

The application of Seasonal Trend Decomposition Using Loess for Export Forecasting by Economic Commodity Group in North Sumatra

Fahira Audri Yunisa¹, Machrani Adi Putri Siregar³,

¹³Department of Mathematics, Universitas Islam Negeri Sumatera Utara, Medan, Indonesia

Article Info	ABSTRACT
Article history:	In export data, there are often seasonal fluctuations caused by various factors, and STL (Seasonal Trend decomposition using Loess) can help effectively separate these seasonal components. STL is an algorithm developed to decompose a time series into three components: trend, seasonal, and remainder, aiding in a better understanding of the
<i>Keywords:</i> Forecasting STL Export Economic	underlying patterns and variations in the data. The data taken in this study are data on the number of exports (tonnes) in the period January 2018 to December 2022 sourced from bps. From the forecasting results it can be concluded that the largest BM export value is 6357.6131 (tons), the largest BP export value is 859804.0 (tons) and the largest BP export value is 113157.64 (tons).
Commodity group	This is an open access article under the <u>CC BY-SA</u> license.
<i>a r i i i</i>	

Corresponding Author:

Fahira Audri Yunisa, Department of Mathematics, Universitas Islam Negeri Sumatera Utara, Medan, Indonesia Email: <u>fahira0703191047@uinsu.ac.id</u>

1. INTRODUCTION

Exports and imports play a crucial role in the economic stability of a country as they influence the amount of foreign exchange reserves. The need for foreign exchange is a vital factor in the monetary system of every country because it determines a nation's financial resilience. Many countries strive to bolster their foreign exchange reserves by promoting and increasing exports as one of the sources of foreign exchange. Exports are a crucial sector of the economy that plays a significant role in expanding markets between countries, potentially leading to the growth of various industries. This, in turn, can stimulate other sectors of the economy (Baldwin, 2005). The problem in this research is that the number of exported goods changes every time or season. That's why we need a mathematical model to predict the amount of exports in the future.

Time series analysis is an analysis using statistical techniques through the operation of models that use data from the past to predict the future. (Wei, W. W.S., 2006). STL is a method for decomposing a time series data into three components: seasonal, trend, and remainder. The definition of Loess is a non parametric regression method. This regression method has the advantage of high flexibility because the data automatically forms curve estimates that are not influenced by subjective factors (outliers) (Haritsah, 2015). In export data, there are often seasonal fluctuations caused by various factors, and STL can help effectively separate these seasonal components.

2. RESEARCH METHODE

This research uses quantitative research. The form of data used in this research is in the form of time series which is secondary data, the acquisition of data used for this research is the total value of exports by economic goods group in North Sumatra and consists of 3 influential variables, namely barang modal (BM), bahan baku/penolong (BP), and barang konsumsi (BK). The data taken in this study are data on the number of exports (tonnes) in the period January 2018 to December 2022. The stages in the data analysis process in this study include:

- 1. Data description
- 2. Application of STL to each export data component
- 3. Applying seasonal, trend, and residual components to each component
- 4. Data is analysed descriptively to see any trends or seasonal patterns that may exist.
- 5. Apply the STL method to the time series data using an appropriate library, such as STL plus or forecasting in R. Select appropriate parameters, such as LOESS windows for seasonal and trend components.
- 6. Perform forecasting on each component of export data
- 7. Calculate MAE and MAPE values
- 8. Interpretation of results

3. RESULT AND ANALYSIS

3.1 Data Description

Data graph of the number of exports by group of economic goods (tonnes) for the period January 2018 - December 2022 can be seen in Figure 3.1.

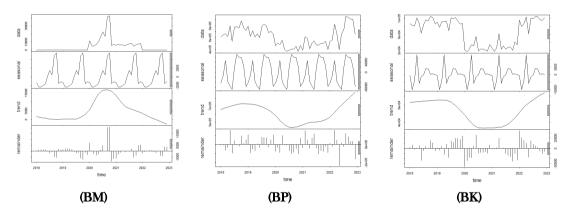


Figure 3.1 Chart of export data pattern January 2018 - December 2022 (tonnes)

Figure 3.1 shows that the number of exports by economic goods group is unstable and has a seasonal pattern.

3.2 Application of STL and forecasting on each component of economic goods groups

STL application and forecasting can be assisted by using the R Studio application with packages library(stlplus) and library (forecast).

Zero: Jurnal Sains, Matematika dan Terapan

	ALFORECASTING.R* × P FORECASTING EKSPOR.R × forecast_BK × forecast_BP × forecast_BM × > +
	🖅 📄 🖸 Source on Save 🔍 Ž 🔻 🗐 👻
	library(stlplus)
2	library(forecast)
	View(EKS4)
4	
	# ubah tahun dan bulan menjadi kolom tanggal
6 7	<pre>EKS4\$tanggal <- as.Date(paste(EKS4\$tahun, EKS4\$bulan, "01", sep = "-"), format = "%) ekspor_ts <- ts(EKS4[, c("BM", "BP", "BK")], frequency = 12, start = c(2018, 1))</pre>
8	$exploie_{15} <= cs(exs4[, c(bm, bp, bk, j], frequency = 12, start = c(2018, 1))$
	# Menerapkan STL decomposition untuk masing-masing kelompok barang
lõ	stl_BM <- stl(ekspor_ts[, "BM"], s.window = "periodic")
1	<pre>stl_BM <- stl(ekspor_ts[, "BM"], s.window = "periodic") stl_BP <- stl(ekspor_ts[, "BP"], s.window = "periodic")</pre>
L2	<pre>stl_BK <- stl(ekspor_ts[, "BK"], s.window = "periodic")</pre>
13	
L4	# Plot komponen-komponen STL untuk masing-masing kelompok barang
15	plot(stl_BM)
L6	plot(stl_BP)
L7	plot(stl_BK)
18	
19	# Melihat komponen musiman, tren, dan residu untuk masing-masing kelompok barang seasonal_component_BM <- stl_BM\$time.series[, "seasonal"]
20 21	<pre>trend_component_BM <- stl_BMStime.series[, seasonal]</pre>
22	residual_component_BM <- stl_BM\$time.series[, "remainder"]
23	restudat_component_bm <- sti_bmst me.sertest, remarider j
24	<pre>seasonal_component_BP <- stl_BP\$time.series[, "seasonal"]</pre>
	trend_component_BP <- stl_BP\$time.series[, "trend"]
26	residual_component_BP <- stl_BP\$time.series[, "remainder"]
27	
	<pre>seasonal_component_BK <- stl_BK\$time.series[, "seasonal"]</pre>
	<pre>trend_component_BK <- stl_Bk\$time.series[, "trend"]</pre>
	residual_component_BK <- stl_BK\$time.series[, "remainder"]
31	a scholar and a scholar harden between and an data and and a scholar harden bei
32 33	# Lakukan peramalan menggunakan komponen musiman dan tren untuk masing-masing kelomp forecast_BM <- forecast(stl_BM, h=60)
53 34	<pre>torecast_BM <- torecast(st1_BM, h=60) View(forecast_BM)</pre>
35	VIEw(IOI ECASE_DP)
36	\$
:59	
1.59	Figh reach * K2

Figure 3.2 Application of STL and forecasting on each export component in R studio

From the application of STL, forecasting is obtained:

a. BM forecasting results

	• 🔒 🗟		io to file/fund	forecast_B	B ▼ Addins ▼ K × forecas				o to file/fund	tion E	B ▼ Addins
$\langle \diamond \diamond \mid a$	🗊 🍸 Filte	r					7 Filte	_			
	Point [‡] Forecast	Lo 80	+i 80 [‡]	Lo 95 [‡]	ні 95 🗘		Point +	Lo 80	÷	¢ Lo 95	÷
Jan 2023	-553.8839	-7932.212	6824.444	-11838.06	10730.29	0-1-2024		10540.000	20265.047	22417.22	46133.55
Feb 2023	-1488.0702	-10656.289	7680.149	-15509.65	12533.51	Oct 2024	6357.6131	-19649.820	32365.047		
Mar 2023	-1535.6552	-12197.398	9126.087	-17841.38	14770.07	Nov 2024	-699.8387	-27270.558	25870.880	-41336.25	39936.57
Apr 2023	-1167.1157	-13137.465	10803.234	-19474.19	17139.95	Dec 2024	-256.7289	-27379.038	26865.580	-41736.72	
May 2023	-736.7759	-13886.141	12412.589	-20846.99	19373.44	Jan 2025	-553.8839	-28216.786	27109.018	-42860.64	41752.87
Jun 2023	878.5531	-13352.480	15109.586	-20885.93	22643.04	Feb 2025	-1488.0702	-29681.202	26705.061	-44605.74	41629.60
Jul 2023	2348.0819	-12888.021	17584.185	-20953.53	25649.69	Mar 2025	-1535.6552	-30249.227	27177.916		42377.96
Aug 2023	1296.9646	-14881.890	17475.820	-23446.46	26040.39	Apr 2025	-1167.1157	-30391.860	28057.629	-45862.51	43528.27
Sep 2023	5687.4548	-11382.163	22757.073	-20418.27	31793.18	May 2025	-736.7759	-30463.905	28990.354	-46200.50	44726.95
Oct 2023	6357.6131	-11558.536	24273.762	-21042.77	33758.00	Jun 2025	878.5531	-29342.611	31099.717	-45340.73	47097.83
Nov 2023	-699.8387	-19424.285	18024.608	-29336.41	27936.73	Jul 2025	2348.0819	-28359.169	33055.333	-44614.61	49310.77
Dec 2023	-256.7289	-19755.996	19242.538	-30078.28	29564.83	Aug 2025	1296.9646	-29888.798	32482.727	-46397.54	48991.47
Jan 2024	-553.8839	-20798.338	19690.571	-31515.11	30407.34	Sep 2025	5687.4548	-25969.587	37344.497	-42727.81	54102.72
Feb 2024	-1488.0702	-22451.239	19475.099	-33548.47	30572.33	Oct 2025	6357.6131	-25763.794	38479.020	-42767.84	55483.07
Mar 2024	-1535.6552	-23193.702	20122.391	-34658.78	31587.47	Nov 2025	-699.8387	-33278.994	31879.316	-50525.36	49125.68
Apr 2024	-1167.1157	-23498.428	21164.196	-35319.91	32985.68	Dec 2025	-256.7289	-33287.288	32773.830	-50772.61	50259.15
May 2024	-736.7759	-23721.641	22248.089	-35889.09	34415.54	Jan 2026	-553.8839	-34029.761	32921.993	-51750.82	
Jun 2024	878.5531	-22741.788	24498.894	-35245.64	37002.75	Feb 2026	-1488.0702	-35403.419			
Jul 2024	2348.0819	-21891.082	26587.245	-34722.52	39418.68	Mar 2026	-1535.6552	-35884.853	32813.543	-54068.22	50996.91
Aug 2024	1296.9646	-23545.611	26139.540	-36696.48	39290.41	Apr 2026	-1167.1157	-35944.751	33610.520	-54354.92	52020.69
Sep 2024	5687.4548	-19744.220		-33206.94	44581.84	May 2026	-736.7759	-35937.634	34464.083	-54571.84	53098.29
Oct 2024		-19649.820				Jun 2026	878.5531	-34740.500	36497.606	-53596.09	55353.19
	to 22 of 60 er		52500.047	55417.52	40152.00		2348 0810 to 43 of 60 e	-33684 313 entries	38380 477	-52758 71	57454.87
Console						Console					

	DRECASTING.R		itled1* ×	forecast_B	K×fo	recast_E
$\langle \phi \phi \rangle$	🗊 🖓 Filter	÷	÷	\$	\$	
	Forecast	Lo 80	Hi 80	Lo 95	Hi 95	
1ar 2026	-1535.6552	-35884.853	32813.543	·54068.22 ·54354.92	50996.91	
Apr 2026	-1167.1157	-35944.751	33610.520		52020.69	
lay 2026	-736.7759	-35937.634	34464.083	-54571.84	53098.29	
Jun 2026	878.5531	-34740.500	36497.606	-53596.09	55353.19	
Jul 2026	2348.0819	-33684.313 -35144.084	38380.477 37738.013	-52758.71 -54434.81	57454.87 57028.74	
ing 2026	5687.4548	-31157.715	42532.624	-50662.37	62037.28	
Oct 2026	6357.6131	-30887.293	43602.519	-50603.56	63318.78	
lov 2026	-699.8387	-38340.237	36940.559	-58265.86	56866.18	
ec 2026	-256.7289	-38288.506	37775.048	-58421.31	57907.85	
an 2027	-553.8839	-38973.053	37865.286	-59310.93	58203.17	
eb 2027	-1488.0702	-40290.765	37314.624	-60831.67	57855.53	
Aar 2027	-1535.6552	-40290.703	37646.811	-61460.07	58388.76	
Apr 2027	-1167,1157	-40725.707	38391,476	-61666.76	59332.53	
lay 2027	-736.7759	-40667.950	39194.398	-61806.24	60332.68	
un 2027	878.5531	-39421.759	41178.865	-60755.46	62512.56	
Jul 2027	2348.0819	-38318.018	43014.182	-59845.35	64541.52	
ug 2027	1296,9646	-39731.662	42325.591	-61450.91	64044.83	
ep 2027	5687,4548	-35700.523	47075.433	-57610.00	68984.91	
Oct 2027	6357.6131	-35386.623	48101.849	-57484.69	70199.91	
lov 2027	-699.8387	-42797.318	41397.641	-65082.38	63682.70	
ec 2027	-256.7289	-42704.512	42191.054	-65175.01	64661.55	
howing 39) to 60 of 60 e	ntries				
inoring 55						

Figure 3.3 BM forecasting results

Based on Figure 3.3, the largest BM export value is 6357.6131 (tonnes).

b. BP forecasting results

0018	元 7 Filt	ter					🗊 🖓 Fil	ter			
	Point [‡] Forecast	Lo 80 [‡]	ні 80 [‡]	¢ Lo 95	Hi 95 🔅		Point ÷ Forecast	Lo 80 [‡]	÷ Hi 80	¢ Lo 95	Hi 95
Jan 2023	745435.2	615535.5	875334.9	546770.7437	944099.6	Oct 2024	846383.0	512721.3	1180044.8	336091.4265	1356674.
Feb 2023	773538.5	627347.3	919729.6	549958.4329	997118.5	Nov 2024	811652.4	471317.2	1151987.6	291154.5633	1332150.
Mar 2023	835711.9	674871.1	996552.7	589727.1162	1081696.7	Dec 2024	731100.5	384220.2	1077980.9	200592.7947	1261608.
Apr 2023	750376.0	576112.8	924639.3	483863.3943	1016888.7	Jan 2025	745435.2	392130.9	1098739.5	205102.9299	1285767.4
May 2023	732019.3	545296.0	918742.6	446450.6742	1017588.0	Feb 2025	773538.5	413925.0	1133151.9	223557.1829	1323519.
Jun 2023	719273.5	520871.1	917675.9	415843.2245	1022703.8	Mar 2025	835711.9	469898.1	1201525.7	276247.9551	1395175.
Jul 2023	807620.8	598189.6	1017052.0	487323.4513	1127918.2	Apr 2025	750376.0	378465.2	1122286.8	181587.5172	1319164.
Aug 2023		639896.5	1079711.6		1196123.6	May 2025	732019.3	354109.9	1109928.8	154056.6651	1309982.0
Sep 2023	847309.9	617402.8	1077217.0	495697.3990	1198922.4	Jun 2025	719273.5	335459.1	1103087.9	132280.0439	1306267.0
Oct 2023		606893.6	1085872.4	480115.6026	1212650.5	Jul 2025	807620.8	417991.0	1197250.7	211733.4245	1403508.2
Nov 2023	811652.4		1060355.2	431294.2728	1192010.5	Aug 2025	859804.0	464444.3	1255163.8	255153.5013	1464454.0
Dec 2023			988687.4	337155.3967	1125045.7	Sep 2025	847309.9	446302.1	1248317.7	234021.4417	1460598.4
Jan 2024	745435.2	479260.6	1011609.8	338356.2577	1152514.1	Oct 2025	846383.0	439805.7	1252960.4	224576.6189	1468189.4
Feb 2024		499044.7	1048032.3		1193340.5	Nov 2025	811652.4	399580.7	1223724.1	181443.1562	1441861.
Mar 2024	835711.9		1118280.0	403561.2199	1267862.6	Dec 2025	731100.5	313606.9	1148594.2	92599.0444	1369602.
	750376.0	459957.9	1040794.1	306219.8876	1194532.2	Jan 2026	745435.2	322589.0	1168281.4	98747.7500	1392122.0
May 2024		433958.0	1030080.7	276173.7975	1187864.9	Feb 2026	773538.5	345406.7	1201670.2	118767.4351	1428309.
Jun 2024			1024787.0	252030.9241	1186516.1	Mar 2026	835711.9	402359.0	1269064.8	172955.8360	1498467.9
Jul 2024	807620.8	494832.7	1120409.0		1285989.0	Apr 2026	750376.0	311864.2	1188887.9	79730.0238	1421022.0
Aug 2024	859804.0	539906.7	1179701.4	370563.2202	1349044.8	May 2026	732019.3	288408.5	1175630.2	53575.1285	1410463.
-						Jun 2026	719273.5	270621.7	1167925.3	33119.7197	1405427.
				336091.4265		Jul 2026	807620.8	353984.0	1261257.7	113843.1322	1501398.

The application of Seasonal Trend Decomposition Using Loess for Export Forecasting by Economic Commodity Group in North Sumatra (Fahira Audri Yunisa)

64

0012	Ω 7 Fil	tor				
					A	
	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95	
Mar 2026	835711.9	402359.0	1269064.8	172955.8360	1498467.9	
Apr 2026	750376.0	311864.2	1188887.9	79730.0238	1421022.0	
May 2026	732019.3	288408.5	1175630.2	53575.1285	1410463.5	
Jun 2026	719273.5	270621.7	1167925.3	33119.7197	1405427.3	
Jul 2026	807620.8	353984.0	1261257.7	113843.1322	1501398.5	
Aug 2026	859804.0	401236.4	1318371.7	158485.3052	1561122.8	
Sep 2026	847309.9	383863.9	1310755.9	138530.3683	1556089.4	
Oct 2026	846383.0	378109.5	1314656.6	130220.4051	1562545.7	
Nov 2026	811652.4	338600.5	1284704.2	88182.0248	1535122.8	
Dec 2026	731100.5	253318.2	1208882.9	395.5024	1461805.6	
Jan 2027	745435.2	262968.7	1227901.6	7566.4085	1483304.0	
Feb 2027	773538.5	286432.9	1260644.0	28574.8466	1518502.1	
Mar 2027	835711.9	344011.0	1327412.7	83720.3476	1587703.4	
Apr 2027	750376.0	254122.4	1246629.6	-8578.3553	1509330.4	
May 2027	732019.3	231254.4	1232784.3	·33834.5902	1497873.3	
Jun 2027	719273.5	214037.5	1224509.5	-53418.3551	1491965.4	
Jul 2027	807620.8	297952.9	1317288.7	28151.0180	1587090.6	
Aug 2027	859804.0	345742.5	1373865.6	73614.7106	1645993.4	
Sep 2027	847309.9	328891.9	1365727.9	54458.0120	1640161.8	
Oct 2027	846383.0	323644.9	1369121.1	46924.0894	1645842.0	
Nov 2027	811652.4	284629.6	1338675.2	5640.5659	1617664.2	
Dec 2027	731100.5	199827.6	1262373.5	-81411.3332	1543612.4	

Figure 3.4 BP forecasting results

Based on Figure 3.4, the largest BP export value is 859804.0 (tonnes).

c. BK forecasting results

	DRECASTING.F		tled1* × 🧍	forecast_BK	× forecast_E	_	DRECASTING.F		tled1* ×	forecast_BK	× foreca
	Point [÷] Forecast	¢ Lo 80	Hi 80 [‡]	¢ Lo 95	Hi 95 [‡]		☐ ♥ Filte Point Forecast	r Lo 80 [‡]	÷ Hi 80	¢	ні 95 [‡]
Jan 2023	99145.38	77550.2042	120740.6	66118.4077	132172.4	Oct 2024	99963.03	28110.3076	171015.0	0026 2264	209852.3
Feb 2023	89672.76	63405.0497	115940.5	49499.7625	129845.8	Nov 2024	100310.24	26917.7688	173702.7	·9926.2264	
Mar 2023	96101.75	65875.3696	126328.1	49874.4928	142329.0	Dec 2024	99864.26	24963.6914		-14686.2771	212554.3
Apr 2023	113157.64	79434.1307	146881.1	61581.9851	164733.3		99804.20	22766.4777	175524.3	-14080.2771	214414.8
May 2023	94004.74	57114.1455	130895.3	37585.4448	150424.0	Jan 2025	89672.76		167501.9		
Jun 2023	98409.36	58602.8693	138215.9	37530.5843	159288.1	Feb 2025 Mar 2025	96101.75	11843.6035	175354.6	-29356.6646 -25105.0757	208702.2
Jul 2023	99682.98	57160.0644	142205.9	34649.7947	164716.2			16848.8650			
Aug 2023	103847.10	58771.1738	148923.0	34909.4202	172784.8	Apr 2025 May 2025	113157.64 94004.74	32506.1635	193809.1 176031.0	-10188.1475 -31443.5426	236503.4
Sep 2023	103631.63	56139.7320	151123.5	30999.0413	176264.2	-					225925.5
Oct 2023	99963.03	50172.2567	149753.8	23814.6131	176111.4	Jun 2025	98409.36 99682.98	15031.0553	181787.7	-29106.7548 -29867.9765	229233.9
Nov 2023	100310.24	48322.1433	152298.3	20801.3072	179819.2	Jul 2025	103847.10	17828.3552	189865.8	-29807.9705	235401.4
Dec 2023	99864.26	45768.0240	153960.5	17131.2040	182597.3	Aug 2025	103631.63	16322.6048	190940.6	-27707.2175	235401.4
Jan 2024	99145.38	43020.1259	155270.6	13309.2103	184981.6	Sep 2025 Oct 2025	99963.03	11382.5223	188543.5	-35509.1662	235435.2
Feb 2024	89672.76	31589.3280	147756.2	841.8151	178503.7	Nov 2025	100310.24	10476.2405	190144.2	-37079.0063	237699.5
Mar 2024	96101.75	36124.0293	156079.5	4373.7443	187829.7	Dec 2025	99864.26	8794.0252	190934.5	-39415.6475	239144.2
Apr 2024	113157.64	51343.6618	174971.6	18621.3201	207694.0	Jan 2026	99145.38	6855,4602	191435.3	-41999.8731	240290.6
May 2024	94004.74	30407.5023	157602.0	-3258.8413	191268.3	Feb 2026	89672.76	-3820.9304	183166.5	-53313.5020	232659.0
Jun 2024	98409.36	33077.5211	163741.2	-1507.0670	198325.8	Mar 2026	96101.75	1419.5840	190783.9	-48702.1247	240905.6
Jul 2024	99682.98	32661.4074	166704.5	-2817.6678	202183.6	Apr 2026	113157.64	17301,7408	209013.5	-33441.3053	259756.6
Aug 2024	103847.10	35177.3702	172516.8	-1174.1886	208868.4	May 2026	94004.74	-3010.6917	191020.2	-54367.5585	242377.0
Sep 2024	103631.63	33352.3788	173910.9	-3851.2079	211114.5	lun 2026	98409.36	248.0935	196570.6	-51715.3438	
Oct 2024	99963.03	28110.3076	171815.8	-9926.2264	209852.3	Iul 2026	99682.98			-52173.9191	
Showing 1	to 22 of 60 ei	ntries					to 43 of 60 e				
Showing 1 t	to 22 of 60 ei	ntries				Showing 21 Console	to 43 of 60 (entries			

E FINALFO	DRECASTING.F	🛚 🖹 🔍 🕅 Until	tled1* ×	forecast_BK	K foreca:
$\langle \phi \phi \rangle$	🗊 🍸 Filte	r			
	Point Forecast	Lo 80	Hi 80 📍	Lo 95	Hi 95 🔶
Mar 2026	96101.75	1419.5840	190783.9	-48702.1247	240905.6
Apr 2026	113157.64	17301.7408	209013.5	-33441.3053	259756.6
May 2026	94004.74	-3010.6917	191020.2	-54367.5585	242377.0
Jun 2026	98409.36	248.0935	196570.6	-51715.3438	248534.1
Jul 2026	99682.98	389.0893	198976.9	-52173.9191	251539.9
Aug 2026	103847.10	3433.3703	204260.8	-49722.4469	257416.6
Sep 2026	103631.63	2110.4076	205152.8	-51631.6797	258894.9
Oct 2026	99963.03	-2653.7277	202579.8	-56975.7582	256901.8
Nov 2026	100310.24	-3390.4837	204011.0	-58286.3309	258906.8
Dec 2026	99864.26	-4909.2107	204637.7	-60372.9383	260101.5
Jan 2027	99145.38	-6689.9728	204980.7	-62715.8251	261006.6
Feb 2027	89672.76	·17213.9217	196559.4	-73796.3145	253141.8
Mar 2027	96101.75	-11826.0283	204029.5	-68959.5405	261163.0
Apr 2027	113157.64	4198.7205	222116.6	-53480.6455	279795.9
May 2027	94004.74	-15975.6521	203985.1	-74195.7543	262205.2
Jun 2027	98409.36	-12583.1028	209401.8	-71338.9651	268157.7
Jul 2027	99682.98	-12312.4193	211678.4	-71599.2003	270965.2
Aug 2027	103847.10	-9142.3233	216836.5	-68955.3105	276649.5
Sep 2027	103631.63	·10343.1536	217606.4	-70677.7580	277941.0
Oct 2027	99963.03	-14988.6624	214914.7	-75840.4128	275766.5
Nov 2027	100310.24	-15610.1324	216230.6	-76974.6708	277595.2
Dec 2027	99864.26	-17016.7593	216745.3	-78889.8361	278618.4
howing 39	to 60 of 60	entries			

Figure 3.5 BK forecasting results

Based on figures 3.4, the largest BP export value is 113157.64 (tons).

3.3 Calculating MAE and MAPE values

Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) are evaluation metrics used to measure the quality and accuracy of a forecasting model. Both provide information on how well the forecasting model matches the actual data. With the help of Microsoft Excel obtained:

- MAE BM = 5416.38199
 MAPE BM = 1357.237
- MAE BP = 187622.757 MAPE BP = 38.21681
- MAE BK = 34043.7192 MAE BK = 120.3839

4. CONCLUSION

From this research, the following conclusions were drawn:

- 1. This research uses the STL method which functions to decompose and forecast the value of exports by group of economic goods in sumatera utara
- 2. It can be seen from the forecasting results that the export value is a component that has a trend and seasonal pattern.
- 3. From the forecasting results it can be concluded that the largest BM export value is 6357.6131 (tons), the largest BP export value is 859804.0 (tons) and the largest BP export value is 113157.64 (tons).

REFERENCES

- Al'afi Anis Mahfud, W. D. (2020). Peramalan Data Time Series Seasonal Menggunakan Metode Analisis Spektral. *Jurnal Siger Matematika*, 10-15.
- [2] Apaydin Halit, M. T. (2021). Artificial intelligence modelling integrated with Singular Spectral analysis and Seasonal-Trend decomposition using Loess approaches for streamflow predictions. *Journal of Hydrology*, 600.
- [3] Baldwin. (2005). Pengantar Ekonomi Industri: Pendekatan Struktur, Perilaku dan. Yogyakarta: BPFE.
- [4] Cleveland Robert B., W. S. (1990). STL:A Seasonal-Trend Decomposition Procedure Based on Loess. Journal of Official Statistics, 3-33.
- [5] Dermawan, R. (2005). Model Kuantitatif Pengambilan Keputusan. Bandung: Alfabeta.
- [6] Ekspor Impor: Pengertian, Tujuan, dan Tahapannya. 2022. Diakses pada 12 Maret 2023 dari <u>https://runsystem.id/id/blog/ekspor-impor/</u>.
- [7] Firdaus, M. (2006). Abalisis Deret Waktu Satu Ragam. Jakarta: IPB Press.
- [8] Ginantra Ni Luh Wiwik Sri Rahayu, A. D. (2022). Pemanfaatan Algoritma Fletcher-Reeves untuk Penentuan Model Prediksi Harga Nilai Ekspor Menurut Golongan SITC. *Building of Informatics, Technology and Science (BITS), 3*, 679-685.
- [9] Hardani, N. H. (2020). Metode Penelitian Kualitatif & Kuantitatif. Yogyakarta: Pustaka Ilmu.
- [10] Haritsah, A. (2015). Implementasi Model Stl Seasonal Trend Decomposition Based On Loess Dan Arima Untuk Prediksi Konsentrasi Kualitas Udara Prediksi Konsentrasi Kualitas Udara. Surabaya: repository.its.ac.id.
- [11] Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts. Chapter 6: Time Series Decomposition.
- [12] Kwok Chun-Fung, G. Q. (2023). Analyzing Error Bounds for Seasonal-Trend Decomposition of Antarctica Temperature Time Series Involving Missing Data. *Atmosphere*, 1-21.
- [13] Puspita, R. N. (2022). Perbandingan Metode Double Exponential Smoothing Dan Triple Exponential Smoothing Pada Peramalan Nilai Ekspor Di Indonesia. *Jambura Journal of Probability and Statistics*, *III*(2), 141-150.
- [14] Raharja Alda, W. A. (2010). Penerapan Metode Exponential Smoothing Untuk Peramalan Penggunaan Waktu Telepon Di Pt Telkomsel Divre 3 Surabaya. *Jurnal Sistem Informasi*.
- [15] Rinaldy Eddie, D. I. (2021). Perdagangan Internasional Konsep dan Aplikasi. Jakarta Timur: Bumi Aksara.
- [16] Sedyaningrum Miranti, S. N. (2016, Mei). Pengaruh Jumlah Nilai Ekspor, Impor Dan Pertumbuhan Ekonomi Terhadap Nilai Tukar Dan Daya Beli Masyarakat Di Indonesia Studi Pada Bank Indonesia Periode Tahun 2006:IV-2015:III. Jurnal Administrasi Bisnis (JAB), 34(1), 114-121.
- [17] Sidabutar Victor Tulus Pangapoi, T. A. (2021). Ekspor Impor: Teori dan Praktik untuk Pemula. Sumatera Barat: CV. Mitra Cendekia Media.
- [18] Sujarweni, V. W. (2014). *Metodologi Penelitian Lengkap Praktis Dan Mudah Dipahami*. Makassar: Pustaka Baru Press.
- [19] Supardi, E. (2021). Ekspor Impor Perdagangan Internasional (Ekspor-Impor), Masalah-Masalah Di Dalam Kegiatan (Ekspor-Impor), Para Pihak Yang Terlibat Dalam Kegiatan Ekspor-Impor, Metode Pembayaran Dalam Perdagangan Internasional. Yogyakarta: Deepublish.
- [20] Sutedi, A. (2014). Hukum Ekspor Impor. Jakarta Timur: Raih Asa Sukses (Penebar Swadaya Grup).
- [21] Tilova Martina Navra, M. Y. (2018). Prediksi Kelompok Ekspor SITC di Sumatera Utara dengan Pendekatan Model Arima dan Single Eksponential Smoothing. *Prosiding Seminar Nasional Mahasiswa* Unimus, 389-395.
- [22] Tyas, H. P. (2022). Analisis Ekspor Indonesia Tahun 1990-2019. *Transekonomika: Akuntansi, Bisnis dan Keuangan, II*, 37-52.
- [23] Wickham, H., & Grolemund, G. (2016). R for Data Science. O'Reilly Media. Chapter 13: Modeling basics.