ENHANCING COMPLAINT MANAGEMENT THROUGH INFORMATION SYSTEMS: LSTM-BASED AUTOMATIC CLASSIFICATION OF BANK CUSTOMER COMPLAINTS IN INDONESIA

Timotius Pangaribuan, Muhammad Anggia Muchtar, Mohammad Andri Budiman

Abstract


This study develops an automatic classification system for customer complaints in the banking sector using the Long Short-Term Memory (LSTM) deep learning method. A dataset comprising 4,714 customer complaint entries was collected from Bank Sumut's internal communication records, categorized into six major complaint types. The data underwent comprehensive preprocessing, including cleaning, tokenization, and vectorization. A supervised learning approach was applied using an LSTM-based neural network architecture, and the model’s performance was evaluated using accuracy, precision, recall, and F1-score metrics. The results demonstrated a classification accuracy of 100% on the test set, with the model successfully categorizing free-text complaints into predefined categories. The findings highlight the strong potential of LSTM models in supporting automated text-based customer service operations within digital banking environments, particularly for Indonesian-language complaint datasets. Further research is recommended to validate the model on unseen real-world data and to address challenges related to data imbalance.

Keywords


Text Classification; Information Systems; Customer Complaints; LSTM; Deep Learning; Natural Language Processing (NLP); Digital Banking

Full Text:

PDF

References


Ali, S., Raza, S., & Ahmed, A. (2021). Customer complaint classification using deep learning techniques in banking sector. International Journal of Advanced Computer Science and Applications, 12(5), 402–409.

Choudhury, A., Mukherjee, S., & Saha, D. (2021). Text classification using recurrent neural networks and word embeddings. International Journal of Information Management Data Insights, 1(2), 100027.

Dalimunthe, M. A. (2018). Implikasi Internet Sebagai Media Interaktif dalam Membangun Citra Aktor Politik. Al-MUNZIR, 10(2), 268-281.

Davidow, M. (2003). Organizational responses to customer complaints: What works and what doesn’t. Journal of Service Research, 5(3), 225–250.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of NAACL-HLT 2019, 4171–4186.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Grönroos, C. (2007). Service management and marketing: Customer management in service competition (3rd ed.). Wiley.

Hassan, S., Ahmad, A., & Fatima, M. (2020). Comparative analysis of deep learning models for customer complaint classification. International Journal of Machine Learning and Computing, 10(3), 410–416.

Harianto, F., Ohorella, N. R., & Dalimunthe, M. A. (2023). Kompetensi Komunikasi Guest Service Agent Dalam Mendorong Kepuasan Tamu Mh Hotel Ipoh Malaysia. KomunikA, 19(02), 30-35.

He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284.

Hirschman, A. O. (1970). Exit, voice, and loyalty: Responses to decline in firms, organizations, and states. Harvard University Press.

Kim, Y. (2014). Convolutional neural networks for sentence classification. Proceedings of EMNLP 2014, 1746–1751.

Kotler, P., & Keller, K. L. (2016). Marketing management (15th ed.). Pearson Education Limited.

Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L. E., & Brown, D. E. (2019). Text classification algorithms: A survey. Information, 10(4), 150.

Liu, P., Qiu, X., & Huang, X. (2020). Recurrent neural network for text classification with multi-task learning. Proceedings of IJCAI, 2873–2879.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). RoBERTa: A robustly optimized BERT pretraining approach. arXiv preprint, arXiv:1907.11692.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems, 26, 3111–3119.

Molina, L. M., Beltrán, J. A., & Arenas, D. J. (2019). Service quality and continuous improvement: Application to the banking sector. Service Business, 13(1), 29–47.

Nguyen, B., & Simkin, L. (2020). The dark side of digital personalization: An agenda for research and practice. Journal of Business Research, 116, 209–221.

Nikbin, D., Marimuthu, M., Hyun, S. S., & Ismail, I. (2020). Relationships among perceived justice, negative emotions, recovery satisfaction and customer loyalty in the service recovery context. International Journal of Quality and Service Sciences, 12(1), 34–50.

Ohorella, N. R., Fauziah, D., & Dalimunthe, M. A. (2024). Brand Awareness Communication Strategy in Setujuan Coffee Marketing on Instagram Social Media. KomunikA, 20(02), 46-57.

Otoritas Jasa Keuangan (OJK). (2023). Financial Services Industry Statistics Report 2023. Jakarta: OJK.

Oliver, R. L. (1997). Satisfaction: A behavioral perspective on the consumer. McGraw-Hill.

Otter, D. W., Medina, J. R., & Kalita, J. (2021). A survey of the usages of deep learning for natural language processing. IEEE Transactions on Neural Networks and Learning Systems, 32(2), 604–624.

Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. Journal of Retailing, 64(1), 12–40.

Rao, M., & Dey, S. (2021). Text preprocessing steps for classification tasks: A review. Information Processing & Management, 58(5), 102669.

Rathore, S., Shah, S. A. A., Shabaz, M., & Ahmad, J. (2022). Artificial intelligence-based frameworks for complaint management: A systematic review. Expert Systems with Applications, 193, 116389.

Ritonga, A. R., Dalimunthe, M. A., & Januarini, E. (2024). Utilization Of Digital Media in Improving Student Literacy (Case Study at SDN 10 Rantau Selatan). CONTENT: Journal of Communication Studies, 2(02), 01-08.

Ritonga, A.R., Dalimunthe, M.A., Veronica, A., Ginting, & L. D. C. U (2023). The Effectiveness of Social Media As A Promotional Medium Of The University Of Sumatera Utara (USU) Library. Talenta Conference Series: Local Wisdom, Social, and Arts (LWSA) 6 (3), 16-20

Utami, T. S., & Pratama, A. (2020). Classification of online transportation complaints using TF-IDF and Naive Bayes. Journal of Information Systems Engineering and Business Intelligence, 6(2), 112–119.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30, 5998–6008.

Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning-based natural language processing. IEEE Computational Intelligence Magazine, 13(3), 55–75.

Zhao, X., Yang, L., & Lu, L. (2021). The effect of customer complaint behavior on brand loyalty in the banking sector. Journal of Retailing and Consumer Services, 58, 102290.

Zhou, Z., Du, J., Wang, Y., & Xu, K. (2021). Learning contextualized embeddings for document classification. Knowledge-Based Systems, 232, 107479.




DOI: http://dx.doi.org/10.30829/jipi.v10i1.24493

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Timotius Pangaribuan, Muhammad Anggia Muchtar, Mohammad Andri Budiman

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 
  
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
 
Based on a work at http://jurnal.uinsu.ac.id/index.php/jipi/ 
 
Publisher:
Jurusan Ilmu Perpustakaan
Fakultas Ilmu Sosial
Universitas Islam Negeri Sumatera Utara