆N⊆N

 

So An is recognized as the restriction of an interaction game on with char- acteristic function V = diag(v)to 

interaction instances of the form uu∗ 

b. The Hermitian Perspective 

A measurement operator on the interaction system N is a functional 

μ: ℝN×N ⟶ ℝ 

which produces the measurement result µ(A) if the system is in a state that cor- responds to the activity 

instance A. If the functional µ is linear, the measurement acutally represents an interaction game. So there 

exists a matrix M ∈ ℝn × n 
such that 

μ(A) = (M|A) = (M|Â), 

which means that µ can be understood as a linear functional on the (real) vector space ℍn of all hermitian 

matrices. Assuming 

Â=∑ λkukuk
∗

k  

for suitable real parameters λk and (complex) vectors uk ∈ ℂn, one has 

Â=∑ λkμ(ukuk
∗ ) = ∑ λk(M|ukuk

∗ )kk  

A Heisenberg measurement operator
22

 on the (complex) vector space ℂn 
is a real-valued functional 

γ: ℂn → ℝ of the form 

γ(u) = u∗Gu = (G|uu∗) with G ∈ ℂn×n 

Since γ is real-valued, one may assume that G is self-adjoint. Notice that a Heisenberg measurement 

operator is not linear. On the other hand, (18) shows: 

 to the fact that this measurement model is standard in quantum theory. 

• A Heisenberg measurement operator on ℂn 
arises from the restriction of a linear measurement 

operator on the interaction system N to interaction instances of the hermitian form uu∗. 

Similarly, the linear measurement matrix M̂ of the operator μ of the formM = ∑ δjwjwj
∗

j  

for suitable real numbers δj and vectors wj ∈ ℂn , which implies 

μ(A) = ∑ ∑ λiμj(wjwj
∗|uiuj

∗)

ji

 

Consequently, the fundamental linear interaction measures are recognized to be of the form 

𝜇𝑤(𝑢) = (𝑤𝑤∗|𝑢𝑢∗) = |𝑤∗𝑢|2 𝑤𝑖𝑡ℎ 𝑤, 𝑢 ∈ ℂ𝑛 . 
4. CONCLUSION 

Linearity plays an important role in mathematical application models. The mathe- matical analysis, 

however, will reveal more characteristic features of the under- lying systems when the model is not just 

considered to be a vector space with scalar multiplication, but an algebra, i.e, additionally equipped with a 

multiplica- tion operation for vectors. Suitable multiplication operations are naturally associ- ated with 

multiplication rules for polynomials, which renders polynomial models powerful and flexible. 

The present approach shows that mathematical models for cooperation and in- teraction connect with 

important aspects of classical algebra and combinatorics. For example, the representation of coalitions by 

natural numbers embeds the rep- resentation of cooperative games into the context of Galois theory, i.e., the 

theory of solving algebraic equations. Future work of exploring this area of mathematical system analysis in 

more detail appears to be promising. 

The polynomial model also underlines the aspect of quantum-theoretic models as interaction systems 

and, conversely, embeds cooperation and interaction into the setting of physical quantum systems. The 

evolution of such systems can be mathematically understood in a far broader context (see, e.g. [7]). 

Moreover, the apparatus of theoretical physics can be brought to bear on general systems of cooperation 

and interaction. In particular, Hamiltonians of cooperative games can be expected to provide considerable 

insight into fundamental laws according to which such systems behave. 
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