

DIACRITIC-AWARE ALIGNMENT AND CLASSIFICATION
IN ARABIC SPEECH: A FUSION OF FUZTPI AND ML

MODELS

Adel Sabour1, Abdeltawab Hendawi2, and Mohamed Ali1

1 University of Washington, Tacoma, USA

2 University of Rhode Island, USA
Email:1 sabour@uw.edu , 2 hendawi@uri.edu, 3 mhali@uw.edu

ABSTRACT

This paper presents the Quran Speech Recognition (QRSR) system, achieving
alignment and classifi- cation accuracies up to 96%. The system is designed to
advance Arabic Automatic Speech Recognition (ASR) and Text-to-Speech (TTS)
by focusing on the Arabic diacritic-annotated text. We address the limitations of
existing Arabic ASR systems and introduce the Fuzzy Text Alignment and Rule-
based Classifier (FTARC) for segmenting audio files and aligning text. The
FuzTPI algorithm is integrated with Machine Learning models like Naive Bayes,
Support Vector Machine, and Random Forest. This research aims to generalize
the findings for broader Arabic text and contribute to an expanded audio
dataset, thereby enhancing Arabic NLP and speech recognition capabilities.

Keywords: The Quranic Arabic Annotated text, Machine Learning,
Classification algorithms, Audio segmentation, Text-audio alignment, Speech
Recognition.

1. INTRODUCTION

Speech recognition is an essential component of Natural Language Processing
(NLP) that converts spoken language audio into written [31]. On the other hand,
Text-to-Speech (TTS) synthesizes spoken language from written text [9]. These
speech components involve audio segmentation, where the soundtrack is split into
phonemes, words, and sentences [32]. Additionally, audio-to-text alignment aims
to synchronize the audio files with the corresponding text, creating a reliable
audio-text dataset [3]. Various models and systems have shown promising results
in the domain of Arabic speech recognition; however, their focus does not
encompass diacritics. This limitation is primarily attributed to the lack of
accessible datasets containing diacritized Arabic texts. Hence, the primary
motivation behind our research endeavors is to address this challenge and explore
potential solutions.
This paper introduces the Quran Speech Recognition (QRSR) system. Its name is

JISTech (Journal of Islamic Science and Technology)

JISTech, 8(2), 169-191, Juli-Desember 2023

ISSN: 2528-5718

http://jurnal.uinsu.ac.id/index.php/jistech

mailto:sabour@uw.edu
mailto:hendawi@uri.edu
mailto:mhali@uw.edu

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

170

derived from the Qur’an, as it utilizes audio recitations of the Qur’an in Arabic as
the foundation for its operations. The QRSR focuses on enhancing Arabic
Automatic Speech Recognition (ASR) and TTS through the preparation of a
diacritic Arabic text-audio dataset. The idea revolves around using the VAD (Voice
Activity Detection) algorithm to divide audio files based on areas of silence [25].
The content of these audio files is then processed using available Speech
Recognition systems. The available Arabic ASR systems cannot handle more than
the second level of Arabic (see Figure 1). As shown in Figure 1, existing speech
recognition systems (Amazon Transcribe, Google Speech-to-Text, and MS Azure
Speech-to-text) produce erroneous results and fail to support diacritical
characters.
After obtaining ASR transcripts, alignment is done with fifth-level Arabic text that
includes diacritical marks. However, comparing texts with different levels of
Arabic and containing errors poses challenges for the classification process
(determining the position of sound in relation to the text) and the alignment
process (identifying each audio file and its affiliation with the text). The goal is to
provide Audio files aligned with Arabic diacritic- annotated text that supports
Speech Recognition and Text-to-Speech (TTS) systems. This support aims to
handle Arabic diacritic-annotated text, which is not addressed by existing Arabic
ASR systems. To address these challenges, we proposed a Fuzzy Text Alignment
and Rule-based Classifier (FTARC) approach. This approach offers a practical
solution for segmenting audio files, aligning texts, and classifying based on
predefined labels. This approach achieves an accuracy rate of up to 90.78%
according to our testbed. To further improve accuracy, we integrate the FuzTPI
algorithm, initially used in FTARC, with Machine Learning (ML) models. We
examined the effectiveness of several Machine Learning (ML) algorithms,
including Naive Bayes [15], Support Vector Machine (SVM) [20], and Random
Forest [27], for enhancing the classification of Arabic texts. Integrating FuzTPI
with ML models significantly enhances the efficiency of the alignment-driven
classification process. Among the four models implemented, the FuzTPI- Random
Forest model achieves the highest accuracy, reaching 96%.

Figure 1: Errors and lack of support for diacritical characters in Arabic speech
recognition.

The proposed approach, which combines fuzzy text alignment, and integration
with ML models, aims to improve Speech Recognition and TTS systems to support
the Arabic diacritic-annotated text. In this part of the research, the Qur’an serves

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

171

as a case study, utilizing the availability of Quranic diacritic-annotated text and
audio recitations. However, the generalization of the work to the general Arabic
text is one of our goals.
The contributions of this paper can be summarized as follows:

• Introduction of the FuzTPI algorithm, which enhances ML models and
improves the alignment-driven classification process in Arabic speech
recognition.

• Development of the Quran Speech Recognition (QRSR) system, utilizing
Quran audio and text to advance Arabic speech recognition and contribute
to natural language processing (NLP) systems.

• Training and fine-tuning classification algorithms, including ML models, to
classify the un-diacritic Automatic Speech Recognition (ASR) transcript into
subsentences aligned with diacritic-annotated Arabic sentences.

• Alignment of segmented audio with diacritic-annotated Arabic text
representations using existing Speech Recognition systems, addressing the
challenge of diacritic-aware recognition not being supported by current
Arabic Speech Recognition systems.

• Application of FuzTPI-Random Forest to boost the performance of the
QRSR system, achieving an accuracy rate of 96%.

• Contribution to the development of an expanded textual audio dataset,
offering potential enhancements for Arabic speech recognition on a broader
scale.

The rest of this paper is structured as follows: Section 2 reviews relevant work in
three main areas. Section 3 outlines our QRSR system. Section 4 introduces our
FTARC method. Section 5 discusses the fusion of algorithms for improved speech
classification. Section 6 presents performance evaluations. Finally, Section 7
offers conclusions and future directions.

2. RELATED WORK

This section surveys research in three key areas: Arabic text classification, Arabic
speech recognition, and Quranic speech recognition. Each area presents unique
challenges and advancements that are relevant to our study.

a. State-of-the-Art Arabic Speech Recognition

The study of Aldarmaki and Ghannam (2023) [2] investigates diacritic recognition
in Arabic ASR systems. It addresses the problem of ASR models not producing full
diacritization due to the absence of diacritical marks in existing speech corpora.
This research is relevant to our work on diacritic recognition. However, our
approach incorporates the Fuzzy Text Alignment and Rule-based Classifier
(FTARC), targeting more specific challenges like text-audio alignment.
Research of Humayun et al. (2023) [12] focuses on dialect classification in Arabic
speech. This research is relevant to our work due to its focus on classifier
combination. Yet, our research narrows down to aligning Arabic diacritic-
annotated text, making it more specialized.
The paper Qasim and Abdulbaqi (2022) [23] reviews Arabic speech recognition,
emphasizing the need for advanced Arabic ASR systems. Our research contributes
by specifically addressing text-audio alignment and diacritic annotation.

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

172

b. Speech Recognition of the Quranic Research

In Larbi (2013) [18], researchers focused on phonemic search in the Quran for
Hafs’s Riwayh. The methodology we employ yields a faster response time and
higher accuracy, thanks to our FTARC approach.
In Muhammad et al. (2010) [22], they propose a solution to measure recitation
accuracy. Their dataset and metrics differ from ours, as we employ multiple
classifiers and algorithms for a more comprehensive evaluation.

c. Arabic Text Classification and Speech Recognition

Research AboAlnaser (2019) [1] focuses on text classification methods for Arabic
documents. Our approach is more targeted and might benefit from the
standardization efforts they discuss.
The research Wahdan et al. (2020) [29] presents a systematic review of Arabic text
classification. Our research targets unique text-versus-text classification, serving
as a guidepost for neural networks and evaluation metrics.
Research Bhogale et al. (2023) [6] proposes a framework for aligning long audio
segments with their corresponding transcriptions. We specialize in short
segments with diacritical marks, offering a distinct methodology.
Research Sundus et al. (2019) [28] employs deep learning for Arabic text
classification. While it shares classification as a common theme, our research
targets nuanced textual comparisons and therefore requires a distinct
methodology.

3. QRSR SYSTEM: METHODOLOGY AND KEY OPERATIONS

The QRSR System objective is to segment and align Arabic audio with diacritic-
annotated text. This process aims to create a substantial dataset of diacritics in
Arabic audio-text pairs. The resulting dataset will serve as a valuable resource to
enhance and improve diacritic-aware ASR and TTS systems. The system is
comprised of six modules, as depicted in Figure 2.
We start by preparing our dataset that has diacritic-annotated text (at the 5th level
of Arabic annotation) along with its corresponding audio recitations as audio files.
This dataset serves as a resource for model training and evaluation purposes.
Audio files are usually of long duration, which hinders processing and aligning
based on sentences. The audio files are segmented into smaller audio clips based
on detected periods of silence by using Voice Activity Detection, or VAD,
algorithm [10]. Each audio clip can represent a sentence, part of a sentence, or
several sentences the reciter connected together in one connected recitation. Each
audio clip is processed by one of the available ASR systems, specifically the Google
Cloud Speech-to-Text API, to generate a textual transcript referred to as “ASR
Transcript”. The ASR transcript produced by current ASR services is featured by
two things: (a) the ASR transcript without diacritic letters and (b) has a low degree
of accuracy and shows several errors in the Arabic speech (as shown in figure 1).
We align the generated ASR transcript to the original text (i.e., diacritic-
annotated text) that we have for the audio files. A set of models is trained to
determine the alignment between the diacritic-annotated sentence and the ASR
transcript. The architecture of the QRSR System is illustrated in Figure 2 and is

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

173

discussed in the following subsections.

Figure 2: The architecture of Arabic speech to diacritic-annotated text
alignment system.

The upcoming six subsections will provide detailed explanations of these modules.
However, the system’s overall concept can be summarized as follows.

3.1 To be Aligned Audio-Text Dataset

Arabic audio files and their corresponding texts are collected to establish a dataset.
Quranic texts and phonetics are chosen for their accurately written diacritical
letters and precise pronunciation. The dataset comprises 9,596 audio files and
records. All audio files utilized in the dataset are high-quality recordings without
any noise interference. The noise interference is not within the scope of your
study. The label indicates the alignment of the ASR transcript of the audio file with
the verse. The labels specify the position of the reading within the verse, such as
the beginning, middle, or end. The dataset is divided into a 70% training set (6,715
records), a 15% test set (1,442 records), and a 15% validation set (1, 439). We used
the validation dataset to fine-tune the settings that control our models, which we
refer to as hyperparameters. The process of adjusting these hyperparameters is
important in achieving the best performance from our models. The division of the
dataset is performed separately for each label to ensure a fair representation of
each label in both the training and test data. This approach ensures that each label
is adequately represented in both sets.

Table 1: Labels alignment and unalignment cases between audio and text.
Label Explanation
1 FAFV FullAudioFullVerse: The entire audio file corresponds to a

complete verse.
2 VPOA VersePartOfAudio: The audio contains a complete verse along

with other verses.

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

174

3 VPOEA VersePartOfEndAudio: The complete verse is at the end of the
audio, which also
includes other verses before it.

4 PVLP PartialVerseLastPartRecited: The audio contains a portion
of the verse, specif-
ically the last part of it.

5 PVNF PartialVerseNotFinished: The audio contains a portion of the
verse but does not
include the last part of it.

6 Uncertain Uncertain: The text extracted from the audio is unclear
regarding its association
with a verse. However, there is still a low similarity ratio.

7 ANR AudioNotRecognized: The audio file content is unidentifiable
and therefore ex-
cluded from the classification process. It was not included in the
dataset from the beginning.

8 UA UnspecifiedAudio: The audio could not be linked to the verse.
9 ANAV AudioNotAVerse: This audio does not represent a specific

verse. It may contain
opening or closing words unrelated to any verse. As a result, it is
excluded from the classification process since it requires
comparison with all verses, rather than a single classification.

10 MA MissingAyah: We could not establish a link between this verse
and any audio files.

The sentences or verses display variations in length. Longer sentences may be read
in parts, where one long sentence corresponds to multiple audio clips separated
by periods of silence. On the other hand, shorter sentences may be recited together
without periods of silence, resulting in one audio clip. This variation introduces
challenges in segmenting and aligning the audio at the sentence level. To address
this, during the dataset preparation phase, we carefully label each audio clip based
on whether it contains a complete sentence, a partial sentence, multiple sentences,
or falls into other categories. This labeling process involves a manual review of
both the audio clips and their corresponding text. The resulting labels are
summarized in Table 1.
To gain insights into the label representation in the collected dataset, we assess
their distribution, and a bar chart is given in Figure 3. The x-axis represents the
class labels and the y-axis represents the frequency of each label in the dataset.
The preparation of the training and evaluation dataset involves a semi-automatic
process of comparing and labeling the ASR transcript with the comparable text.
The system streamlines text processing and generates ASR transcripts, while also
assisting with straightforward label assignments. An example of a straightforward
label is “AudioNotRecognized,” which indicates that the content of an audio file
cannot be recognized. For the remaining labels, manual data labeling is
conducted.
During manual data labeling, we encountered 10 labels, which are summarized in
Table 1. These labels demonstrate the alignment of the text with the corresponding

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

175

audio content. To create the training and evaluation data set, we select some
sentences and audio clips from the full data set such that the labels are equally
represented in the training data set. That is to prevent the models from being more
inclined to predict the majority label than the minority labels [4].

Figure 3: Labeling Distribution in the Dataset.

3.2 Audio Segmentation Module

We obtain the audio files of the Quran recitation from various sources on the web.
These audio files are recorded over the years for the purpose of listening to the
Quran recitations and not for the purpose of computer-aided audio processing.
The widely-available audio files contain the recitations of the chapters of the
Quran. Such lengthy audio files need to be segmented into smaller audio clips that
can be matched and aligned to sentences of the corresponding text. The goal of the
Audio Segmentation Module is to divide the audio file into smaller clips based on
detected periods of silence in the audio track.
The segmentation process is accomplished through Voice Activity Detection
(VAD) algorithms that detect periods of silence [10]. In this module, we use a
segmentation algorithm [21] that distinguishes between silence and non-silence
segments by analyzing the amplitude levels. The algorithm dynamically utilizes a
variable amplitude threshold value to differentiate silence from non-silence. This
segmentation algorithm is particularly suitable for audio with natural pauses, as
observed in Quranic recitation. The output of this module is segmented into small
audio clips obtained by splitting long audio files according to periods of silence.

3.3 Speech Recognition Module

We utilize speech recognition technologies, specifically the Google Speech-to-Text
API, to convert audio files into text only, and we refer to the output as the ASR
transcript. The ASR transcript that is generated by current systems is not perfect
as it lacks diacritics and contains conversion errors. However, it is considered one
step in the direction of converting speech into text. This ASR transcript is then
used to create the ground truth and is also sent to the Audio-To-Text Alignment
module for additional processing. The workflow of the process is depicted in
Figure 2.

3.4 Annotation Level Reduction Module

The Quranic text is written in annotation fifth-level Arabic, while the ASR

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

176

transcript is in second-level Arabic (as shown in table 2). The difference in writing
annotation levels poses challenges to comparing these texts. Additionally, the
Quranic text follows the Ottoman Drawing Style (ODS) in its writing. This ODS
style results in variations in certain characters compared to the standard Arabic
writing. To address this, we developed a module that reduces the annotation level
for comparisons. The module generates a comparable text, a second- level Arabic
text derived from the Quranic diacritic-annotated text. By using the comparable
text, it becomes easier to compare the original diacritic-annotated text (after
reducing its annotation level from the fifth level to the second level) with the ASR
transcript at the same level of annotation.

Table 2: Levels of details and annotations in the Arabic writing styles.

Text processing methods are employed to adjust the annotation level for
improved comparability. The following steps are taken:

• Tokenization: The text was divided into individual sentences/verses.
• Text cleaning: The diacritical letters are removed and adjustments are

made to the Ottoman text to match standard texts.
• Noise removal: Unpronounceable signs, such as verse numbering, are

removed from the texts for better suitability in comparisons.
The algorithm 1 addresses the challenge of comparing diacritic-annotated Quranic
text written in annotation fifth-level Arabic with ASR transcripts written in
second-level Arabic. To facilitate this comparison, a module has been developed
that reduces the annotation level for better comparability. The algorithm consists
of four steps.
Step 1: Transforming ODS to Classical Arabic Fifth Level In this step, the
algorithm converts the Quranic text from Ottoman Drawing Style (ODS) to
Classical Arabic (CA) fifth level. The algorithm iterates through each character in
the input text and checks if it exists in the ArabicAnnotationLevelMap, which
holds the mapping between ODS letters and CA fifth-level letters. If a match is
found, the corresponding CA fifth-level letter is appended to the
ConvertedCAText. Otherwise, the character is appended as it is. This process
ensures that the text is transformed to the desired annotation level.
Step 2: Tokenization The algorithm tokenizes the diacritic-annotated text into
individual verses. It uses the DiacriticSentenceTokenizer function to split the text
into tokenized diacritic sentences, which are stored in the
TokenizedDiacriticSentence list.
Step 3: Removing Diacritical Letters In this step, the algorithm removes
diacritical letters from the tokenized sentences. It iterates through each sentence
in the TokenizedDiacriticSentence list and removes any characters present in the
ArabicDiacriticMarks list. This ensures that only the base letters remain, making
the text suitable for comparison. The resulting cleaned sentences are stored in the
TokenizedSentence list.

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

177

Step 4: Noise Removal The algorithm performs noise removal to improve the
suitability of the text for comparison. It iterates through each sentence in the
TokenizedSentence list and applies a series of regular expression-based cleanup
patterns. These patterns target specific noise elements present in the text, such as
verse numbering, and remove them. The cleaned sentences are stored in the
ComparableSentence list.
Finally, the algorithm outputs the ComparableSentences list, which contains the
reduced, cleaned, and com- parable text in the second-level Arabic format. This
output can be easily compared with the ASR transcript for further analysis or
evaluation.

3.5 Trained Classifier

The classification process involves categorizing and labeling the data by analyzing
the alignment patterns between the ASR transcript, which represents the written
form of the speech, and the comparable text, which represents the simple form of
the diacritic annotated text. Ultimately, the classification is applied to the audio
and diacritic annotated text, leveraging the alignment patterns between the ASR
transcript and the comparable text. We aim for the classifier model to learn from
the provided data, including the erroneous text, and make predictions based on it.
Hence, we refrained from correcting the linguistic errors present in the ASR
transcript. The classifier is expected to account for the presence of errors and still
perform effectively in our QRSR system. Arabic ASR transcripts often contain
errors in the inferred text from audio. Table 3 provides examples of challenges

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

178

encountered during the classification process caused by the ASR errors.
During the inference phase, the data is obtained from the comparable text from
the Annotation Level Re- duction Module and the ASR transcript from the Speech
Recognition Module. Data is classified based on the labels provided in table 1. The
first five labels in table 1 demonstrate an alignment relationship between the audio
and text, showcasing different types of alignment. These labels represent various
alignment relations, such as the full audio file corresponding to a full verse (FAFV)
and the verse being a part of the audio file (VPOA), among others. Figure 4
provides a visual representation of the first five labels.

Table 3: Some Cases that Reflect the Challenges in Text Classification.

The last five labels in table 1 demonstrate different cases for an unalignment of the
text and the ASR transcript. These labels involve cases like audio content not
recognized (ANR), audio not corresponding to a verse (ANAV), and others.

Figure 4: Visual representation of alignment relationships between audio and

text.

3.6 Audio-to-Text Alignment Module

The module has two purposes: aligning Arabic speech to diacritic-annotated text
and preparing a dataset for enhancing Arabic Speech Recognition. The inputs are
the ASR transcript, the comparable text, and the predicted labels. These inputs are
sent from the Trained classifier.

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

179

The Alignment Module retrieves the actual audio files corresponding to the ASR
transcript and the Arabic diacritical text corresponding to the comparable text. If
necessary, the audio files are merged to match a full sentence. Finally, the module
combines the audio files with their corresponding diacritical text, resulting in a diacritic
Arabic audio-text dataset.

The Audio-to-Text Alignment Algorithm 2 consists of several steps to collect system
inputs, align audio and text, and generate the final output.
Step 1: Algorithm Inputs The algorithm takes two inputs: ASRTranscriptList and
ComparableTextList. ASRTranscriptList represents the ASR transcript obtained from
the Speech Recognition Module, while Compara- bleTextList represents the comparable
text obtained from the Annotation Level Reduction Module. These inputs serve as the
foundation for aligning audio and text.
Step 2: Label Prediction The algorithm iterates through each pair of ASRTranscript
and ComparableText in their respective lists. For each pair, it predicts the labels by
calling the predictLabels function, which utilizes the Classification Module.
Step 3: Retrieving Audio Files and Diacritical Text The algorithm retrieves the
actual audio files corresponding to each ASRTranscript by calling the fetchAudioFiles
function. Similarly, it retrieves the Arabic diacritical text corresponding to each
ComparableText by calling the fetchDiacriticalText function.
Step 4: Building Audio and Text Lists The algorithm initializes two empty lists:
audio list and text list. For each pair of ASRTranscript and ComparableText, it pushes
the corresponding diacritical text into the text list. Similarly, it combines the audio files
by calling the combineAudioFiles function, which merges the audio files if necessary, and
pushes the resulting audio file into the audio list.
Step 5: Generating the Diacritic Arabic Audio-Text Dataset The algorithm
returns the diacritic Arabic audio-text dataset by calling the mergeAudioAndText
function, which takes the audio list and text list as inputs. This function combines the
audio files with their corresponding diacritical text, resulting in a diacritic Arabic audio-
text dataset ready for further analysis, training, or evaluation. By aligning audio and text,
the algorithm facilitates various downstream tasks and applications, such as training
speech recognition models, improving language understanding, and enabling audio
search and retrieval.

4. FUZZY TEXT ALIGNMENT AND RULE-BASED CLASSIFIER (FTARC)

We have developed a Fuzzy Text Alignment and Rule-based Classifier (FTARC). FTARC
is composed of two algorithms. The first algorithm is a Fuzzy Text Position Inference
(FuzTPI) Algorithm 3. This algorithm utilizes fuzzy matching techniques to generate

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

180

numerical indicators. These numerical indicators provide insights into alignment
patterns and the presence of text segments within each other. The second algorithm is a
rule-based classifier, which leveraging from the Fuzzy numerical indicators to classify the
texts. We aim to improve the accuracy of the classification process by utilizing FTARC.
In this section, we will discuss two key components: the FuzTPI Algorithm and the Rule-
based Classifier. We will explore how these algorithms contribute to the task at hand.
Furthermore, we will present and analyze the results obtained from FTARC.

a. Fuzzy Text Position Inference (FuzTPI) Algorithm

The proposed FuzTPI algorithm facilitates the comparison of two texts of varying length
and content by leveraging fuzzy matching techniques [7, 11].

The algorithm provides numerical indicators that reflect the text alignment patterns. This
algorithm depends on two main functions to determine these numerical indicators, fuzzy
full-text matching and fuzzy partial-text matching.
The fuzzy full-text matching function, denoted as Fuzzy(longerText, shorterText), can be
defined as equation (1). This equation calculates the similarity between a longer text and
a shorter text [16]. It considers every possible pair of characters between the two texts
and computes the membership value (µ) indicating their degree of similarity. The
numerator sums up these membership values for all character pairs, capturing the overall
similarity. The denominator normalizes the result by dividing the numerator by the
maximum length between the longer and shorter texts. This normalization accounts for
differences in text length when comparing them.

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

181

The fuzzy partial-text matching function, denoted as PartialFuzzy(longerText,
shorterText), can be defined as equation (2). This equation focuses on the similarity
between a longer text and a shorter text when the shorter text is a part of the longer text.
Similar to the equation (1), it calculates the membership value (µ) for each pair of
characters between the longer and shorter texts. The numerator sums up these
membership values, indicating the overall similarity. However, in this case, the
denominator is the length of the shorter text itself. This normalization allows for a direct
comparison of the similarity between the shorter text and the corresponding part of the
longer text [16].

where:

• longerText[j] represents the j-th character in longerText.
• shorterText[i] represents the i-th character in shorterText.
• µ(longerText[j], shorterText[i]) represents the membership value indicating the

degree of similarity be- tween longerText[j] and shorterText[i].
• |longerText| represents the total number of characters in longerText.
• |shorterText| represents the total number of characters in shorterText.

By using these equations (1, 2), the FuzTPI 3 provides numerical indicators that reflect
the alignment patterns between texts, capturing the degree of similarity between them.
Initially, the algorithm identifies the longest text and determines the alignment indicator,
which determines whether the text is part of the audio or vice versa. The algorithm
measures the matching degree of the shorter text at the beginning, end, and middle of
the longer text, providing insights into the relative positioning of the texts. Furthermore,
the algorithm determines the full and partial matching degree between the two texts.
Additionally, the algorithm counts the number of occurrences of the shorter text within
the longer text, providing further information about their presence and potential
repetitions. By offering these insights the fuzzy algorithm equips the classifier with
essential alignment data.

b. The Rule-based Classifier

The rule-based classifier starts by retrieving a list of Arabic sentences, along with their
corresponding audio files and ASR transcripts. The system then initializes relevant
variables and iterates through the lists. To ensure consistency, it applies text
normalization techniques to the input texts. Additionally, it utilizes the numerical
outputs generated by the Fuzzy Algorithms 3. Based on predefined cases outlined in
Table 4, the rule-based classifier classifies the data using these numbers.
The rule-based classifier, enhances the classification process, enabling the generation of
aligned diacritized Arabic texts and audio files. The purpose of this classifier is to assign
appropriate classifications to the data based on predefined rules and numerical fuzzy
outputs generated by the FuzTPI Algorithm 3.
Initially, the classifier retrieves a list of Arabic sentences along with their corresponding
audio files and ASR transcripts. To ensure consistency, the system applies text
normalization techniques to the input texts. The first set of conditions on table 4 focuses

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

182

on evaluating the availability of the ASR transcript and the degree of similarity between
the two texts. If the ASR transcript is not available or the full text and transcript exhibit
a high degree of similarity, the classifier returns specific labels indicating the alignment
status. Subsequent conditions take into account the alignment of partial text, considering
factors such as the alignment indicator and the presence of the last part of the text in the
transcript. Additional conditions build upon the previous classifications and consider the
degree of similarity between adjacent texts and ASR transcripts. These conditions aim to
capture nuances in the alignment process and ensure accurate classification.

Table 4: Rule-Based Conditions and Return Values.
Condition Return Value
ASRText is None ANR
FuzzyFullTextMatching > Threshold FAFV
FuzzyPartialMatching > Threshold and alignmentIndicator == 1
and IsLastPartInASR

VPOEA

FuzzyPartialMatching > Threshold and alignmentIndicator == 1
and not IsLastPartInASR

VSNF

FuzzyPartialMatching > Threshold and alignmentIndicator == 2
and IsLastPartInASR

PVLP

FuzzyPartialMatching > Threshold and alignmentIndicator == 2
and not IsLastPartInASR

PVNF

IsDataClassifiedBefore and NextTextFuzzyPartialMatching >
Threshold

Uncertain

IsDataClassifiedBefore and PreTextFuzzyPartialMatching >
Threshold

StepBackPreText()

IsDataClassifiedBefore and PreASRFuzzyPartialMatching >
Threshold

StepBackPreASR()

IsDataClassifiedBefore and IsPreASRPartOfText Uncertain
IsDataClassifiedBefore and PreTextFuzzyPartialMatching >
Threshold and IsLastPartInASR

PVLP

IsDataClassifiedBefore and PreTextFuzzyPartialMatching >
Threshold and not IsLastPartInASR

PVNF

IsDataClassifiedBefore and PreTextFuzzyPartialMatching <
Threshold

IncreaseSkippedASRCount(),
UA

not IsDataClassifiedBefore and FuzzyPartialMatching < Thresh-
old

IncreaseSkippedASRCount(),
ANAV

IsASRLimitExceeded MA

The final set of conditions handles cases where the ASR transcript is ignored beyond
predefined limits or when the alignment falls below the specified threshold. These
conditions further refine the classification process, accounting for specific alignment
scenarios. Based on the classifications received from the rule-based classifier, the system
merges the audio files into complete sentences that align with the list of Arabic sentences.
As a result, the system generates a structured output consisting of diacritized Arabic texts
accompanied by their corresponding audio files. The threshold used to accept the
agreement between ASR transcripts and Arabic text plays an important role in the FTARC
algorithm. Through experimentation on our dataset, we observed that different threshold
values affect the alignment accuracy differently. When the threshold is set above 80%,
the algorithm tends to lose sentences that are actually almost complete and similar. This
is due to ASR transcript errors, causing the convergence percentage to fall below 80%.
On the other hand, when the threshold is set at 70% or lower, the algorithm starts to
agree on similar sentences, but some words are missing, leading to incomplete
alignments. After conducting extensive experiments, we found that a threshold of 75%
strikes the right balance between capturing similar sentences and maintaining

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

183

completeness.

c. FTARC Performance

Figure 5: Confusion Matrix of FTARC Algorithm.

The performance evaluation of the FTARC showed an accuracy of 90.77%, precision of
91.96%, recall of 90.77%, and an F1 score of 90.59%. The high values for these metrics
indicate that the FTARC achieved a good level of accuracy in its classification results
when compared to the manually entered results.
Analyzing the confusion matrix in figure 5, it is evident that the FTARC classifier
exhibited accuracy in recognizing the majority of the classes (which appeared in the
diagonal elements). It demonstrated moderate accuracy in recognizing UA. This result
reflects its accuracy, which is 90.7%. These findings highlight the algorithm’s overall
success in classification, while also indicating potential areas for improvement in
accurately distinguishing between certain classifications.

5. FUSION OF FUZTPI ALGORITHM AND ML MODELS FOR IMPROVED

ARABIC SPEECH CLASSIFICATION

The high accuracy of FTARC is attributed to the FuzTPI Algorithm, which effectively
addresses typographical errors in the Arabic ASR transcript by generating fuzzy numbers
that indicate the degree of text present in the second text. While ML models outshine
rule-based models in their generalizability and applicability across different classification
tasks, rule-based models offer domain-specific solutions based on predefined rules and
conditions. In this section, we aim to leverage the strengths of both approaches by
integrating the FuzTPI Algorithm with ML models. This integration involves generating
fuzzy numbers using FuzTPI for the textual data and allowing ML models to learn from
these fuzzy numbers and their corresponding taxonomy, bypassing the need to directly
handle the ASR transcript with its errors. Figure 6 illustrates the integration of the
FuzTPI algorithm with the ML model. FuzTPI takes the ASR transcript and Arabic
comparable text as input, generating fuzzy numbers as output. The ML model solely uses
fuzzy numbers as input and produces labeling predictions.
This integration helps safeguard the ML model from unexpected errors in the Arabic ASR
transcript. Integration is done through a method for serializing and deserializing called
pickle [26]. This means the FuzTPI is “bundled” with the ML model in a way that it can
be deployed as one unit. By integrating FuzTPI with the ML model, we eliminate the need
to program or manage the fuzzy inference engine separately. Everything is handled
within the FuzTPI-ML Integration Unit.

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

184

Text classification has gained significant attention due to using it in a wide range of
applications [1, 14, 17]. In the classification task, ML models are widely utilized in various
applications [1, 17]. Popular ML models for text classification tasks such as Naive Bayes
(NB), Support Vector Machine (SVM), and Random Forest (RF). In this part, we will
present the results of applying the NB, SVM, and RF models when they learn directly
from the output of FuzTPI. By examining the performance of these ML models with fuzzy
numbers as input, we aim to assess their effectiveness in enhancing the alignment-driven
classification of Arabic speech.

Figure 6: Integration of FuzTPI with ML Model.

a. FuzTPI-Driven Naive Bayes

Naive Bayes is a widely used and versatile classification algorithm known for its
simplicity and efficiency [1]. By applying Bayes’ theorem, it determines the most probable
class for a given instance, making it particularly valuable in scenarios with limited
training data [10]. We utilize the MultinomialNB variant of Naive Bayes for text
classification tasks [30]. MultinomialNB is particularly effective in handling discrete
features such as word frequencies and counts. In our algorithm, we further optimize the
performance of MultinomialNB by employing GridSearchCV. The GridSearch is a
technique that systematically explores the hyperparameter space to identify the best
combination of parameters for the classifier [5]. This allows us to enhance the accuracy
and effectiveness of the text classification process.

FuzTPI-Driven Naive Bayes Performance:
The Naive Bayes is trained on the data generated from FuzTPI. The model performance
is evaluated on the testing dataset, and it achieved the performance measures: Accuracy
Ratio of 55.13%, Precision of 49.24%, Recall of 55.13%, and F1 Score of 50.55%. These
metrics assess the algorithm’s classification performance across our labels.
The confusion matrix in Figure 7 reveals that the FuzTPI-NB classifier struggles to
accurately recognize the “Uncertain” label, as indicated by the scattered predictions
across the matrix. Additionally, it completely fails to distinguish the MA class, classifying
all instances as PVNF. However, the classifier demonstrates relatively higher accuracy in
identifying the remaining classes compared to the average performance. Overall, the
FuzTPI-NB classifier achieves an average accuracy of 55%.

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

185

Figure 7: Confusion Matrix of FuzTPI-Driven Naive Bayes Algorithm.

b. FuzTPI-Driven SVM

SVM is a widely used supervised ML algorithm for classification tasks. The main objective
of SVM is to maximize the margin between different categories, creating a clear
separation between them [1, 17]. SVM identifies support vectors, which play a crucial role
in determining the boundaries between classes [17]. SVM can be applied to features
derived from textual data, such as word frequencies, n-grams, or other linguistic
characteristics. Therefore, we chose SVM to apply to the problem of Arabic diacritic-
annotated text. SVM performs well on datasets of small to medium sizes and is
particularly suitable for datasets with a moderate number of samples. We utilized TF-
IDF (Term Frequency-Inverse Document Frequency) vectorization [13], to transform the
text data into numerical features, allowing for analysis and modeling using SVM [19].

FuzTPI-Driven SVM Performance:

Figure 8: Confusion Matrix of FuzTPI-Driven SVM Algorithm.

The SVM is trained on the data generated from FuzTPI. The mode performance is

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

186

evaluated on the testing dataset, and it achieved the performance measures: Accuracy
Ratio of 95.42%, Precision of 95.78%, Recall of 95.42%, and F1 Score of 95.51%. These
metrics assess the algorithm’s classification performance across our labels.
The confusion matrix of the FuzTPI-SVM classifier in figure 8 reveals a distinct diagonal
line, indicating the high accuracy of its predictions. However, the classifier encounters
challenges in recognizing the “Uncertain” class. It also shows some errors in correctly
identifying the PVNF class. On the other hand, the classifier performs well in recognizing
the remaining classes, resulting in an accuracy rate exceeding 95.4%.

c. FuzTPI-Driven Random Forest

The Random Forest algorithm is a powerful learning algorithm widely used for
classification tasks. It leverages the predictions of multiple decision trees to enhance
accuracy [17]. We implemented the Random Forest algorithm, and employed grid search,
a technique that systematically explores different parameter combinations. Through grid
search, we identified the best parameters that resulted in the optimal configuration for
the Random Forest algorithm [24].

FuzTPI-Driven RF Performance:
The RF is trained on the data generated from FuzTPI. The mode performance is evaluated
on the testing dataset, and it achieved the performance measures: Accuracy Ratio of
95.90%, Precision of 96.51%, Recall of 95.90%, and F1 Score of 96.02%. These metrics
assess the algorithm’s classification performance across our labels.
The confusion matrix of the FuzTPI-RF classifier exhibits a diagonal line pattern,
indicating its high accuracy in classification. However, the classifier encounters
challenges in correctly recognizing the “Uncertain” class, as shown in figure 9.
Additionally, it demonstrates some errors in identifying the PVNF and PVLP classes.
Nevertheless, the classifier performs well in recognizing the remaining classes, resulting
in an accuracy rate approaching 95.9%.

Figure 9: Confusion Matrix of FuzTPI-Driven RF Algorithm.

6. RESULTS AND DISCUSSION

This section presents the performance evaluation results and a discussion of the
implemented classifiers. We compare the classifiers, analyze their performance, and
discuss the implications of our findings. Additionally, the performance metrics of the
Alignment process.

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

187

Analyzing Performance Measures: We present an analysis of the performance
measures according to the testing dataset, including Accuracy, Precision, Recall, and F1
Score, for a range of models used in Arabic speech classification. Analyzing the table 5,
we observe variations in the performance measures across the different models.

Table 5: Performance Comparison of Arabic Speech Classifiers
Classifier Accuracy Precision Recall F1 Score
FuzTPI-NB 55.13% 49.24% 55.13% 50.54%

FTARC 90.78% 91.97% 90.78% 90.60%

FuzTPI-SVM 95.42% 95.78% 95.42% 95.51%

FuzTPI-RF 95.90% 96.51 95.90 % 96.02%

The FuzTPI-NB achieved an accuracy of 55.13%. The FTARC classifier achieved an
accuracy of 90.78% and demonstrated high precision, recall, and F1 Score. The FuzTPI-
SVM model exhibited further improvement, with an accuracy of 95.42% and high
precision, recall, and F1 Score. Notably, the FuzTPI-RF model showcased the highest
performance among all classifiers, achieving an impressive accuracy of 95.90%. It also
displayed superior precision, recall, and an F1 Score of 96.02, indicating its robustness
in accurately classifying Arabic speech data. Note that the results of the FuzTPI-SVM and
the FuzTPI-RF models are very close, so there is no clear winner model between them.
The accompanying figure, Figure 10, visually represents the comparative analysis of
classifier performance. The bar chart reinforces the observations made in the table,
clearly illustrating the variations in performance measures among the models. Overall,
the results highlight the effectiveness of the FTARC, FuzTPI-RF, and FuzTPI-SVM
models in improving the classification accuracy of Arabic speech. These models leverage
advanced techniques and algorithms to enhance the alignment-driven classification
process, resulting in superior performance compared to traditional ML classifiers.

Class Difficulty Analysis:

Figure 10: Comparative Analysis of Classifier Performance.

Table 6: Comparison of Successful and Unsuccessful Predictions by Classifier.

Classifier FuzTPI-NB FTARC FuzTPI-SVM FuzTPI-RF

Correct 795 1309 1376 1383

Incorrect 647 133 66 59

In the analysis of classifiers’ performance, it is important to take into consideration the
challenging classifications encountered. This information is presented in Figure 11, which
provides insights into the number of correct and incorrect predictions made for each class
across all utilized classifiers.

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

188

Figure 11: Class Difficulty Analysis: Frequency of Correct and Incorrect Predictions.

Among the classes, FAFV, PVLP, and PVNF stand out as the easiest to classify, as they
have a high frequency of correct predictions and a low frequency of incorrect predictions.
This suggests that these classes possess distinct features that enable accurate
classification by the classifiers. On the other hand, the UA, and Uncertain classes
presented significant challenges, resulting in a higher number of incorrect predictions
compared to correct predictions. These classes are closely related to the texts with exhibit
limited similarity. For MA, after reviewing the data, it is found that the incorrect
predictions are all from FuzTPI-NB, and this is a point to improve the performance of
this model. Enhancing the detection and classification of these classes could lead to
substantial improvements in overall performance.

Analyzing Successful and Unsuccessful Classifications:
An analysis is conducted to assess the success and failure rates of the classifiers. Figure
12 provides clear visualizations of the distribution of successful and unsuccessful
predictions.
Based on the data in Table 6, we can observe that the FuzTPI-RF classifier achieved the
highest number of correct predictions with a total of 1,383. It is followed by the FuzTPI-
SVM classifier with 1,376 correct predictions and the FTARC classifier with 1,309 correct
predictions. The lowest number of correct predictions recorded by the NB classifier with
795.

Audio-Text Alignment Performance:
As in 2 of System Architecture, after obtaining the best Trained Classifier, we move to the
last stage, which is Audio-to-Text Alignment. The Alignment module takes input from
the winner-trained classifier, in our case FuzTPI-RF. Based on these classifications, it
begins to align the audio files against the texts, potentially combining audio files to form
complete verses. The final audio file is then linked to its Arabic diacritic-annotated text.

Figure 12: Graphical Analysis: Successful and Unsuccessful Classifications.

This module is based on the algorithm 2. To evaluate it, a dataset consisting of 1550 audio

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

189

files is created. Each file is annotated to identify whether it corresponds to a complete
verse, a part requiring merging, or the end of a verse, etc. This is essential to measure the
accuracy of the algorithm and facilitate error tracking, improvement, and measurement.
In the alignment process, the QRSR system achieved an accuracy of 95.61%, with an
alignment count of 1482 correct states and 68 incorrect states. The detailed performance
measures for alignment are summarized in Table 7.

Table 7: Performance Measures for Alignment
Alignment Performance Accuracy Precision Recall F1 Score

Value 95.61% 86.88% 96.42% 90.80%

The table 7 illustrates the overall effectiveness of the alignment module. An accuracy of
95.61% indicates that the vast majority of audio files are correctly aligned. The high recall
value of 96.42% suggests that most of the relevant audio files are correctly identified,
while the precision of 86.88% shows the proportion of true positive alignments among
the total positive alignments. The F1 score, a harmonic mean of precision and recall,
provides a comprehensive view of the model’s balance between precision and recall.

7. CONCLUSION AND FUTURE DIRECTIONS

This paper presented the QRSR system, its objectives, and the challenges it addresses.
We explored several Machine learning algorithms and proposed the FTARC approach to
enhance Arabic speech recognition. The evaluation results and discussion shed light on
the performance of the implemented classifiers, identified challenging classifications,
and highlighted the potential of incorporating the FTARC algorithm into other ML
techniques. The study introduced the Fuzzy Text Alignment and Rule-based Classifier
(FTARC) approach is proposed, achieving an accuracy rate of up to 90% in segmenting
and aligning audio files. We combined the FuzTPI algorithm and Machine Learning (ML)
models. This combination led to audio segmentation, text-audio classification, which
achieved up to 96% accuracy, and text-audio alignment, which achieved 95.61%. The
research used different classifiers, including Naive Bayes, Support Vector Machine
(SVM), and Random Forest. Among them, the FuzTPI-Random Forest model had the
highest performance. The results between FuzTPI-SVM and FuzTPI-RF are close,
indicating both models were effective. This research contributes to the advancement of
Arabic NLP systems, Arabic speech recognition systems, and segmentation/localization
techniques, particularly in the context of Quranic studies. Our research contributes also
to the development of an expanded textual audio dataset that can have a broader impact
on Arabic speech recognition systems.

REFERENCES
[1] Aboalnaser, S. A. (2019). Machine learning algorithms in arabic text classification: A

review. In 2019 12th international conference on developments in esystems
engineering (dese) (pp. 290–295).

[2] Aldarmaki, H., & Ghannam, A. (2023). Diacritic recognition performance in arabic
asr. arXiv preprint arXiv:2302.14022.

[3] Anguera, X., Perez, N., Urruela, A., & Oliver, N. (2011). Automatic synchronization of
electronic and audio books via tts alignment and silence filtering. In 2011 ieee
international conference on multimedia and expo (pp. 1–6).

[4] Baer, T., & Kamalnath, V. (2017). Controlling machine-learning algorithms and their
biases. McKinsey Insights.

[5] Belete, D. M., & Huchaiah, M. D. (2022). Grid search in hyperparameter optimization
of machine learning models for prediction of hiv/aids test results. International
Journal of Computers and Applications, 44 (9), 875–886.

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

190

[6] Bhogale, K., Raman, A., Javed, T., Doddapaneni, S., Kunchukuttan, A., Kumar, P., &
Khapra, M. M. (2023). Effectiveness of mining audio and text pairs from public data
for improving asr systems for low-resource languages. In Icassp 2023-2023 ieee
international conference on acoustics, speech and signal processing (icassp) (pp. 1–
5).

[7] Chan, A. P., Chan, D. W., & Yeung, J. F. (2009). Overview of the application of “fuzzy
techniques” in construction management research. Journal of construction
engineering and management, 135 (11), 1241–1252.

[8] Dean, D., Sridharan, S., Vogt, R., & Mason, M. (2010). The qut-noise-timit corpus for
evaluation of voice activity detection algorithms. In Proceedings of the 11th annual
conference of the international speech communication association (pp. 3110–3113).

[9] Dutoit, T. (1997). An introduction to text-to-speech synthesis (Vol. 3). Springer
Science & Business Media.

[10] Gu, J., & Lu, S. (2021). An effective intrusion detection approach using svm with
Naive bayes feature embedding. Computers & Security, 103, 102158.

[11] Herrera-Viedma, E., Cabrerizo, F. J., Kacprzyk, J., & Pedrycz, W. (2014). A review
of soft consensus models in a fuzzy environment. Information Fusion, 17 , 4–13.

[12] Humayun, M. A., Yassin, H., & Abas, P. E. (2023). Dialect classification using
acoustic and linguistic features in arabic speech. IAES International Journal of
Artificial Intelligence, 12 (2), 739.

[13] Islam, M. S., Jubayer, F. E. M., & Ahmed, S. I. (2017). A support vector machine
mixed with tf-idf algorithm to categorize bengali document. In 2017 international
conference on electrical, computer and communication engineering (ecce) (pp. 191–
196).

[14] Jiang, M., Liang, Y., Feng, X., Fan, X., Pei, Z., Xue, Y., & Guan, R. (2018). Text
classification based on deep belief network and softmax regression. Neural
Computing and Applications, 29, 61–70.

[15] Kim, S.-B., Han, K.-S., Rim, H.-C., & Myaeng, S. H. (2006). Some effective
techniques for naive bayes text classification. IEEE transactions on knowledge and
data engineering, 18 (11), 1457–1466.

[16] Kostanyan, A. (2017). Fuzzy string matching with finite automat. In 2017 computer
science and information technologies (csit) (p. 9-11). DOI:
10.1109/CSITechnol.2017.8312128

[17] Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., & Brown,
D. (2019). Text classification algorithms: A survey. Information, 10 (4), 150.

[18] Larbi, G. (2013). Voice search in the holy quran. In 2013 taibah university
international conference on advances in information technology for the holy quran
and its sciences (pp. 413–418).

[19] Liew, C. S., Abbas, A., Jayaraman, P. P., Wah, T. Y., Khan, S. U., et al. (2016). Big
data reduction methods: a survey. Data Science and Engineering , 1 (4), 265–284.

[20] Liu, Z., Lv, X., Liu, K., & Shi, S. (2010). Study on svm compared with the other text
classification methods. In 2010 second international workshop on education
technology and computer science (Vol. 1, pp. 219–222).

[21] Lokhande, N. N., Nehe, N. S., & Vikhe, P. S. (2012). Voice activity detection
algorithm for speech recog- nition applications. In Ijca proceedings on international
conference in computational intelligence (iccia2012), vol. iccia (Vol. 6, pp. 1–4).

[22] Muhammad, W. M., Muhammad, R., Muhammad, A., & Martinez-Enriquez, A.
(2010). Voice content matching system for quran readers. In 2010 ninth mexican
international conference on artificial intelligence (pp. 148–153).

[23] Qasim, H., & Abdulbaqi, H. A. (2022). Arabic speech recognition using deep
learning methods: Literature review. In Aip conference proceedings (Vol. 2398, p.
050029).

JISTech, 8(2), 169-191, Juli-Desember 2023 ISSN: 2528-5718

191

[24] Radzi, S. F. M., Karim, M. K. A., Saripan, M. I., Rahman, M. A. A., Isa, I. N. C., &
Ibahim, M. J. (2021). Hyperparameter tuning and pipeline optimization via grid
search method and tree-based automl in breast cancer prediction. Journal of
Personalized Medicine, 11 (10), 978.

[25] Ramırez, J., Segura, J. C., Benıtez, C., De La Torre, A., & Rubio, A. (2004). Efficient
voice activity detection algorithms using long-term speech information. Speech
communication, 42 (3-4), 271–287.

[26] Singh, P. (2021). Deploy machine learning models to production. Cham,
Switzerland: Springer.

[27] Sun, Y., Li, Y., Zeng, Q., & Bian, Y. (2020). Application research of text classification
based on random forest algorithm. In 2020 3rd international conference on
advanced electronic materials, computers and software engineering (aemcse) (pp.
370–374).

[28] Sundus, K., Al-Haj, F., & Hammo, B. (2019). A deep learning approach for arabic
text classification. In 2019 2nd international conference on new trends in computing
sciences (ictcs) (pp. 1–7).

[29] Wahdan, A., Hantoobi, S., Salloum, S. A., & Shaalan, K. (2020). A systematic review
of text classification research based on deep learning models in arabic language. Int.
J. Electr. Comput. Eng, 10 (6), 6629–6643.

[30] Xu, S., Li, Y., & Wang, Z. (2017). Bayesian multinomial Naive bayes classifier to text
classification. In Advanced multimedia and ubiquitous engineering: Mue/futuretech
2017 11 (pp. 347–352).

[31] Yu, D., & Deng, L. (2016). Automatic speech recognition (Vol. 1). Springer.
[32] Zhang, T., & Kuo, C.-C. J. (2001). Audio content analysis for online audiovisual data

segmentation and classification. IEEE Transactions on speech and audio processing,
9 (4), 441–457.

