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ABSTRACT 

 
This paper presents the Quran Speech Recognition (QRSR) system, achieving 
alignment and classifi- cation accuracies up to 96%. The system is designed to 
advance Arabic Automatic Speech Recognition (ASR) and Text-to-Speech (TTS) 
by focusing on the Arabic diacritic-annotated text. We address the limitations of 
existing Arabic ASR systems and introduce the Fuzzy Text Alignment and Rule-
based Classifier (FTARC) for segmenting audio files and aligning text. The 
FuzTPI algorithm is integrated with Machine Learning models like Naive Bayes, 
Support Vector Machine, and Random Forest. This research aims to generalize 
the findings for broader Arabic text and contribute to an expanded audio 
dataset, thereby enhancing Arabic NLP and speech recognition capabilities. 
 
Keywords: The Quranic Arabic Annotated text, Machine Learning, 
Classification algorithms, Audio segmentation, Text-audio alignment, Speech 
Recognition. 
 
1. INTRODUCTION 

Speech recognition is an essential component of Natural Language Processing 
(NLP) that converts spoken language audio into written [31]. On the other hand, 
Text-to-Speech (TTS) synthesizes spoken language from written text [9]. These 
speech components involve audio segmentation, where the soundtrack is split into 
phonemes, words, and sentences [32]. Additionally, audio-to-text alignment aims 
to synchronize the audio files with the corresponding text, creating a reliable 
audio-text dataset [3]. Various models and systems have shown promising results 
in the domain of Arabic speech recognition; however, their focus does not 
encompass diacritics. This limitation is primarily attributed to the lack of 
accessible datasets containing diacritized Arabic texts. Hence, the primary 
motivation behind our research endeavors is to address this challenge and explore 
potential solutions. 
This paper introduces the Quran Speech Recognition (QRSR) system. Its name is 
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derived from the Qur’an, as it utilizes audio recitations of the Qur’an in Arabic as 
the foundation for its operations. The QRSR focuses on enhancing Arabic 
Automatic Speech Recognition (ASR) and TTS through the preparation of a 
diacritic Arabic text-audio dataset. The idea revolves around using the VAD (Voice 
Activity Detection) algorithm to divide audio files based on areas of silence [25]. 
The content of these audio files is then processed using available Speech 
Recognition systems. The available Arabic ASR systems cannot handle more than 
the second level of Arabic (see Figure 1). As shown in Figure 1, existing speech 
recognition systems (Amazon Transcribe, Google Speech-to-Text, and MS Azure 
Speech-to-text) produce erroneous results and fail to support diacritical 
characters. 
After obtaining ASR transcripts, alignment is done with fifth-level Arabic text that 
includes diacritical marks. However, comparing texts with different levels of 
Arabic and containing errors poses challenges for the classification process 
(determining the position of sound in relation to the text) and the alignment 
process (identifying each audio file and its affiliation with the text). The goal is to 
provide Audio files aligned with Arabic diacritic- annotated text that supports 
Speech Recognition and Text-to-Speech (TTS) systems. This support aims to 
handle Arabic diacritic-annotated text, which is not addressed by existing Arabic 
ASR systems. To address these challenges, we proposed a Fuzzy Text Alignment 
and Rule-based Classifier (FTARC) approach. This approach offers a practical 
solution for segmenting audio files, aligning texts, and classifying based on 
predefined labels. This approach achieves an accuracy rate of up to 90.78% 
according to our testbed. To further improve accuracy, we integrate the FuzTPI 
algorithm, initially used in FTARC, with Machine Learning (ML) models. We 
examined the effectiveness of several Machine Learning (ML) algorithms, 
including Naive Bayes [15], Support Vector Machine (SVM) [20], and Random 
Forest [27], for enhancing the classification of Arabic texts. Integrating FuzTPI 
with ML models significantly enhances the efficiency of the alignment-driven 
classification process. Among the four models implemented, the FuzTPI- Random 
Forest model achieves the highest accuracy, reaching 96%.  

 

Figure 1: Errors and lack of support for diacritical characters in Arabic speech 
recognition. 

 

The proposed approach, which combines fuzzy text alignment, and integration 
with ML models, aims to improve Speech Recognition and TTS systems to support 
the Arabic diacritic-annotated text. In this part of the research, the Qur’an serves 
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as a case study, utilizing the availability of Quranic diacritic-annotated text and 
audio recitations. However, the generalization of the work to the general Arabic 
text is one of our goals. 
The contributions of this paper can be summarized as follows: 

• Introduction of the FuzTPI algorithm, which enhances ML models and 
improves the alignment-driven classification process in Arabic speech 
recognition. 

• Development of the Quran Speech Recognition (QRSR) system, utilizing 
Quran audio and text to advance Arabic speech recognition and contribute 
to natural language processing (NLP) systems. 

• Training and fine-tuning classification algorithms, including ML models, to 
classify the un-diacritic Automatic Speech Recognition (ASR) transcript into 
subsentences aligned with diacritic-annotated Arabic sentences. 

• Alignment of segmented audio with diacritic-annotated Arabic text 
representations using existing Speech Recognition systems, addressing the 
challenge of diacritic-aware recognition not being supported by current 
Arabic Speech Recognition systems. 

• Application of FuzTPI-Random Forest to boost the performance of the 
QRSR system, achieving an accuracy rate of 96%. 

• Contribution to the development of an expanded textual audio dataset, 
offering potential enhancements for Arabic speech recognition on a broader 
scale. 

The rest of this paper is structured as follows: Section 2 reviews relevant work in 
three main areas. Section 3 outlines our QRSR system. Section 4 introduces our 
FTARC method. Section 5 discusses the fusion of algorithms for improved speech 
classification. Section 6 presents performance evaluations. Finally, Section 7 
offers conclusions and future directions. 
 
2. RELATED WORK 

This section surveys research in three key areas: Arabic text classification, Arabic 
speech recognition, and Quranic speech recognition. Each area presents unique 
challenges and advancements that are relevant to our study. 

a. State-of-the-Art Arabic Speech Recognition 

The study of Aldarmaki and Ghannam (2023) [2] investigates diacritic recognition 
in Arabic ASR systems. It addresses the problem of ASR models not producing full 
diacritization due to the absence of diacritical marks in existing speech corpora. 
This research is relevant to our work on diacritic recognition. However, our 
approach incorporates the Fuzzy Text Alignment and Rule-based Classifier 
(FTARC), targeting more specific challenges like text-audio alignment. 
Research of Humayun et al. (2023) [12] focuses on dialect classification in Arabic 
speech. This research is relevant to our work due to its focus on classifier 
combination. Yet, our research narrows down to aligning Arabic diacritic-
annotated text, making it more specialized. 
The paper Qasim and Abdulbaqi (2022) [23] reviews Arabic speech recognition, 
emphasizing the need for advanced Arabic ASR systems. Our research contributes 
by specifically addressing text-audio alignment and diacritic annotation. 
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b. Speech Recognition of the Quranic Research 

In Larbi (2013) [18], researchers focused on phonemic search in the Quran for 
Hafs’s Riwayh. The methodology we employ yields a faster response time and 
higher accuracy, thanks to our FTARC approach. 
In Muhammad et al. (2010) [22], they propose a solution to measure recitation 
accuracy. Their dataset and metrics differ from ours, as we employ multiple 
classifiers and algorithms for a more comprehensive evaluation. 

c. Arabic Text Classification and Speech Recognition 

Research AboAlnaser (2019) [1] focuses on text classification methods for Arabic 
documents. Our approach is more targeted and might benefit from the 
standardization efforts they discuss. 
The research Wahdan et al. (2020) [29] presents a systematic review of Arabic text 
classification. Our research targets unique text-versus-text classification, serving 
as a guidepost for neural networks and evaluation metrics. 
Research Bhogale et al. (2023) [6] proposes a framework for aligning long audio 
segments with their corresponding transcriptions. We specialize in short 
segments with diacritical marks, offering a distinct methodology. 
Research Sundus et al. (2019) [28] employs deep learning for Arabic text 
classification. While it shares classification as a common theme, our research 
targets nuanced textual comparisons and therefore requires a distinct 
methodology. 
 
3. QRSR SYSTEM: METHODOLOGY AND KEY OPERATIONS 

The QRSR System objective is to segment and align Arabic audio with diacritic-
annotated text. This process aims to create a substantial dataset of diacritics in 
Arabic audio-text pairs. The resulting dataset will serve as a valuable resource to 
enhance and improve diacritic-aware ASR and TTS systems. The system is 
comprised of six modules, as depicted in Figure 2.  
We start by preparing our dataset that has diacritic-annotated text (at the 5th level 
of Arabic annotation) along with its corresponding audio recitations as audio files. 
This dataset serves as a resource for model training and evaluation purposes. 
Audio files are usually of long duration, which hinders processing and aligning 
based on sentences. The audio files are segmented into smaller audio clips based 
on detected periods of silence by using Voice Activity Detection, or VAD, 
algorithm [10]. Each audio clip can represent a sentence, part of a sentence, or 
several sentences the reciter connected together in one connected recitation. Each 
audio clip is processed by one of the available ASR systems, specifically the Google 
Cloud Speech-to-Text API, to generate a textual transcript referred to as “ASR 
Transcript”. The ASR transcript produced by current ASR services is featured by 
two things: (a) the ASR transcript without diacritic letters and (b) has a low degree 
of accuracy and shows several errors in the Arabic speech (as shown in figure 1). 
We align the generated ASR transcript to the original text (i.e., diacritic-
annotated text) that we have for the audio files. A set of models is trained to 
determine the alignment between the diacritic-annotated sentence and the ASR 
transcript. The architecture of the QRSR System is illustrated in Figure 2 and is 
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discussed in the following subsections. 
 

 

Figure 2: The architecture of Arabic speech to diacritic-annotated text 
alignment system. 

 
The upcoming six subsections will provide detailed explanations of these modules. 
However, the system’s overall concept can be summarized as follows. 

3.1 To be Aligned Audio-Text Dataset 

Arabic audio files and their corresponding texts are collected to establish a dataset. 
Quranic texts and phonetics are chosen for their accurately written diacritical 
letters and precise pronunciation. The dataset comprises 9,596 audio files and 
records. All audio files utilized in the dataset are high-quality recordings without 
any noise interference. The noise interference is not within the scope of your 
study. The label indicates the alignment of the ASR transcript of the audio file with 
the verse. The labels specify the position of the reading within the verse, such as 
the beginning, middle, or end. The dataset is divided into a 70% training set (6,715 
records), a 15% test set (1,442 records), and a 15% validation set (1, 439). We used 
the validation dataset to fine-tune the settings that control our models, which we 
refer to as hyperparameters. The process of adjusting these hyperparameters is 
important in achieving the best performance from our models. The division of the 
dataset is performed separately for each label to ensure a fair representation of 
each label in both the training and test data. This approach ensures that each label 
is adequately represented in both sets. 
 

Table 1: Labels alignment and unalignment cases between audio and text. 
# Label Explanation 
1 FAFV FullAudioFullVerse: The entire audio file corresponds to a 

complete verse. 
2 VPOA VersePartOfAudio: The audio contains a complete verse along 

with other verses. 
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3 VPOEA VersePartOfEndAudio: The complete verse is at the end of the 
audio, which also 
includes other verses before it. 

4 PVLP PartialVerseLastPartRecited: The audio contains a portion 
of the verse, specif- 
ically the last part of it. 

5 PVNF PartialVerseNotFinished: The audio contains a portion of the 
verse but does not 
include the last part of it. 

6 Uncertain Uncertain: The text extracted from the audio is unclear 
regarding its association 
with a verse. However, there is still a low similarity ratio. 

7 ANR AudioNotRecognized: The audio file content is unidentifiable 
and therefore ex- 
cluded from the classification process. It was not included in the 
dataset from the beginning. 

8 UA UnspecifiedAudio: The audio could not be linked to the verse. 
9 ANAV AudioNotAVerse: This audio does not represent a specific 

verse. It may contain 
opening or closing words unrelated to any verse. As a result, it is 
excluded from the classification process since it requires 
comparison with all verses, rather than a single classification. 

10 MA MissingAyah: We could not establish a link between this verse 
and any audio files. 

 
The sentences or verses display variations in length. Longer sentences may be read 
in parts, where one long sentence corresponds to multiple audio clips separated 
by periods of silence. On the other hand, shorter sentences may be recited together 
without periods of silence, resulting in one audio clip. This variation introduces 
challenges in segmenting and aligning the audio at the sentence level. To address 
this, during the dataset preparation phase, we carefully label each audio clip based 
on whether it contains a complete sentence, a partial sentence, multiple sentences, 
or falls into other categories. This labeling process involves a manual review of 
both the audio clips and their corresponding text. The resulting labels are 
summarized in Table 1. 
To gain insights into the label representation in the collected dataset, we assess 
their distribution, and a bar chart is given in Figure 3. The x-axis represents the 
class labels and the y-axis represents the frequency of each label in the dataset. 
The preparation of the training and evaluation dataset involves a semi-automatic 
process of comparing and labeling the ASR transcript with the comparable text. 
The system streamlines text processing and generates ASR transcripts, while also 
assisting with straightforward label assignments. An example of a straightforward 
label is “AudioNotRecognized,” which indicates that the content of an audio file 
cannot be recognized. For the remaining labels, manual data labeling is 
conducted. 
During manual data labeling, we encountered 10 labels, which are summarized in 
Table 1. These labels demonstrate the alignment of the text with the corresponding 
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audio content. To create the training and evaluation data set, we select some 
sentences and audio clips from the full data set such that the labels are equally 
represented in the training data set. That is to prevent the models from being more 
inclined to predict the majority label than the minority labels [4]. 
 

 
Figure 3: Labeling Distribution in the Dataset. 

3.2 Audio Segmentation Module 

We obtain the audio files of the Quran recitation from various sources on the web. 
These audio files are recorded over the years for the purpose of listening to the 
Quran recitations and not for the purpose of computer-aided audio processing. 
The widely-available audio files contain the recitations of the chapters of the 
Quran. Such lengthy audio files need to be segmented into smaller audio clips that 
can be matched and aligned to sentences of the corresponding text. The goal of the 
Audio Segmentation Module is to divide the audio file into smaller clips based on 
detected periods of silence in the audio track. 
The segmentation process is accomplished through Voice Activity Detection 
(VAD) algorithms that detect periods of silence [10]. In this module, we use a 
segmentation algorithm [21] that distinguishes between silence and non-silence 
segments by analyzing the amplitude levels. The algorithm dynamically utilizes a 
variable amplitude threshold value to differentiate silence from non-silence. This 
segmentation algorithm is particularly suitable for audio with natural pauses, as 
observed in Quranic recitation. The output of this module is segmented into small 
audio clips obtained by splitting long audio files according to periods of silence. 

3.3 Speech Recognition Module 

We utilize speech recognition technologies, specifically the Google Speech-to-Text 
API, to convert audio files into text only, and we refer to the output as the ASR 
transcript. The ASR transcript that is generated by current systems is not perfect 
as it lacks diacritics and contains conversion errors. However, it is considered one 
step in the direction of converting speech into text. This ASR transcript is then 
used to create the ground truth and is also sent to the Audio-To-Text Alignment 
module for additional processing. The workflow of the process is depicted in 
Figure 2. 

3.4 Annotation Level Reduction Module 

The Quranic text is written in annotation fifth-level Arabic, while the ASR 
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transcript is in second-level Arabic (as shown in table 2). The difference in writing 
annotation levels poses challenges to comparing these texts. Additionally, the 
Quranic text follows the Ottoman Drawing Style (ODS) in its writing. This ODS 
style results in variations in certain characters compared to the standard Arabic 
writing. To address this, we developed a module that reduces the annotation level 
for comparisons. The module generates a comparable text, a second- level Arabic 
text derived from the Quranic diacritic-annotated text. By using the comparable 
text, it becomes easier to compare the original diacritic-annotated text (after 
reducing its annotation level from the fifth level to the second level) with the ASR 
transcript at the same level of annotation.  

 

Table 2: Levels of details and annotations in the Arabic writing styles. 

 

Text processing methods are employed to adjust the annotation level for 
improved comparability. The following steps are taken: 

• Tokenization: The text was divided into individual sentences/verses. 
• Text cleaning: The diacritical letters are removed and adjustments are 

made to the Ottoman text to match standard texts. 
• Noise removal: Unpronounceable signs, such as verse numbering, are 

removed from the texts for better suitability in comparisons. 
The algorithm 1 addresses the challenge of comparing diacritic-annotated Quranic 
text written in annotation fifth-level Arabic with ASR transcripts written in 
second-level Arabic. To facilitate this comparison, a module has been developed 
that reduces the annotation level for better comparability. The algorithm consists 
of four steps. 
Step 1: Transforming ODS to Classical Arabic Fifth Level In this step, the 
algorithm converts the Quranic text from Ottoman Drawing Style (ODS) to 
Classical Arabic (CA) fifth level. The algorithm iterates through each character in 
the input text and checks if it exists in the ArabicAnnotationLevelMap, which 
holds the mapping between ODS letters and CA fifth-level letters. If a match is 
found, the corresponding CA fifth-level letter is appended to the 
ConvertedCAText. Otherwise, the character is appended as it is. This process 
ensures that the text is transformed to the desired annotation level. 
Step 2: Tokenization The algorithm tokenizes the diacritic-annotated text into 
individual verses. It uses the DiacriticSentenceTokenizer function to split the text 
into tokenized diacritic sentences, which are stored in the 
TokenizedDiacriticSentence list. 
Step 3: Removing Diacritical Letters In this step, the algorithm removes 
diacritical letters from the tokenized sentences. It iterates through each sentence 
in the TokenizedDiacriticSentence list and removes any characters present in the 
ArabicDiacriticMarks list. This ensures that only the base letters remain, making 
the text suitable for comparison. The resulting cleaned sentences are stored in the 
TokenizedSentence list. 
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Step 4: Noise Removal The algorithm performs noise removal to improve the 
suitability of the text for comparison. It iterates through each sentence in the 
TokenizedSentence list and applies a series of regular expression-based cleanup 
patterns. These patterns target specific noise elements present in the text, such as 
verse numbering, and remove them. The cleaned sentences are stored in the 
ComparableSentence list. 
Finally, the algorithm outputs the ComparableSentences list, which contains the 
reduced, cleaned, and com- parable text in the second-level Arabic format. This 
output can be easily compared with the ASR transcript for further analysis or 
evaluation. 

 

3.5 Trained Classifier 

The classification process involves categorizing and labeling the data by analyzing 
the alignment patterns between the ASR transcript, which represents the written 
form of the speech, and the comparable text, which represents the simple form of 
the diacritic annotated text. Ultimately, the classification is applied to the audio 
and diacritic annotated text, leveraging the alignment patterns between the ASR 
transcript and the comparable text. We aim for the classifier model to learn from 
the provided data, including the erroneous text, and make predictions based on it. 
Hence, we refrained from correcting the linguistic errors present in the ASR 
transcript. The classifier is expected to account for the presence of errors and still 
perform effectively in our QRSR system. Arabic ASR transcripts often contain 
errors in the inferred text from audio. Table 3 provides examples of challenges 
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encountered during the classification process caused by the ASR errors. 
During the inference phase, the data is obtained from the comparable text from 
the Annotation Level Re- duction Module and the ASR transcript from the Speech 
Recognition Module. Data is classified based on the labels provided in table 1. The 
first five labels in table 1 demonstrate an alignment relationship between the audio 
and text, showcasing different types of alignment. These labels represent various 
alignment relations, such as the full audio file corresponding to a full verse (FAFV) 
and the verse being a part of the audio file (VPOA), among others. Figure 4 
provides a visual representation of the first five labels.  
 

Table 3: Some Cases that Reflect the Challenges in Text Classification. 

 
 
The last five labels in table 1 demonstrate different cases for an unalignment of the 
text and the ASR transcript. These labels involve cases like audio content not 
recognized (ANR), audio not corresponding to a verse (ANAV), and others. 
 

 
Figure 4: Visual representation of alignment relationships between audio and 

text. 
 

3.6 Audio-to-Text Alignment Module 

The module has two purposes: aligning Arabic speech to diacritic-annotated text 
and preparing a dataset for enhancing Arabic Speech Recognition. The inputs are 
the ASR transcript, the comparable text, and the predicted labels. These inputs are 
sent from the Trained classifier.  
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The Alignment Module retrieves the actual audio files corresponding to the ASR 
transcript and the Arabic diacritical text corresponding to the comparable text. If 
necessary, the audio files are merged to match a full sentence. Finally, the module 
combines the audio files with their corresponding diacritical text, resulting in a diacritic 
Arabic audio-text dataset. 
 

 
The Audio-to-Text Alignment Algorithm 2 consists of several steps to collect system 
inputs, align audio and text, and generate the final output. 
Step 1: Algorithm Inputs The algorithm takes two inputs: ASRTranscriptList and 
ComparableTextList. ASRTranscriptList represents the ASR transcript obtained from 
the Speech Recognition Module, while Compara- bleTextList represents the comparable 
text obtained from the Annotation Level Reduction Module. These inputs serve as the 
foundation for aligning audio and text. 
Step 2: Label Prediction The algorithm iterates through each pair of ASRTranscript 
and ComparableText in their respective lists. For each pair, it predicts the labels by 
calling the predictLabels function, which utilizes the Classification Module. 
Step 3: Retrieving Audio Files and Diacritical Text The algorithm retrieves the 
actual audio files corresponding to each ASRTranscript by calling the fetchAudioFiles 
function. Similarly, it retrieves the Arabic diacritical text corresponding to each 
ComparableText by calling the fetchDiacriticalText function. 
Step 4: Building Audio and Text Lists The algorithm initializes two empty lists: 
audio list and text list. For each pair of ASRTranscript and ComparableText, it pushes 
the corresponding diacritical text into the text list. Similarly, it combines the audio files 
by calling the combineAudioFiles function, which merges the audio files if necessary, and 
pushes the resulting audio file into the audio list. 
Step 5: Generating the Diacritic Arabic Audio-Text Dataset The algorithm 
returns the diacritic Arabic audio-text dataset by calling the mergeAudioAndText 
function, which takes the audio list and text list as inputs. This function combines the 
audio files with their corresponding diacritical text, resulting in a diacritic Arabic audio-
text dataset ready for further analysis, training, or evaluation. By aligning audio and text, 
the algorithm facilitates various downstream tasks and applications, such as training 
speech recognition models, improving language understanding, and enabling audio 
search and retrieval. 
 
4. FUZZY TEXT ALIGNMENT AND RULE-BASED CLASSIFIER (FTARC) 

We have developed a Fuzzy Text Alignment and Rule-based Classifier (FTARC). FTARC 
is composed of two algorithms. The first algorithm is a Fuzzy Text Position Inference 
(FuzTPI) Algorithm 3. This algorithm utilizes fuzzy matching techniques to generate 
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numerical indicators. These numerical indicators provide insights into alignment 
patterns and the presence of text segments within each other. The second algorithm is a 
rule-based classifier, which leveraging from the Fuzzy numerical indicators to classify the 
texts. We aim to improve the accuracy of the classification process by utilizing FTARC. 
In this section, we will discuss two key components: the FuzTPI Algorithm and the Rule-
based Classifier. We will explore how these algorithms contribute to the task at hand. 
Furthermore, we will present and analyze the results obtained from FTARC. 

a. Fuzzy Text Position Inference (FuzTPI) Algorithm 

The proposed FuzTPI algorithm facilitates the comparison of two texts of varying length 
and content by leveraging fuzzy matching techniques [7, 11]. 
 

 
The algorithm provides numerical indicators that reflect the text alignment patterns. This 
algorithm depends on two main functions to determine these numerical indicators, fuzzy 
full-text matching and fuzzy partial-text matching. 
The fuzzy full-text matching function, denoted as Fuzzy(longerText, shorterText), can be 
defined as equation (1). This equation calculates the similarity between a longer text and 
a shorter text [16]. It considers every possible pair of characters between the two texts 
and computes the membership value (µ) indicating their degree of similarity. The 
numerator sums up these membership values for all character pairs, capturing the overall 
similarity. The denominator normalizes the result by dividing the numerator by the 
maximum length between the longer and shorter texts. This normalization accounts for 
differences in text length when comparing them. 
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The fuzzy partial-text matching function, denoted as PartialFuzzy(longerText, 
shorterText), can be defined as equation (2). This equation focuses on the similarity 
between a longer text and a shorter text when the shorter text is a part of the longer text. 
Similar to the equation (1), it calculates the membership value (µ) for each pair of 
characters between the longer and shorter texts. The numerator sums up these 
membership values, indicating the overall similarity. However, in this case, the 
denominator is the length of the shorter text itself. This normalization allows for a direct 
comparison of the similarity between the shorter text and the corresponding part of the 
longer text [16]. 
 

 
where: 

• longerText[j] represents the j-th character in longerText. 
• shorterText[i] represents the i-th character in shorterText. 
• µ(longerText[j], shorterText[i]) represents the membership value indicating the 

degree of similarity be- tween longerText[j] and shorterText[i]. 
• |longerText| represents the total number of characters in longerText. 
• |shorterText| represents the total number of characters in shorterText. 

 

By using these equations (1, 2), the FuzTPI 3 provides numerical indicators that reflect 
the alignment patterns between texts, capturing the degree of similarity between them. 
Initially, the algorithm identifies the longest text and determines the alignment indicator, 
which determines whether the text is part of the audio or vice versa. The algorithm 
measures the matching degree of the shorter text at the beginning, end, and middle of 
the longer text, providing insights into the relative positioning of the texts. Furthermore, 
the algorithm determines the full and partial matching degree between the two texts. 
Additionally, the algorithm counts the number of occurrences of the shorter text within 
the longer text, providing further information about their presence and potential 
repetitions. By offering these insights the fuzzy algorithm equips the classifier with 
essential alignment data. 

b. The Rule-based Classifier 

The rule-based classifier starts by retrieving a list of Arabic sentences, along with their 
corresponding audio files and ASR transcripts. The system then initializes relevant 
variables and iterates through the lists. To ensure consistency, it applies text 
normalization techniques to the input texts. Additionally, it utilizes the numerical 
outputs generated by the Fuzzy Algorithms 3. Based on predefined cases outlined in 
Table 4, the rule-based classifier classifies the data using these numbers. 
The rule-based classifier, enhances the classification process, enabling the generation of 
aligned diacritized Arabic texts and audio files. The purpose of this classifier is to assign 
appropriate classifications to the data based on predefined rules and numerical fuzzy 
outputs generated by the FuzTPI Algorithm 3. 
Initially, the classifier retrieves a list of Arabic sentences along with their corresponding 
audio files and ASR transcripts. To ensure consistency, the system applies text 
normalization techniques to the input texts. The first set of conditions on table 4 focuses 
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on evaluating the availability of the ASR transcript and the degree of similarity between 
the two texts. If the ASR transcript is not available or the full text and transcript exhibit 
a high degree of similarity, the classifier returns specific labels indicating the alignment 
status. Subsequent conditions take into account the alignment of partial text, considering 
factors such as the alignment indicator and the presence of the last part of the text in the 
transcript. Additional conditions build upon the previous classifications and consider the 
degree of similarity between adjacent texts and ASR transcripts. These conditions aim to 
capture nuances in the alignment process and ensure accurate classification. 
 

Table 4: Rule-Based Conditions and Return Values. 
Condition Return Value 
ASRText is None ANR 
FuzzyFullTextMatching > Threshold FAFV 
FuzzyPartialMatching > Threshold and alignmentIndicator == 1 
and IsLastPartInASR 

VPOEA 

FuzzyPartialMatching > Threshold and alignmentIndicator == 1 
and not IsLastPartInASR 

VSNF 

FuzzyPartialMatching > Threshold and alignmentIndicator == 2 
and IsLastPartInASR 

PVLP 

FuzzyPartialMatching > Threshold and alignmentIndicator == 2 
and not IsLastPartInASR 

PVNF 

IsDataClassifiedBefore and NextTextFuzzyPartialMatching > 
Threshold 

Uncertain 

IsDataClassifiedBefore and PreTextFuzzyPartialMatching > 
Threshold 

StepBackPreText() 

IsDataClassifiedBefore and PreASRFuzzyPartialMatching > 
Threshold 

StepBackPreASR() 

IsDataClassifiedBefore and IsPreASRPartOfText Uncertain 
IsDataClassifiedBefore and PreTextFuzzyPartialMatching > 
Threshold and IsLastPartInASR 

PVLP 

IsDataClassifiedBefore and PreTextFuzzyPartialMatching > 
Threshold and not IsLastPartInASR 

PVNF 

IsDataClassifiedBefore and PreTextFuzzyPartialMatching < 
Threshold 

IncreaseSkippedASRCount(), 
UA 

not IsDataClassifiedBefore and FuzzyPartialMatching < Thresh- 
old 

IncreaseSkippedASRCount(), 
ANAV 

IsASRLimitExceeded MA 

 
The final set of conditions handles cases where the ASR transcript is ignored beyond 
predefined limits or when the alignment falls below the specified threshold. These 
conditions further refine the classification process, accounting for specific alignment 
scenarios. Based on the classifications received from the rule-based classifier, the system 
merges the audio files into complete sentences that align with the list of Arabic sentences. 
As a result, the system generates a structured output consisting of diacritized Arabic texts 
accompanied by their corresponding audio files. The threshold used to accept the 
agreement between ASR transcripts and Arabic text plays an important role in the FTARC 
algorithm. Through experimentation on our dataset, we observed that different threshold 
values affect the alignment accuracy differently. When the threshold is set above 80%, 
the algorithm tends to lose sentences that are actually almost complete and similar. This 
is due to ASR transcript errors, causing the convergence percentage to fall below 80%. 
On the other hand, when the threshold is set at 70% or lower, the algorithm starts to 
agree on similar sentences, but some words are missing, leading to incomplete 
alignments. After conducting extensive experiments, we found that a threshold of 75% 
strikes the right balance between capturing similar sentences and maintaining 
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completeness. 

c. FTARC Performance 

Figure 5: Confusion Matrix of FTARC Algorithm. 
 

The performance evaluation of the FTARC showed an accuracy of 90.77%, precision of 
91.96%, recall of 90.77%, and an F1 score of 90.59%. The high values for these metrics 
indicate that the FTARC achieved a good level of accuracy in its classification results 
when compared to the manually entered results. 
Analyzing the confusion matrix in figure 5, it is evident that the FTARC classifier 
exhibited accuracy in recognizing the majority of the classes (which appeared in the 
diagonal elements). It demonstrated moderate accuracy in recognizing UA. This result 
reflects its accuracy, which is 90.7%. These findings highlight the algorithm’s overall 
success in classification, while also indicating potential areas for improvement in 
accurately distinguishing between certain classifications. 
 
5. FUSION OF FUZTPI ALGORITHM AND ML MODELS FOR IMPROVED 

ARABIC SPEECH CLASSIFICATION 

The high accuracy of FTARC is attributed to the FuzTPI Algorithm, which effectively 
addresses typographical errors in the Arabic ASR transcript by generating fuzzy numbers 
that indicate the degree of text present in the second text. While ML models outshine 
rule-based models in their generalizability and applicability across different classification 
tasks, rule-based models offer domain-specific solutions based on predefined rules and 
conditions. In this section, we aim to leverage the strengths of both approaches by 
integrating the FuzTPI Algorithm with ML models. This integration involves generating 
fuzzy numbers using FuzTPI for the textual data and allowing ML models to learn from 
these fuzzy numbers and their corresponding taxonomy, bypassing the need to directly 
handle the ASR transcript with its errors. Figure 6 illustrates the integration of the 
FuzTPI algorithm with the ML model. FuzTPI takes the ASR transcript and Arabic 
comparable text as input, generating fuzzy numbers as output. The ML model solely uses 
fuzzy numbers as input and produces labeling predictions. 
This integration helps safeguard the ML model from unexpected errors in the Arabic ASR 
transcript. Integration is done through a method for serializing and deserializing called 
pickle [26]. This means the FuzTPI is “bundled” with the ML model in a way that it can 
be deployed as one unit. By integrating FuzTPI with the ML model, we eliminate the need 
to program or manage the fuzzy inference engine separately. Everything is handled 
within the FuzTPI-ML Integration Unit. 
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Text classification has gained significant attention due to using it in a wide range of 
applications [1, 14, 17]. In the classification task, ML models are widely utilized in various 
applications [1, 17]. Popular ML models for text classification tasks such as Naive Bayes 
(NB), Support Vector Machine (SVM), and Random Forest (RF). In this part, we will 
present the results of applying the NB, SVM, and RF models when they learn directly 
from the output of FuzTPI. By examining the performance of these ML models with fuzzy 
numbers as input, we aim to assess their effectiveness in enhancing the alignment-driven 
classification of Arabic speech. 
 

 

Figure 6: Integration of FuzTPI with ML Model. 
 

a. FuzTPI-Driven Naive Bayes 

Naive Bayes is a widely used and versatile classification algorithm known for its 
simplicity and efficiency [1]. By applying Bayes’ theorem, it determines the most probable 
class for a given instance, making it particularly valuable in scenarios with limited 
training data [10]. We utilize the MultinomialNB variant of Naive Bayes for text 
classification tasks [30]. MultinomialNB is particularly effective in handling discrete 
features such as word frequencies and counts. In our algorithm, we further optimize the 
performance of MultinomialNB by employing GridSearchCV. The GridSearch is a 
technique that systematically explores the hyperparameter space to identify the best 
combination of parameters for the classifier [5]. This allows us to enhance the accuracy 
and effectiveness of the text classification process. 
 

FuzTPI-Driven Naive Bayes Performance: 
The Naive Bayes is trained on the data generated from FuzTPI. The model performance 
is evaluated on the testing dataset, and it achieved the performance measures: Accuracy 
Ratio of 55.13%, Precision of 49.24%, Recall of 55.13%, and F1 Score of 50.55%. These 
metrics assess the algorithm’s classification performance across our labels. 
The confusion matrix in Figure 7 reveals that the FuzTPI-NB classifier struggles to 
accurately recognize the “Uncertain” label, as indicated by the scattered predictions 
across the matrix. Additionally, it completely fails to distinguish the MA class, classifying 
all instances as PVNF. However, the classifier demonstrates relatively higher accuracy in 
identifying the remaining classes compared to the average performance. Overall, the 
FuzTPI-NB classifier achieves an average accuracy of 55%. 
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Figure 7: Confusion Matrix of FuzTPI-Driven Naive Bayes Algorithm. 
 

b. FuzTPI-Driven SVM 

SVM is a widely used supervised ML algorithm for classification tasks. The main objective 
of SVM is to maximize the margin between different categories, creating a clear 
separation between them [1, 17]. SVM identifies support vectors, which play a crucial role 
in determining the boundaries between classes [17]. SVM can be applied to features 
derived from textual data, such as word frequencies, n-grams, or other linguistic 
characteristics. Therefore, we chose SVM to apply to the problem of Arabic diacritic- 
annotated text. SVM performs well on datasets of small to medium sizes and is 
particularly suitable for datasets with a moderate number of samples. We utilized TF-
IDF (Term Frequency-Inverse Document Frequency) vectorization [13], to transform the 
text data into numerical features, allowing for analysis and modeling using SVM [19]. 
 

FuzTPI-Driven SVM Performance: 

 
Figure 8: Confusion Matrix of FuzTPI-Driven SVM Algorithm. 

 

The SVM is trained on the data generated from FuzTPI. The mode performance is 
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evaluated on the testing dataset, and it achieved the performance measures: Accuracy 
Ratio of 95.42%, Precision of 95.78%, Recall of 95.42%, and F1 Score of 95.51%. These 
metrics assess the algorithm’s classification performance across our labels. 
The confusion matrix of the FuzTPI-SVM classifier in figure 8 reveals a distinct diagonal 
line, indicating the high accuracy of its predictions. However, the classifier encounters 
challenges in recognizing the “Uncertain” class. It also shows some errors in correctly 
identifying the PVNF class. On the other hand, the classifier performs well in recognizing 
the remaining classes, resulting in an accuracy rate exceeding 95.4%. 

c. FuzTPI-Driven Random Forest 

The Random Forest algorithm is a powerful learning algorithm widely used for 
classification tasks. It leverages the predictions of multiple decision trees to enhance 
accuracy [17]. We implemented the Random Forest algorithm, and employed grid search, 
a technique that systematically explores different parameter combinations. Through grid 
search, we identified the best parameters that resulted in the optimal configuration for 
the Random Forest algorithm [24]. 
 

FuzTPI-Driven RF Performance: 
The RF is trained on the data generated from FuzTPI. The mode performance is evaluated 
on the testing dataset, and it achieved the performance measures: Accuracy Ratio of 
95.90%, Precision of 96.51%, Recall of 95.90%, and F1 Score of 96.02%. These metrics 
assess the algorithm’s classification performance across our labels.  
The confusion matrix of the FuzTPI-RF classifier exhibits a diagonal line pattern, 
indicating its high accuracy in classification. However, the classifier encounters 
challenges in correctly recognizing the “Uncertain” class, as shown in figure 9. 
Additionally, it demonstrates some errors in identifying the PVNF and PVLP classes. 
Nevertheless, the classifier performs well in recognizing the remaining classes, resulting 
in an accuracy rate approaching 95.9%. 

Figure 9: Confusion Matrix of FuzTPI-Driven RF Algorithm. 
 
6. RESULTS AND DISCUSSION 

This section presents the performance evaluation results and a discussion of the 
implemented classifiers. We compare the classifiers, analyze their performance, and 
discuss the implications of our findings. Additionally, the performance metrics of the 
Alignment process. 
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Analyzing Performance Measures: We present an analysis of the performance 
measures according to the testing dataset, including Accuracy, Precision, Recall, and F1 
Score, for a range of models used in Arabic speech classification. Analyzing the table 5, 
we observe variations in the performance measures across the different models. 
 

Table 5: Performance Comparison of Arabic Speech Classifiers 
Classifier Accuracy Precision Recall F1 Score 
FuzTPI-NB 55.13% 49.24% 55.13% 50.54% 

FTARC 90.78% 91.97% 90.78% 90.60% 

FuzTPI-SVM 95.42% 95.78% 95.42% 95.51% 

FuzTPI-RF 95.90% 96.51 95.90 % 96.02% 

 
The FuzTPI-NB achieved an accuracy of 55.13%. The FTARC classifier achieved an 
accuracy of 90.78% and demonstrated high precision, recall, and F1 Score. The FuzTPI-
SVM model exhibited further improvement, with an accuracy of 95.42% and high 
precision, recall, and F1 Score. Notably, the FuzTPI-RF model showcased the highest 
performance among all classifiers, achieving an impressive accuracy of 95.90%. It also 
displayed superior precision, recall, and an F1 Score of 96.02, indicating its robustness 
in accurately classifying Arabic speech data. Note that the results of the FuzTPI-SVM and 
the FuzTPI-RF models are very close, so there is no clear winner model between them. 
The accompanying figure, Figure 10, visually represents the comparative analysis of 
classifier performance. The bar chart reinforces the observations made in the table, 
clearly illustrating the variations in performance measures among the models. Overall, 
the results highlight the effectiveness of the FTARC, FuzTPI-RF, and FuzTPI-SVM 
models in improving the classification accuracy of Arabic speech. These models leverage 
advanced techniques and algorithms to enhance the alignment-driven classification 
process, resulting in superior performance compared to traditional ML classifiers. 
 

Class Difficulty Analysis: 

 
Figure 10: Comparative Analysis of Classifier Performance. 

 
Table 6: Comparison of Successful and Unsuccessful Predictions by Classifier. 

Classifier FuzTPI-NB FTARC FuzTPI-SVM FuzTPI-RF 

Correct 795 1309 1376 1383 

Incorrect 647 133 66 59 

 
In the analysis of classifiers’ performance, it is important to take into consideration the 
challenging classifications encountered. This information is presented in Figure 11, which 
provides insights into the number of correct and incorrect predictions made for each class 
across all utilized classifiers. 
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Figure 11: Class Difficulty Analysis: Frequency of Correct and Incorrect Predictions. 
 
Among the classes, FAFV, PVLP, and PVNF stand out as the easiest to classify, as they 
have a high frequency of correct predictions and a low frequency of incorrect predictions. 
This suggests that these classes possess distinct features that enable accurate 
classification by the classifiers. On the other hand, the UA, and Uncertain classes 
presented significant challenges, resulting in a higher number of incorrect predictions 
compared to correct predictions. These classes are closely related to the texts with exhibit 
limited similarity. For MA, after reviewing the data, it is found that the incorrect 
predictions are all from FuzTPI-NB, and this is a point to improve the performance of 
this model. Enhancing the detection and classification of these classes could lead to 
substantial improvements in overall performance. 
 

Analyzing Successful and Unsuccessful Classifications: 
An analysis is conducted to assess the success and failure rates of the classifiers. Figure 
12 provides clear visualizations of the distribution of successful and unsuccessful 
predictions. 
Based on the data in Table 6, we can observe that the FuzTPI-RF classifier achieved the 
highest number of correct predictions with a total of 1,383. It is followed by the FuzTPI-
SVM classifier with 1,376 correct predictions and the FTARC classifier with 1,309 correct 
predictions. The lowest number of correct predictions recorded by the NB classifier with 
795. 
 

Audio-Text Alignment Performance: 
As in 2 of System Architecture, after obtaining the best Trained Classifier, we move to the 
last stage, which is Audio-to-Text Alignment. The Alignment module takes input from 
the winner-trained classifier, in our case FuzTPI-RF. Based on these classifications, it 
begins to align the audio files against the texts, potentially combining audio files to form 
complete verses. The final audio file is then linked to its Arabic diacritic-annotated text. 
 

 
Figure 12: Graphical Analysis: Successful and Unsuccessful Classifications. 

This module is based on the algorithm 2. To evaluate it, a dataset consisting of 1550 audio 
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files is created. Each file is annotated to identify whether it corresponds to a complete 
verse, a part requiring merging, or the end of a verse, etc. This is essential to measure the 
accuracy of the algorithm and facilitate error tracking, improvement, and measurement. 
In the alignment process, the QRSR system achieved an accuracy of 95.61%, with an 
alignment count of 1482 correct states and 68 incorrect states. The detailed performance 
measures for alignment are summarized in Table 7. 
 

Table 7: Performance Measures for Alignment 
Alignment Performance Accuracy Precision Recall F1 Score 

Value 95.61% 86.88% 96.42% 90.80% 
 

The table 7 illustrates the overall effectiveness of the alignment module. An accuracy of 
95.61% indicates that the vast majority of audio files are correctly aligned. The high recall 
value of 96.42% suggests that most of the relevant audio files are correctly identified, 
while the precision of 86.88% shows the proportion of true positive alignments among 
the total positive alignments. The F1 score, a harmonic mean of precision and recall, 
provides a comprehensive view of the model’s balance between precision and recall. 
 
7. CONCLUSION AND FUTURE DIRECTIONS 

This paper presented the QRSR system, its objectives, and the challenges it addresses. 
We explored several Machine learning algorithms and proposed the FTARC approach to 
enhance Arabic speech recognition. The evaluation results and discussion shed light on 
the performance of the implemented classifiers, identified challenging classifications, 
and highlighted the potential of incorporating the FTARC algorithm into other ML 
techniques. The study introduced the Fuzzy Text Alignment and Rule-based Classifier 
(FTARC) approach is proposed, achieving an accuracy rate of up to 90% in segmenting 
and aligning audio files. We combined the FuzTPI algorithm and Machine Learning (ML) 
models. This combination led to audio segmentation, text-audio classification, which 
achieved up to 96% accuracy, and text-audio alignment, which achieved 95.61%. The 
research used different classifiers, including Naive Bayes, Support Vector Machine 
(SVM), and Random Forest. Among them, the FuzTPI-Random Forest model had the 
highest performance. The results between FuzTPI-SVM and FuzTPI-RF are close, 
indicating both models were effective. This research contributes to the advancement of 
Arabic NLP systems, Arabic speech recognition systems, and segmentation/localization 
techniques, particularly in the context of Quranic studies. Our research contributes also 
to the development of an expanded textual audio dataset that can have a broader impact 
on Arabic speech recognition systems. 
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