Exploration of The Neutrophil-to-Lymphocyte Ratio as an Indicator of Inflammation with Hemoglobin and Creatinine Levels as an Illustration of Kidney Function in Tuberculosis Cases

Christina Destri Wiwis Wijayanti, Waode Fifin Ervina Muslihi, Herin Mawarti

Abstract


Tuberculosis (TB) remains a major global health challenge, consistently ranking among the leading causes of morbidity and mortality worldwide. Its chronic progression, ease of airborne transmission, and potential to induce systemic inflammation and multi-organ involvement underscore the urgency of timely diagnosis and monitoring of disease progression and treatment response. In this context, the neutrophil-to-lymphocyte ratio (NLR) has emerged as a simple and cost-effective biomarker of systemic inflammation. This study aimed to investigate the association between NLR and two key clinical parameters, haemoglobin and creatinine levels, as indicators of anemia and renal function, respectively, in TB patients. A descriptive analytical observational study with a cross-sectional design was conducted at the Immunology Laboratory of the Faculty of Health Sciences, Maarif Hasyim Latif University, from August 2024 to January 2025. The study sample comprised 80 adult TB patients, and data were analyzed using Spearman's rank correlation via SPSS version 25. Results revealed a statistically significant weak negative correlation between NLR and hemoglobin levels (p = 0.040, r = -0.230), suggesting that heightened inflammation may be associated with lower hemoglobin levels, potentially due to inflammation-induced anemia. In contrast, the correlation between NLR and creatinine levels was not statistically significant (p = 0.303, r = 0.117), indicating a weak and clinically inconclusive relationship between systemic inflammation and renal function in patients without evident kidney disorders. These findings underscore the potential utility of NLR as an early marker of inflammation-related anemia in TB patients. However, NLR alone may be insufficient for assessing renal function, highlighting the need for complementary diagnostic parameters in future research. Overall, NLR offers promise as a clinical evaluation tool in TB management, particularly in resource-limited settings.

 

Keywords: Neutrophil-to-Lymphocyte Ratio (NLR), Tuberculosis, Inflammatory Biomarkers, Anemia, Kidney Function.


Full Text:

PDF

References


Akase, T., Kawamoto, R., Ninomiya, D., Kikuchi, A., & Kumagi, T. (2020). Neutrophil-to-lymphocyte ratio is a predictor of renal dysfunction in Japanese patients with type 2 diabetes. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 481–487. https://doi.org/10.1016/j.dsx.2020.04.029

Aktas, G. (2021). Hematological predictors of novel Coronavirus infection. Revista Da Associação Médica Brasileira, 67(Suppl 1), 1–2.

Alsayed, S. S. R., & Gunosewoyo, H. (2023). Tuberculosis: pathogenesis, current treatment regimens and new drug targets. International Journal of Molecular Sciences, 24(6), 5202–5225. https://doi.org/10.3390/ijms24065202

Alshuweishi, Y., Alfaifi, M., Almoghrabi, Y., Al-Sheikh, Y. A., & Alfhili, M. A. (2023). A Retrospective Analysis of the Association of Neutrophil–Lymphocyte Ratio (NLR) with Anemia in the Saudi Population. Medicina (Lithuania), 59(9), 1592–1604. https://doi.org/10.3390/medicina59091592

Arif, S. K., Muchtar, F., Nurdin, H., Salam, S. H., & Tanra, A. H. (2023). Hubungan Neutrophil-Lymphocyte Ratio dengan Kejadian Acute Kidney Injury Pada Pasien Sepsis yang Dirawat di Intensive Care Unit (ICU). Majalah Anestesia & Critical Care, 41(3), 143–154. https://doi.org/10.55497/majanestcricar.v41i3.304

Ashenafi, S., Loreti, M. G., Bekele, A., Aseffa, G., Amogne, W., Kassa, E., Aderaye, G., & Brighenti, S. (2023). Inflammatory immune profiles associated with disease severity in pulmonary tuberculosis patients with moderate to severe clinical TB or anemia. Frontiers in Immunology, 14, 1–17. https://doi.org/10.3389/fimmu.2023.1296501

Chen, H. long, Wu, C., Cao, L., Wang, R., Zhang, T. yang, & He, Z. (2024). The association between the neutrophil-to-lymphocyte ratio and type 2 diabetes mellitus: a cross-sectional study. BMC Endocrine Disorders, 24(1), 107–117. https://doi.org/10.1186/s12902-024-01637-x

Chhabra, S., Kashyap, A., Bhagat, M., Mahajan, R., & Sethi, S. (2021). Anemia and Nutritional Status in Tuberculosis Patients. International Journal of Applied & Basic Medical Research, 11(4), 226–230. https://doi.org/10.4103/ijabmr.ijabmr_76_21

Dasaradhan, T., Koneti, J., Kalluru, R., Gadde, S., Cherukuri, S. priya, & Chikatimalla, R. (2022). Tuberculosis-Associated Anemia: A Narrative Review. Cureus, 14(8), 1–8. https://doi.org/10.7759/cureus.27746

DesJardin, L. E., Kaufman, T. M., Potts, B., Kutzbach, B., Yi, H., & Schlesinger, L. S. (2002). Mycobacterium tuberculosis-infected human macrophages exhibit enhanced cellular adhesion with increased expression of LFA-1 and ICAM-1 and reduced expression and/or function of complement receptors, FcγRII and the mannose receptor. Microbiology, 148(10), 3161–3171.

Devi, N. S., Maftuhah, I. M., Khasanah, U., Nurokhman, N. R., & Purbaningsih, E. S. (2024). Nursing Care for Mr. S, Diagnosed with Pulmonary Tuberculosis (TB) in the Emergency Department (ED) of Gunung Jati Hospital in Cirebon City. Al Makki Health Informatics Journal, 2(4), 240–245. https://doi.org/10.57185/hij.v2i4.23

Fu, H., Liu, H., Sun, W., Zhang, H., & Zhu, H. (2025). Diagnostic value of neutrophil-to-lymphocyte ratio, fibrinogen-to-albumin ratio and red blood cell distribution width in tuberculosis combined with other bacterial infections. BMC Pulmonary Medicine, 25(1), 134. https://doi.org/10.1186/s12890-025-03588-y

Gao, J.-L., Shen, J., Yang, L.-P., Liu, L., Zhao, K., Pan, X.-R., Li, L., & Xu, J.-J. (2024). Neutrophil-to-lymphocyte ratio associated with renal function in type 2 diabetic patients. World Journal of Clinical Cases, 12(14), 2308–2315. https://doi.org/10.12998/wjcc.v12.i14.2308

Gill, C. M., Dolan, L., Piggott, L. M., & McLaughlin, A. M. (2022). New developments in tuberculosis diagnosis and treatment. Breathe, 18(1), 210149–210161. https://doi.org/10.1183/20734735.0149-2021

Hunter, R. L. (2020). The pathogenesis of tuberculosis–the Koch phenomenon reinstated. Pathogens, 9(10), 813–838. https://doi.org/10.3390/pathogens9100813

McCaffrey, E. F., Donato, M., Keren, L., Chen, Z., Delmastro, A., Fitzpatrick, M. B., Gupta, S., Greenwald, N. F., Baranski, A., Graf, W., Kumar, R., Bosse, M., Fullaway, C. C., Ramdial, P. K., Forgó, E., Jojic, V., Van Valen, D., Mehra, S., Khader, S. A., Angelo, M. (2022). The immunoregulatory landscape of human tuberculosis granulomas. Nature Immunology, 23(2), 318–329. https://doi.org/10.1038/s41590-021-01121-x

Min, S., Puxuan, L. U., Weijun, F., Yuanyuan, H., & Ruiyun, L. (2023). The global tuberculosis report 2022: key data analysis for China and the global world. Electronic Journal of Emerging Infectious Diseases, 8(1), 87–92. https://doi.org/10.19871/j.cnki.xfcrbzz.2023.01.018

Shamaei, M., & Mirsaeidi, M. (2021). Nontuberculous mycobacteria, macrophages, and host innate immune response. Infection and Immunity, 89(8), 12. https://doi.org/10.1128/iai.00812-20

Strong, E. J., Wang, J., Ng, T. W., Porcelli, S. A., & Lee, S. (2022). Mycobacterium tuberculosis PPE51 Inhibits Autophagy by Suppressing Toll-Like Receptor 2-Dependent Signaling. MBio, 13(3), 17. https://doi.org/10.1128/mbio.02974-21

Taniguchi, J., Aso, S., Jo, T., Matsui, H., Fushimi, K., & Yasunaga, H. (2024). Factors affecting in-hospital mortality in patients with miliary tuberculosis: a retrospective cohort study. Respiratory Investigation, 62(4), 520–525. https://doi.org/10.1016/j.resinv.2024.04.004

Temizhan, E., Mirtagioglu, H., & Mendes, M. (2022). Which correlation coefficient should be used for investigating relations between quantitative variables. Acad. Sci. Res. J. Eng. Technol. Sci, 85(1), 265–277. https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/7326

Vega, V., Rodríguez, S., Van der Stuyft, P., Seas, C., & Otero, L. (2021). Recurrent TB: a systematic review and meta-analysis of the incidence rates and the proportions of relapses and reinfections. Thorax, 76(5), 494–502. https://doi.org/10.1136/thoraxjnl-2020-215449

WHO. (2025). Tuberculosis. Ganeva: World Health Organization (WHO).

Zha, B. S., Desvignes, L., Fergus, T. J., Cornelius, A., Cheng, T.-Y., Moody, D. B., & Ernst, J. D. (2022). Bacterial Strain–Dependent Dissociation of Cell Recruitment and Cell-to-Cell Spread in Early M. tuberculosis Infection. Mbio, 13(3), e01332-22. https://doi.org/10.1128/mbio.01332-22




DOI: http://dx.doi.org/10.30829/contagion.v7i1.24034

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Christina Destri Wiwis Wijayanti, Waode Fifin Ervina Muslihi, Herin Mawarti

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 
Contagion: Scientific Periodical Journal of Public Health and Coastal Health by Program Studi Ilmu Kesehatan Masyarakat is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.