Digital Mapping of Dengue Mosquito Movement towards Weather Factors, Mosquito Density, and Cultural Factors in Jember Regency
Abstract
This study aims to map a digital movement of the Aedes aegypti mosquito in high-risk areas for dengue fever outbreaks, taking into account the public’s knowledge of dengue fever, attitude towards their environment, action towards the environment, environment conditions of the community, weather and climate factors, and mosquito density assessed through the House Index(HI). This study is a quantitative observational analytic research with a cross-sectional design. The result of the linear regression test on the cultural variable of knowledge, attitudes, and family support showed an value of α >0,05, indicating the knowledge, attitude, and family support are not important internal factors in aeradicating dengue fever. Mainwhile, the action and community leader support variable showed value α <0,05, which are important internal and external factors in reducing dengue fever levels. Then, HI value for these sub-districts is 6-7, meaning thet the mosquito density is high. The Aedes aegypti mosquito buffer zone has a flying distance 200 meters according to the CDC, so ares within that reach can be affected. This is clarified by using a digital map of the risk area of the Aedes aegypti mosquito causing dengue fever. In conclution, the digital map that includes cultural data, aera characteristics starting from weather, climate, population density, altitude, temperatue, humadity, and characteristics of mosquitoes inhabiting an area, whether they are clustered os spread, can cause the movement of dengue fever mosquitoes or Aedes aegypti to become more aggressive in their activities. So, the internal and external factors in the habitat of the Aedes aegypti mosquito can cause its movement to become more dunamic in spreading the dengue virus.
Keywords: Aedes aegypti Mosquito, Culture, Dengue Fever, GIS (Geographic Information System)
Full Text:
PDFReferences
Abualamah, W. A., Akbar, N. A., Banni, H. S., & Bafail, M. A. (2021). Forecasting the morbidity and mortality of dengue fever in KSA: A time series analysis (2006–2016). Journal of Taibah University Medical Sciences, 16(3). https://doi.org/10.1016/j.jtumed.2021.02.007
Al-Tawfiq, J. A., & Memish, Z. A. (2018). Dengue Hemorrhagic Fever Virus in Saudi Arabia: A Review. In Vector-Borne and Zoonotic Diseases (Vol. 18, Issue 2). https://doi.org/10.1089/vbz.2017.2209
Arfan, I., Rizky, A., & Hernawan, A. D. (2022). Factors associated with dengue fever prevention practices in endemic area. International Journal of Public Health Science, 11(4). https://doi.org/10.11591/ijphs.v11i4.21784
Chan, S. W., Abid, S. K., Sulaiman, N., Nazir, U., & Azam, K. (2022). A systematic review of the flood vulnerability using geographic information system. In Heliyon (Vol. 8, Issue 3). https://doi.org/10.1016/j.heliyon.2022.e09075
Corbel, V., Kont, M. D., Ahumada, M. L., Andréo, L., Bayili, B., Bayili, K., Brooke, B., Pinto Caballero, J. A., Lambert, B., Churcher, T. S., Duchon, S., Etang, J., Flores, A. E., Gunasekaran, K., Juntarajumnong, W., Kirby, M., Davies, R., Lees, R. S., Lenhart, A., … Yadav, R. S. (2023). A new WHO bottle bioassay method to assess the susceptibility of mosquito vectors to public health insecticides: results from a WHO-coordinated multi-centre study. Parasites and Vectors, 16(1). https://doi.org/10.1186/s13071-022-05554-7
de Macêdo, S. F., Silva, K. A., de Vasconcelos, R. B., de Sousa, I. V., Mesquita, L. P. S., Barakat, R. D. M., Fernandes, H. M. C., Queiroz, A. C. M., Santos, G. P. G., Filho, V. C. B., Carrasquilla, G., Caprara, A., & Lima, J. W. de O. (2021). Scaling up of eco-bio-social strategy to control aedes aegypti in highly vulnerable areas in Fortaleza, Brazil: A cluster, non-randomized controlled trial protocol. International Journal of Environmental Research and Public Health, 18(3). https://doi.org/10.3390/ijerph18031278
Dinas Kesehatan Kabupaten Jember. (2019). Data Kesakitan DBD tahun 2018-2020 Kabupaten Jember Berdasarkan Kecamatan.
Diseases, Z. I., & Branch, D. (n.d.). Dengue and the Aedes albopictus mosquito.
Esri. (2019). What is GIS? | Geographic Information System Mapping Technology. In Esriuk.Com.
Fátima, M., Carmen, A., & Fassiano, N. (2019). A study on the epidemiology of dengue hemorrhagic fever . Boletin de Malariologia y Salud Ambiental, 59(2).
Ferede, G., Tiruneh, M., Abate, E., Kassa, W. J., Wondimeneh, Y., Damtie, D., & Tessema, B. (2018). Distribution and larval breeding habitats of Aedes mosquito species in residential areas of northwest Ethiopia. Epidemiology and Health, 40. https://doi.org/10.4178/epih.e2018015
Fernandes, M. S., Cordeiro, W., & Recamonde-Mendoza, M. (2021). Detecting Aedes aegypti mosquitoes through audio classification with convolutional neural networks. Computers in Biology and Medicine, 129. https://doi.org/10.1016/j.compbiomed.2020.104152
Gabiane, G., Yen, P. S., & Failloux, A. B. (2022). Aedes mosquitoes in the emerging threat of urban yellow fever transmission. In Reviews in Medical Virology (Vol. 32, Issue 4). https://doi.org/10.1002/rmv.2333
Gan, S. J., Leong, Y. Q., bin Barhanuddin, M. F. H., Wong, S. T., Wong, S. F., Mak, J. W., & Ahmad, R. B. (2021). Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: a review. In Parasites and Vectors (Vol. 14, Issue 1). https://doi.org/10.1186/s13071-021-04785-4
Gómez Gómez, R. E., Kim, J., Hong, K., Jang, J. Y., Kisiju, T., Kim, S., & Chun, B. C. (2022). Association between Climate Factors and Dengue Fever in Asuncion, Paraguay: A Generalized Additive Model. International Journal of Environmental Research and Public Health, 19(19). https://doi.org/10.3390/ijerph191912192
Jové, V., Gong, Z., Hol, F. J. H., Zhao, Z., Sorrells, T. R., Carroll, T. S., Prakash, M., McBride, C. S., & Vosshall, L. B. (2020). Sensory Discrimination of Blood and Floral Nectar by Aedes aegypti Mosquitoes. Neuron, 108(6). https://doi.org/10.1016/j.neuron.2020.09.019
Lai, Y. H. (2018). The climatic factors affecting dengue fever outbreaks in southern Taiwan: An application of symbolic data analysis. BioMedical Engineering Online, 17. https://doi.org/10.1186/s12938-018-0575-4
Lü, G., Batty, M., Strobl, J., Lin, H., Zhu, A. X., & Chen, M. (2019). Reflections and speculations on the progress in Geographic Information Systems (GIS): a geographic perspective. In International Journal of Geographical Information Science (Vol. 33, Issue 2). https://doi.org/10.1080/13658816.2018.1533136
M.Palaniyandi. (2019). Socio-economic, and environmental determinants of dengue and chikungunya transmission: GIS for epidemic surveillance and control: A systematic review. Int. Journal of Scientific Research, 8(2). https://doi.org/https://www.doi.org/10.36106/ijsr
Mercier, A., Obadia, T., Carraretto, D., Velo, E., Gabiane, G., Bino, S., Vazeille, M., Gasperi, G., Dauga, C., Malacrida, A. R., Reiter, P., & Failloux, A. B. (2022). Impact of temperature on dengue and chikungunya transmission by the mosquito Aedes albopictus. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-10977-4
Notoatmodjo, S. (2020). PROMOSI KESEHATAN TEORI & APLIKASI. In Bab I.
Parker, C., Garcia, F., Menocal, O., Jeer, D., & Alto, B. (2019). A mosquito workshop and community intervention: A pilot education campaign to identify risk factors associated with container mosquitoes in san pedro sula, honduras. International Journal of Environmental Research and Public Health, 16(13). https://doi.org/10.3390/ijerph16132399
Riskesdas. (2018). Wilayah KLB DBD Ada di 11 Provinsi. Kementerian Kesehatan RI, 4247608(021), 613–614.
Roy, S. K., & Bhattacharjee, S. (2021). Dengue virus: Epidemiology, biology, and disease aetiology. In Canadian Journal of Microbiology (Vol. 67, Issue 10). https://doi.org/10.1139/cjm-2020-0572
Singh, A. (2021). A review of wastewater irrigation: Environmental implications. In Resources, Conservation and Recycling (Vol. 168). https://doi.org/10.1016/j.resconrec.2021.105454
Sintayehu, D. W., Tassie, N., & De Boer, W. F. (2020). Present and future climatic suitability for dengue fever in Africa. Infection Ecology and Epidemiology, 10(1). https://doi.org/10.1080/20008686.2020.1782042
Ware-Gilmore, F., Novelo, M., Sgrò, C. M., Hall, M. D., & McGraw, E. A. (2023). Assessing the role of family level variation and heat shock gene expression in the thermal stress response of the mosquito Aedes aegypti. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1873). https://doi.org/10.1098/rstb.2022.0011
Zhang, Y., Wan, Q., & Yang, N. (2019). Recent Advances of Porous Graphene: Synthesis, Functionalization, and Electrochemical Applications. In Small (Vol. 15, Issue 48). https://doi.org/10.1002/smll.201903780
Zhao, Z., Tian, D., & McBride, C. S. (2021). Development of a pan-neuronal genetic driver in Aedes aegypti mosquitoes. Cell Reports Methods, 1(3). https://doi.org/10.1016/j.crmeth.2021.100042
Zuharah, W. F., Yousaf, A., Ooi, K. L., & Sulaiman, S. F. (2021). Larvicidal activities of family Anacardiaceae on Aedes mosquitoes (Diptera: Culicidae) and identification of phenolic compounds. Journal of King Saud University - Science, 33(5). https://doi.org/10.1016/j.jksus.2021.101471
DOI: http://dx.doi.org/10.30829/contagion.v5i2.15146
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Kukuh Jalu Prastyantoko, Dwi Wahyuni, Saiful Bukhori
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.