

Zero: Journal of Science, Mathematics, and Applied E-ISSN: 2580-5754

Predicting the Increase in Early Marriages During the COVID-19 Period Using the Single Exponential Smoothing Method (Case Study: Department of Population and Civil Registration in Medan City)

Yusuf Ramadhan Nasution¹, Solly Ariza Lubis², M. Aldy azis³

¹³Department of Computer Science, State Islamic University of North Sumatra, Medan, Indonesia

Article Info A

Accepted mm dd, yyyy Revised mm dd, yyyy Accepted mm dd, yyyy

P- ISSN: 2580-569X

matter. 202-214

Vol. 6, No. 2, December 2022

Keywords:

Article history:

Prediction, Early Marriage, Covid-19, Single Exponential Smoothing Method, **ABSTRACT** The Department of Population and Civil Registry of North Sumatra Province must know the prediction of the number of early marriages in the following year so that they can anticipate the occurrence of early marriages. The problem that occurs is that the government through the Department of Population and Civil Registry of North Sumatra Province cannot predict early marriage due to the impact of COVID-19, this is due to the lack of community activity in obtaining knowledge and the difficulty of obtaining information about the occurrence of early marriage. Therefore we need a way that can help the government in predicting early marriage. This study uses single exponential smoothing (SES) to predict an increase in early marriage due to the impact of COVID-19. With the application to predict the increase in marriage due to the impact of COVID-19 using the single exponential smoothing method, it is hoped that the Population and Civil Registry Office of North Sumatra Province will be able to find out the increase in the number of early marriages in the coming period.

This is an open access article under the <u>CC BY-SA license</u>.

Corresponding author:

M. AldyAzis, Department of Science computer , State Islamic University of North Sumatra, Medan, Indonesia Email : maldiazis98@gmail.com

1. INTRODUCTION

Based on Constitution Republic of Indonesia Number 16 of 2019 concerning marriage Article 7 Number 1 namely " Marriage only allowed if man and woman Already reach age 19 (nine fifteen) years ". Wedding early interpreted marriage is the culprit Still young and yet Can fulfil the requirements that have been determined in do wedding . On the type of person with under 19 years of age state of the reproductive organs Not yet fully ripe and still in stage growth . this time called with term reproduction young It means although can pregnant and giving birth will but Actually body Not yet Ready For pregnant . Problem Wedding early own various risk start from social risk , risk psychology and risk health . (Haidi Nurfadilah et al., 2021).

Problem happened _ is government No can predict wedding early consequence impact of COVID-19, p This because lack of activity public in obtain knowledge and difficult For obtain information about risk happening wedding early . because _ That needed A way you can help government in predict wedding early.

Computer Already Lots help performance man in various matter especially data and information management. because _ That researcher utilise technology computer For make A system that can help

government in predict amount wedding early. System that can used that is system prediction. In use system prediction needed method that can produce good and accurate predictions.

Based on research conducted by (Rosa et al., 2019) regarding deep exponential smoothing method project friday poor people in the archipelago southeast west, summed up that based on results calculation use ES method is obtained results of the 2019 Poor Population Forecasting in NTB with analysis forecast error level using MAD, MSE, MRSE, and MAPE indicators.

Based on research conducted by (Pakpahan et al., 2020) regarding prediction amount poor people of Kalimantan east using single and double exponential smoothing, it is concluded that Based on Single Exponential Smoothing method is obtained results forecasting best 2019 (total_ residents; MAPE) at a value of α (alpha) = 0.3.

From several study previously used _ single exponential smoothing (SES) method for overcome various problem predictions and have produce good and precise predictions, then _ researcher using single exponential smoothing (SES) to predict increase wedding early in the time of COVID-19. Single Exponential Smoothing method is procedure repair constantly on predictions to object observation latest. In method This prediction done with repeat calculation in a manner continously with using the latest data. Each data is given weights, more data new given more weight _ big. (Hayami et al., 2021).

With exists application prediction increase wedding early in the time of COVID-19 using single exponential smoothing method then Service Population and Registration Civil city Medan expected can with easy know amount increase wedding early in the coming period come.

2. RESEARCH METHODS

The work procedure in this study includes several stages, namely planning, data collection techniques, needs analysis, design, testing and use.

This research plan is modeled on a block diagram. Some of the stages used in this study are as follows:

Figure 1. Work Procedure

Information :

1. Planning

Researchers plan to make a thesis starting from the title, research location and the data needed. 2. Data Collection and Research Reference

Researchers collected data and research references related to thesis writing, namely data on early marriage and the single exponential smoothing method.

3. Data Analysis and System Design

Researchers analyzed the data obtained and then designed a system according to the data obtained, namely early marriage data.

4. System Implementation

The researcher implements the running system or design into the application that is made and implements the single exponential smoothing method into the application that is made.

5. System Testing

The researcher tested the system after the application, all data was implemented into the application, if there was an error, it was checked again.

6. Completion of Thesis

The researcher completed the thesis after system testing, both theory and application, went well.

2.1 Analysis of needs

Researcher analyze need For study namely:

1. Marriage data early.

2.Hardware.

3. Software.

3. RESULTS AND ANALYSIS

3.1 Data collection techniques

Following This is a number of technique data collection researchers do For complete that is studies literature. At stages This researcher use journals and works scientific as references and foundations related theory _ with single exponential smoothing method.

3.2 Data analysis

The data analysis needed in this study is data on early marriages in the 2020 and 2021 periods. The data will be processed using the Single Exponential Smoothing method to obtain predictive results for an increase in early marriages during the COVID-19 period in the city of Medan. Therefore some of the analyzes and methods made in this study are:

- 1. Early Marriage Data
- 2. The Single Exponential Smoothing Method
- 3 . Data Processing For Predictions

4. Prediction Results

5.Prediction Result Accuracy

3.3 System Design

In designing the system, researchers use several forms of database design and flowcharts .

1. Databases

The following is a table design of the prediction application for the increase in early marriage during the COVID-19 period in the city of Medan using the single exponential smoothing method:

a. Login Table Design

Table 3.1 is the design of the Login table in the prediction application for the increase in early marriage during the COVID-19 period in the city of Medan using the single exponential smoothing method.

Table 1. Login Table Desig	Table	1.	Login	Table	Desig
----------------------------	-------	----	-------	-------	-------

Field name	Data Type	Size	Information
ID_Login	Varchar	10	Search ID
Password	Varchar	100	Admin Password

b. Age & JK Table Design

Table 3.4 is the design of the Age & JK table in the application to predict the increase in early marriage during the COVID-19 period in the city of Medan using the single exponential smoothing method.

Field name	Data Type	Size	Information
ID_ Age & JK	Varchar	10	Search ID
Age	Varchar	50	Age
Gender	Varchar	50	Gender

Table 2. Age & JK Table Design

c. Early Wedding Table Design

Table 3.5 is the design of the Early Marriage table in the prediction application of the increase in early marriage during the COVID-19 period in the city of Medan using the single exponential smoothing method.

Field name	Data Type	Size	Information
ID_ Marriage_Early	Varchar	10	Search ID
Month	Varchar	20	Month
Year	Varchar	10	Year
ID_Age & JK	Varchar	10	Search ID
Amount	Varchar	10	Amount

Table 3. Early Marriage Table

d. Forecasting Table Design

Table 3.6 is the design of the Forecasting table in the prediction application for the increase in early marriage during the COVID-19 period in the city of Medan using the single exponential smoothing method.

Field name	Data	Size	Information
	Туре		
ID_Forecasting	Varchar	10	Search ID
ID_Age & JK	Varchar	10	Search ID
Month_ Marriage_Early	Varchar	20	Early Marriage Month
Year_ Marriage_Early	Varchar	20	Early Marriage Years
Total_ Marriage_Early	Varchar	20	Number of Early
			Marriages
Moon_Forecast	Varchar	20	Month of Forecast
Year_Forecast	Varchar	20	Year of the Divination
Total_Forecast	Varchar	20	Number of Forecasts
Difference	Varchar	20	Difference Cases

Table 4. P prediction table

3.4 System Implementation

The data used is marriage data obtained from the Medan City Government Office of the Population and Civil Registration Office in 2020 and 2021 and is presented as follows:

Figure 2. Prediction Diagram Flowchart

The mathematical form of the Single Exponential Smoothing method is shown as follows:

 $\begin{array}{ll} Ft{+}1 &= \alpha Xt + (1{-}\alpha)Ft\\ Where: \\ Ft{+}1 &= New \ Forecast\\ Ft &= Prior \ Forecast\\ \alpha &= Exponential \ Constant\\ Xt &= Rated \ Current. \end{array}$

Sample case :

There is data on early marriage in 2020 with the following conclusions:

Table. 5. Early Marriage Data					
			R 2020	AGE	
No.	MONTH	NUMBER OF MARRIAG ES	MAN - 19	WOMAN - 19	
1.	JANUARY	37	10	27	
2.	FEBRUARY	30	9	21	
3.	MARCH	24	11	13	
4.	APRIL	23	12	13	
5.	MAY	16	7	9	
6.	JUNE	33	16	17	
7.	JULY	51	25	26	
8.	AUGUST	36	17	19	
9.	SEPTEMBER	74	23	51	
10.	OCTOBER	52	15	37	
11.	NOVEMBER	88	27	61	
12.	DECEMBER	85	21	64	
	AMOUNT	549	193	356	

Predicting the Increase in Early Marriages During the COVID-19 Period Using the Single Exponential Smoothing Method (Case Study: Department of Population and Civil Registration in Medan City)

 $\begin{array}{ll} Ft+1 = \alpha Xt + (1-\alpha)Ft & \text{with alpha} (\alpha = 0.1) \\ \text{Male Case:} \\ F1 = 10 \\ F2 = (0.1*9)+(0.9*10)=9.9 \\ F3 = (0.1*11)+(0.9*9.9)=10.01 \\ F4 = (0.1*12)+(0.9*10.01)=10.209 \\ F5 = (0.1*7)+(0.9*10.209)=9.8881 \\ F6 = (0.1*16)+(0.9*9.8881)=10.49929 \\ F7 = (0.1*25)+(0.9*10.49929)=11.94936 \\ F8 = (0.1*17)+(0.9*11.94936)=12.45442 \\ F9 = (0.1*23)+(0.9*12.45442)=13.50898 \\ F10= (0.1*15)+(0.9*13.50898)=13.65808 \\ F11= (0.1*27)+(0.9*14.99228)=15.59305 \\ \end{array}$

 Table 6. _ MAPE Prediction of Single Exponential Smoothing Method

Con	Comparison between Forecast Results for 2021 and Original Data for 2021						
				AGE			
		MAN					
No.	MONTH	-19	-19	Comparis	MAPE		
		(Origina	(Forecas	on	percentage		
		l result)	t data)	(MAPE)	form		
1.	JANUARY	10		-	-		
2.	FEBRUARY	10	10	0	0%		
3.	MARCH	11	10	0.090909	9%		
4.	APRIL	10	10	0	0%		
5.	MAY	9	10	0.11111	11%		
6.	JUNE	17	11	0.352941	35%		
7.	JULY	20	12	0.4	40%		
8.	AUGUST	17	13	0.235294	24%		
9.	SEPTEMBER	24	14	0.416667	42%		
10.	OCTOBER	18	14	0.222222	22%		
11.	NOVEMBER	27	15	0.44444	44%		
12.	DECEMBER	22	16	0.272727	27%		
	Ν	IAPE	0.231483	23%			

 $\begin{array}{ll} Ft+1 = \alpha Xt + (1-\alpha)Ft & \text{with alpha} \ (\alpha = 0.2) \\ \text{Male Case:} \\ F1 = 10 \\ F2 = (0.2*9)+(0.8*10)=9.8 \\ F3 = (0.2*11)+(0.8*9.8)=10.04 \\ F4 = (0.2*12)+(0.8*10.04)=10.432 \\ F5 = (0.2*7)+(0.8*10.432)=9.7456 \\ F6 = (0.2*16)+(0.8*9.7456)=10.99648 \\ F7 = (0.2*25)+(0.8*10.99648)=13.79718 \\ F8 = (0.2*17)+(0.8*13.79718)=14.43775 \\ F9 = (0.2*23)+(0.8*14.43775)=16.1502 \\ F10 = (0.2*15)+(0.8*16.1502)=15.92016 \\ F11 = (0.2*27)+(0.8*18.13613)=18.7089 \\ \end{array}$

Table 7. MAPE Prediction of the Single Exponential Smoothing Method

Comparison between Forecast Results for 2021 and Original Data for 2021							
				AGE			
		MAN					
No	MONTH	-19	-19	Comparis	MAPE		
190.	MONTH	(Origin	(Forecas	on	percentage		
		al	t	(MAPE)	form		
		Data)	Results)				
1.	JANUARY	10	-	-			
2.	FEBRUARY	10	10	0	0%		
3.	MARCH	11	10	0.090909	9%		
4.	APRIL	10	10	0	0%		
5.	MAY	9	10	0.11111	11%		
6.	JUNE	17	11	0.352941	35%		
7.	JULY	20	14	0.3	30%		
8.	AUGUST	17	14	0.176471	18%		
9.	SEPTEMBER	24	16	0.333333	33%		
10.	OCTOBER	18	16	0.111111	11%		
11.	NOVEMBER	27	18	0.333333	33%		
12.	DECEMBER	22	18	0.181818	18%		
	MAPE 0.181002 18%						

 $Ft+1 = \alpha Xt + (1-\alpha)Ft$

Male Case:

with alpha ($\alpha = 0.3$)

F1 = 10

F2 = (0.3*9)+(0.7*10)=9.7F3 = (0.3*11) + (0.7*9.7) = 10.09F4 = (0.3*12) + (0.7*10.09) = 10.663F5 = (0.3*7)+(0.7*10.663)=9.5641F6 = (0.3*16)+(0.7*9.5641)=11.49487F7 = (0.3*25)+(0.7*11.49487)=15.54641F8 = (0.3*17) + (0.7*15.54641) = 15.98249F9 = (0.3*23) + (0.7*15.98249) = 18.08774F10=(0.3*15)+(0.7*18.08774=17.16142)F11= (0.3*27)+(0.7*17.16142)=20.11299 F12= (0.3*21)+(0.7*18.13613)=20.37909

Table 8 . MAPE Prediction of Single Exponential Smoothing Method

C	Comparison between Forecast Results for 2021 and Original Data for 2021						
				AGE			
		MAN					
No.	MONTH	-19	-19	Compariso	MAPE		
		(Origina	(Forecast	n (MAPE)	percentage form		
		l Data)	Result)				
1.	JANUARY	10	-	-			
2.	FEBRUARY	10	10	0	0%		
3.	MARCH	11	10	0.090909	9%		
4.	APRIL	10	11	0.1	10%		
5.	MAY	9	10	0.11111	11%		
6.	JUNE	17	12	0.294118	29%		
7.	JULY	20	16	0.2	20%		
8.	AUGUST	17	16	0.058824	6%		
9.	SEPTEMBER	24	18	0.25	25%		
10.	OCTOBER	18	17	0.055556	6%		
11.	NOVEMBER	27	20	0.259259	26%		
12.	DECEMBER	22	20	0.090909	9%		
	Ν	IAPE		0.137335	14%		

Predicting the Increase in Early Marriages During the COVID-19 Period Using the Single Exponential Smoothing Method (Case Study: Department of Population and Civil Registration in Medan City)

Alpha (α)	MAPE	MAPE %			
0.1	0.231483	23%			
0.2	0.181002	18%			
0.3	0.137335	14%			
0.4	0.097216	10%			
0.5	0.080625	8%			
0.6	0.078016	8%			
0.7	0.090582	9%			
0.8	0.096811	10%			
0.9	0.088854	9%			

Table 9. Determination of the Minimum Error Alpha Value

Table 10. Interpretation of MAPE Values

No	MAPE value	Information		
1	<10%	Very accurate		
2	10-20%	Good		
3	20-50%	Reasonable		
4	>50%	No accurate		

Solution :

From marriage data early the 12 periods . _ So will foreseen 13th period onwards . Single Exponential Smoothing Method (with alpha = 0.6)

based on category MAPE value then got alpha value which is very accurate For prediction that is the lowest percentage error its (0.6).

Ft+1 = α Xt + (1- α)Ft

```
\begin{array}{l} \mbox{Case male :} \\ \mbox{F1} = 10 \\ \mbox{F2} = (0.6^* \ 9) + (\ 0.4^*10) = 9.4 \\ \mbox{F3} = (0.6^* \ 11) + (\ 0.4^*9.4) = 10.36 \\ \mbox{F4} = (0.6^* \ 12) + (\ 0.4^*10.36) = 11.344 \\ \mbox{F5} = (0.6^* \ 12) + (\ 0.4^*11.344) = 8.7376 \\ \mbox{F6} = (0.6^* \ 16) + (\ 0.4^*8.7376) = 13.09504 \\ \mbox{F7} = (0.6^* \ 25) + (\ 0.4^*13.09504) = 20.23802 \\ \mbox{F8} = (0.6^* \ 17) + (\ 0.4^*20.23802) = 18.29251 \\ \mbox{F9} = (0.6^* \ 23) + (\ 0.4^*18.29251) = 21.11808 \\ \mbox{F10} = (0.6^* \ 15) + (\ 0.4^*17.44723) = 23.17889 \\ \mbox{F12} = (0.6^* \ 21) + (\ 0.4^*23.17889) = 21.87156 \\ \end{array}
```

```
\begin{array}{l} \text{Case}:\\ \text{F1}=27\\ \text{F2}=(0.6^{*}\ 21)+(\ 0.4^{*}27)=23.4\\ \text{F3}=(0.6^{*}\ 13)+(\ 0.4^{*}23.4)=17.16\\ \text{F4}=(0.6^{*}\ 13)+(\ 0.4^{*}17.16)=14.664\\ \text{F5}=(0.6^{*}\ 9)+(\ 0.4^{*}14.664)=11.2656\\ \text{F6}=(0.6^{*}\ 17)+(\ 0.4^{*}11.2656)=14.70624\\ \text{F7}=(0.6^{*}\ 26)+(\ 0.4^{*}14.70624)=21.4825\\ \text{F8}=(0.6^{*}\ 19)+(\ 0.4^{*}21.4825)=19.993\\ \text{F9}=(0.6^{*}\ 51)+(\ 0.4^{*}19.993)=38.5972\\ \text{F10}=(0.6^{*}\ 37)+(\ 0.4^{*}38.5972)=37.63888\\ \text{F11}=(0.6^{*}\ 61)+(\ 0.4^{*}51.65555)=59.06222\\ \end{array}
```

FORECAST RESULTS FOR 2020						
		NUMBER	AGE			
No.	MONTH	OF MARRIAG ES	MAN - 19	WOMAN - 19		
1.	JANUARY					
2.	FEBRUARY	32	9	23		
3.	MARCH	27	10	17		
4.	APRIL	26	11	15		
5.	MAY	20	9	11		
6.	JUNE	28	13	15		
7.	JULY	42	20	22		
8.	AUGUST	38	18	20		
9.	SEPTEMBER	60	21	39		
10.	OCTOBER	56	18	38		
11.	NOVEMBER	75	23	52		
12.	DECEMBER	81	2 2	59		
	AMOUNT	4 85	1 74	311		

Table 11. Prediction Results of the Single Exponential Smoothing Method

Table 12. M APE Prediction of Single Exponential Smoothing Method

Comparison between Forecast Results for 2021 and Original Data for 2021									
		AGE							
	MONTH	MAN			Woman				
No		- 19	- 19	Comparis	- 19	- 19	Compariso		
140.		(Forecas	(Origina	on ((Divinati	(Origin	n (MAPE)		
		t	l Data)	MAPE)	on	al			
		Results)			Results)	Data)			
1.	JANUARY	-	10	-	-	21	-		
2.	FEBRUARY	9	10	10 %	23	23	0 %		
3.	MARCH	10	11	9%	17	15	13 %		
4.	APRIL	11	10	10%	15	14	7 %		
5.	MAY	9	9	0%	11	10	10 %		
6.	JUNE	13	17	24%	15	17	12 %		
7.	JULY	20	20	5%	22	26	15 %		
8.	AUGUST	18	17	6%	20	20	0 %		
9.	SEPTEMBER	21	24	13%	39	52	25 %		
10.	OCTOBER	18	18	0%	38	39	3 %		
11.	NOVEMBER	23	27	15%	52	61	15 %		
12.	DECEMBER	22	22	0%	59	64	9 %		
	AMOUNT	1 74	195	8 %	311	36 2	10 %		

 Table 13. MSE Prediction of the Single Exponential Smoothing Method

Comparison between Forecast Results for 2021 and Original Data for 2021										
		AGE								
	MONTH		MAN		Woman					
No		≤19	≤19	Comparis	≤19	≤19	Comparis			
110.		(Forecas	(Origina	on (M SE	(Forecas	(Origin	on (M SE)			
		t Result)	l Data))	t Result)	al				
						Data)				
1.	JANUARY	-	10	-	-	21	-			
2.	FEBRUARY	9	10	1	23	23	0			
3.	MARCH	10	11	1	17	15	-2			
4.	APRIL	11	10	-1	15	14	-1			
5.	MAY	9	9	0	11	10	-1			
6.	JUNE	13	17	4	15	17	2			
7.	JULY	20	20	0	22	26	4			

Predicting the Increase in Early Marriages During the COVID-19 Period Using the Single Exponential Smoothing Method (Case Study: Department of Population and Civil Registration in Medan City)

8.	AUGUST	18	17	-1	20	20	0
9.	SEPTEMBER	21	24	3	39	52	13
10.	OCTOBER	18	18	0	38	39	1
11.	NOVEMBER	23	27	4	52	61	9
12.	DECEMBER	2 2	22	0	59	64	5
	AMOUNT	1 74	195	21	311	36 2	51

3.5 Data Analysis Results

After analyzing the data above, we can predict the data using the Single Exponential Smoothing method

3.6 System testing

A number of the next stage become discussion in results study This is testing application and application

Metode Sin PREDIKSI KENAIKAN AKTRAT DAMPAK CO Kota Medan	le Exponential Smoothing	
	Sidday Long	
	UNERNAME V	
	(SUBMY)	
	([Copyright Universitian Segara, Design By Ahlt 2022. Medan, Sumattrea Unara, Indonesia	

Figure 3. Display of the Login Form

Selamat Datang Di Aplikasi Prediksi Menggunakan Metode SES

@Copyright Universitas Islam Negeri, Design By Aldi 2022 Moder Southern Deservice Information

Figure 4. Display of Form Menu

	etode Single Exponential Smoothing DISSI LENARGAN PERNIKAHAN DINI INIT DIAMPAK COVID-19 Medan		
MENU USIA d	III JENIS KELAMIN PERNIKAHAN DINI PREDIKSI	KELUAR	
DATA USIA da	n JENIS KELAMIN		
	URBA	JENE KELAMEN	AKSI
			19
	-19 Talson	LaboLabo	M
	-19 Talana	Perezpian	🖻 💼
-			
	@Copyright Universities Isla Modes: Second	m Negers, Design By Alds 2022	

Figure 5. Display of Age and Gender Forms

Metode Single Exponential Smoothing PREDICKY RENARIAN PERMICANAN DENI AKIBAT DAMPAK COVID-19 Kota Media

MENU USIA dan JENIS KELAMIN PERNIKAHAN DINI PREDI DATA PERNIKAHAN DINI BUAN DUK DUK DUK DUK

~		v		M
Januari	2020	1	30	🖻 🔳
Februari	2020	1	•	🖻 🔳
Maret	2020	1	11	🛅 🔳
April	2020	1	12	🛅 🔳
Mai	2020	1	,	🛅 🔳
Juni	2020	1	16	🖻 🔳
Juli	2020	1	15	🛅 🔳
Agustus	2020	1	17	🛅 🔳
September	2020	1	23	🛅 🔳
Clauber	2020	1	15	🛅 🔳
November	2620	1	27	🛅 🔳

Figure 6. Display of the Early Marriage Form

@Copyright Universitas Islam Negeri, Design By AMi 2022 Medan, Sumatera Utara, Indonesia

Figure 7. Display of the Prediction Form

D 214

6	Metode Single Exponential Smoothing									
DATA PERNIKAHAN DINI PREDIKSI										
PREI	DIKSI SES									
ID USIAI	DAN JENIS KELAM	N BULAN	TABUN	RMEAR	BULAN PREDOKSI	TAJEN PREDOKSI	AMLAH PREDOKSI	KENAKAN	AKS	
1		• •	2020						prediks	
	1.0	Tebruari	2020		Tehnani	2021	9.7	0.7		
	1	Maret	2020	11	Maret	2021	10.09	-4.91		
	1	April	2020	12	April	2021	10.643	-1.337		
	1	Mei	2000	7	Mei	2021	9.5643	2.5641		
	1	Zuni	2020	16	Juni	2021	11.49487	-4.50513		
	1	Juli	2020	15	Juli	2021	12.546409	-2.453591		

@Copyright Universitas Islam Negeri, Design By Aldi 2022 Madan, Sumaters University Indonesia

Figure 8. Display of the User Prediction Form

3.8 Application

The application of this system is to predict the number of early marriages for men and women, so that the government can make preparations to deal with and overcome cases of early marriage in the city of Medan.

4. CONCLUSION

Based on the discussion of the results and analysis chapters that have been carried out, the following conclusions can be drawn:

By looking at and using data on early marriages in the previous period, the Population and Civil Registration Service can predict the increase in early marriages due to the impact of COVID-19 in the city of Medan.

By using early marriage data in the previous period and using the formula from the single exponential smoothing method, the single exponential smoothing method can be applied to predict the increase in early marriage.

By using web programming and the MySQL database as a data storage medium, it can produce an application to predict the increase in early marriage due to the impact of COVID-19 in the city of Medan using the single exponential smoothing method.

THANK-YOU NOTE

Thank you to those who have supported the implementation of this research.

REFERENCE

- [1] Andikos, A. (2019). Designing Interactive Multimedia Applications as Learning Media for Animal Recognition in Islamic Kindergarten Bakti 113 Koto Salak. Sakinah Journal, 1(1), 34-49.
- [2] Arfianto, FR, & Nugrahanti, F. (2019, November). Web-Based Housing Sales Application Design at Cv. Grand Permata Residence Magetan. In *Proceedings of the National Seminar on Information and Communication Technology (SENATIK)* (Vol. 1, No. 1, pp. 174-179).
- [3] Hanif, A., & Hadi, A. (2020). Evaluation of Information Technology Governance in the Office of Communication and Informatics Using the Cobit 5 Framework. *JST (Journal of Science and Technology)*, 9 (1), 94-101.
- [4] Hayami, R., & Oktaviandi, I. (2021). Application of the Single Exponential Smoothing Method in Bed Sheet Sales Predictions. *Journal of CoSciTech (Computer Science and Information Technology)*, 2 (1), 32-39.
- [5] Kurniawati, N., & Sari, KIP (2020). Determinant Factors Triggering the Occurrence of Early Marriage in Teenagers. *Journal of Nursing*, 13 (1), 12-12.
- [6] Nurfadilah, IH, Pertiwi, FD, & Prastia, TN (2021). Description of Early Marriage to Pus (Couples of Reproductive Age) in Pasir Jaya Village, West Bogor District in 2019. *Promoter*, *4* (4), 322-328.
- [7] Pakpahan, HS, Basani, Y., & Hariani, RR (2020). Prediction of the Number of Poor Population in East Kalimantan Using Single and Double Exponential Smoothing. inform. Mulawarman J.Ilm. Computing Science, 15(1), 47-51.
- [8] Rahmasari, T. (2019). Designing a Merchandise Inventory Accounting Information System at a Happy Department Store Using Php and Mysql. *@is The Best: Accounting Information Systems and Information Technology Business Enterprise*, 4 (1), 411-425.

- [9] Rosa, DU, Alan, MS, Wulandari, H., & Ramadhan, S. (2019). The exponential smoothing method for projecting the number of poor people in West Nusa Tenggara. *Journal of Thought and Research in Mathematics Education (JP3M)*, 2 (1), 42-53.
- [10] Sudibyo, NA, Iswardani, A., Septyanto, AW, & Wicaksono, TG (2020). Inflation Prediction in Indonesia Using the Moving Average Method, Single Exponential Smoothing and Double Exponential Smoothing. *Lebesgue Journal: Scientific Journal of Mathematics Education, Mathematics and Statistics*, 1 (2), 123-129.