The IL-4 Paradox: How an Anti-Inflammatory Cytokine Fuels Prostate Cancer Progression

Ibnu Widya Argo, Raden Danarto, Tanaya Ghinorawa, Indrawarman Soerohardjo

Abstract


Prostate cancer is one of the most prevalent malignancies in mern worldwide, with complex immune interactions contributing to tumor progression. In contrast, benig prostatic hyperplasia (BPH) is a non-cancerous enlargement of the prostate that dos not exhibit malignant behavior. Understanding the molucelur differences between benign and malignant prostate condition is essential, particulary regarding immune escape mechanisms that allow cancer cells to evade the immune system. Interleukin-4 (IL-4), an anti-inflammatory cytokine, has been implicated in modulating immune responses within the Tumor Microenvironment. This study was conducted using a retrospective, observational analytical design with a cross-sectional approach to investigates the relationship between IL-4 expression and apoptosis-associated immune checkpoint receptors (PD-1, CTLA-4) and their ligand (PD-L1, PD-L2) in prostate tissue. A total of 40 formalin-fixed, paraffin-embedded (FFPE) prostate tissue samples collected between 2014 and 2020 were analyzed using quantitive real-time PCR (qRT-PCR). Samples were categorized into four groups: BPH, non-metastatic prostate cancer, metastatic prostate cancer, and controls. Statistical analysis was performed using one-way ANOVA and Pearson correlation. IL-4 expression was significantly higher in prostate cancer tissues (both metastatic and non-metastatic) compares to BPH (p = 0.006). Among the immune checkpoint molecules, IL-4 showed the srongest correlation with PD-L1 (r = 0.919),  followed by PD-L2 (r = 0.832) and PD-1 (r = 0.626). In the BPH group, CTLA-4 exhibited the highest ecpression, with IL-4 ranked second. In conclusion, IL-4 expression is closely associated with key immune checkpoint markers in prostate cancer, suggesting a potential role in promoting immune escapen and tumor progression.

 

Keyword: Prostate Cancer, IL-4, PD-1, CTLA-4, PD-L1 and PD-L2.


Full Text:

PDF

References


Cottrell, J. N., Amaral, L. M., Harmon, A., Cornelius, D. C., Cunningham, M. W., Vaka, V. R., Ibrahim, T., Herse, F., Wallukat, G., Dechend, R., & LaMarca, B. (2019). Interleukin-4 supplementation improves the pathophysiology of hypertension in response to placental ischemia in RUPP rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 316(2), R165–R171. https://doi.org/10.1152/ajpregu.00167.2018

Fernandes, R. C., Hickey, T. E., Tilley, W. D., & Selth, L. A. (2019). Interplay between the androgen receptor signaling axis and microRNAs in prostate cancer. Endocrine-Related Cancer, 26(5), R237–R257. https://doi.org/10.1530/ERC-18-0571

Goldstein, R., Hanley, C., Morris, J., Cahill, D., Chandra, A., Harper, P., Chowdhury, S., Maher, J., & Burbridge, S. (2011). Clinical Investigation of the Role of Interleukin-4 and Interleukin-13 in the Evolution of Prostate Cancer. Cancers, 3(4), 4281–4293. https://doi.org/10.3390/cancers3044281

Han, Y., Liu, D., & Li, L. (2020). PD-1/PD-L1 pathway: current researches in cancer. American Journal of Cancer Research, 10(3), 727–742.

He, Y., Yu, H., Rozeboom, L., Rivard, C. J., Ellison, K., Dziadziuszko, R., Suda, K., Ren, S., Wu, C., Hou, L., Zhou, C., & Hirsch, F. R. (2017). LAG-3 Protein Expression in Non–Small Cell Lung Cancer and Its Relationship with PD-1/PD-L1 and Tumor-Infiltrating Lymphocytes. Journal of Thoracic Oncology, 12(5), 814–823. https://doi.org/10.1016/j.jtho.2017.01.019

Kwon, J. T. W., Bryant, R. J., & Parkes, E. E. (2021). The tumor microenvironment and immune responses in prostate cancer patients. Endocrine-Related Cancer, 28(8), T95–T107. https://doi.org/10.1530/ERC-21-0149

Lee, S. O., Chun, J. Y., Nadiminty, N., Lou, W., Feng, S., & Gao, A. C. (2009). RETRACTED: Interleukin‐4 activates androgen receptor through CBP/p300. The Prostate, 69(2), 126–132. https://doi.org/10.1002/pros.20865

Lee, S. O., Lou, W., Hou, M., Onate, S. A., & Gao, A. C. (2003). Interleukin-4 enhances prostate-specific antigen expression by activation of the androgen receptor and Akt pathway. Oncogene, 22(39), 7981–7988. https://doi.org/10.1038/sj.onc.1206735

Li, C.-W., Lim, S.-O., Chung, E. M., Kim, Y.-S., Park, A. H., Yao, J., Cha, J.-H., Xia, W., Chan, L.-C., Kim, T., Chang, S.-S., Lee, H.-H., Chou, C.-K., Liu, Y.-L., Yeh, H.-C., Perillo, E. P., Dunn, A. K., Kuo, C.-W., Khoo, K.-H., … Hung, M.-C. (2018). Eradication of Triple-Negative Breast Cancer Cells by Targeting Glycosylated PD-L1. Cancer Cell, 33(2), 187-201.e10. https://doi.org/10.1016/j.ccell.2018.01.009

Messex, J. K., & Liou, G.-Y. (2023). Impact of Immune Cells in the Tumor Microenvironment of Prostate Cancer Metastasis. Life, 13(2), 333. https://doi.org/10.3390/life13020333

Musabak, U., Bolu, E., Ozata, M., Oktenli, C., Sengul, A., Inal, A., Yesilova, Z., Kilciler, G., Ozdemir, I. C., & Kocar, I. H. (2003). Gonadotropin treatment restores in vitro interleukin-1β and tumour necrosis factor-α production by stimulated peripheral blood mononuclear cells from patients with idiopathic hypogonadotropic hypogonadism. Clinical and Experimental Immunology, 132(2), 265–270. https://doi.org/10.1046/j.1365-2249.2003.02141.x

Oflazoglu, E., Swart, D. A., Anders‐Bartholo, P., Jessup, H. K., Norment, A. M., Lawrence, W. A., Brasel, K., Tocker, J. E., Horan, T., Welcher, A. A., & Fitzpatrick, D. R. (2004). Paradoxical role of programmed death‐1 ligand 2 in Th2 immune responses in vitro and in a mouse asthma model in vivo. European Journal of Immunology, 34(12), 3326–3336. https://doi.org/10.1002/eji.200425197

Patsoukis, N., Wang, Q., Strauss, L., & Boussiotis, V. A. (2020). Revisiting the PD-1 pathway. Science Advances, 6(38). https://doi.org/10.1126/sciadv.abd2712

Pauken, K. E., & Wherry, E. J. (2015). Overcoming T cell exhaustion in infection and cancer. Trends in Immunology, 36(4), 265–276. https://doi.org/10.1016/j.it.2015.02.008

Prakoso, R. U., Danarto, R., Soerohardjo, I., Dany, Y. A., & Dwianingsih, E. K. (2024). The correlation between interleukin-4 (IL-4) and programmed cell death-ligand 2 (PD-L2) expression with clinicopathological characteristics on prostate cancer. Indonesian Journal of Biomedicine and Clinical Sciences, 56(01). https://doi.org/10.22146/inajbcs.v56i01.12438

Roca, H., Craig, M. J., Ying, C., Varsos, Z. S., Czarnieski, P., Alva, A. S., Hernandez, J., Fuller, D., Daignault, S., Healy, P. N., & Pienta, K. J. (2012). IL‐4 induces proliferation in prostate cancer PC3 cells under nutrient‐depletion stress through the activation of the JNK‐pathway and survivin up‐regulation. Journal of Cellular Biochemistry, 113(5), 1569–1580. https://doi.org/10.1002/jcb.24025

Ruiz-Lafuente, N., Alcaraz-García, M.-J., Sebastián-Ruiz, S., García-Serna, A.-M., Gómez-Espuch, J., Moraleda, J.-M., Minguela, A., García-Alonso, A.-M., & Parrado, A. (2015). IL-4 Up-Regulates MiR-21 and the MiRNAs Hosted in the CLCN5 Gene in Chronic Lymphocytic Leukemia. PLOS ONE, 10(4), e0124936. https://doi.org/10.1371/journal.pone.0124936

Setrerrahmane, S., & Xu, H. (2017). Tumor-related interleukins: old validated targets for new anti-cancer drug development. Molecular Cancer, 16(1), 153. https://doi.org/10.1186/s12943-017-0721-9

Sharma, P., Hu-Lieskovan, S., Wargo, J. A., & Ribas, A. (2017). Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell, 168(4), 707–723. https://doi.org/10.1016/j.cell.2017.01.017

Syn, N. L., Teng, M. W. L., Mok, T. S. K., & Soo, R. A. (2017). De-novo and acquired resistance to immune checkpoint targeting. The Lancet Oncology, 18(12), e731–e741. https://doi.org/10.1016/S1470-2045(17)30607-1

Takeshi, U., Sadar, M. D., Suzuki, H., Akakura, K., Sakamoto, S., Shimbo, M., Suyama, T., Imamoto, T., Komiya, A., Yukio, N., & Ichikawa, T. (2005). Interleukin-4 in patients with prostate cancer. Anticancer Research, 25(6C), 4595–4598.

Tang, S., Ning, Q., Yang, L., Mo, Z., & Tang, S. (2020). Mechanisms of immune escape in the cancer immune cycle. International Immunopharmacology, 86, 106700. https://doi.org/10.1016/j.intimp.2020.106700

Tao, H., Qian, P., Wang, F., Yu, H., & Guo, Y. (2017). Targeting CD47 Enhances the Efficacy of Anti-PD-1 and CTLA-4 in an Esophageal Squamous Cell Cancer Preclinical Model. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 25(9), 1579–1587. https://doi.org/10.3727/096504017X14900505020895

Topalian, S. L., Drake, C. G., & Pardoll, D. M. (2015). Immune Checkpoint Blockade: A Common Denominator Approach to Cancer Therapy. Cancer Cell, 27(4), 450–461. https://doi.org/10.1016/j.ccell.2015.03.001

Tsirigotis, P., Savani, B. N., & Nagler, A. (2016). Programmed death-1 immune checkpoint blockade in the treatment of hematological malignancies. Annals of Medicine, 48(6), 428–439. https://doi.org/10.1080/07853890.2016.1186827

Zhang, W., Cao, G., Wu, F., Wang, Y., Liu, Z., Hu, H., & Xu, K. (2023). Global Burden of Prostate Cancer and Association with Socioeconomic Status, 1990–2019: A Systematic Analysis from the Global Burden of Disease Study. Journal of Epidemiology and Global Health, 13(3), 407–421. https://doi.org/10.1007/s44197-023-00103-6

Zong, L., Sun, Z., Mo, S., Lu, Z., Yu, S., Xiang, Y., & Chen, J. (2021). PD-L1 expression in tumor cells is associated with a favorable prognosis in patients with high-risk endometrial cancer. Gynecologic Oncology, 162(3), 631–637. https://doi.org/10.1016/j.ygyno.2021.07.009




DOI: http://dx.doi.org/10.30829/contagion.v7i2.24982

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Ibnu Widya Argo, Raden Danarto, Tanaya Ghinorawa, Indrawarman Soerohardjo

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 
Contagion: Scientific Periodical Journal of Public Health and Coastal Health by Program Studi Ilmu Kesehatan Masyarakat is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.