MODEL OF SPREAD CONTENT DISEASE FOR ASSOCIATION OF VACCINE

Ety Jumiati, Ismail Husein

Abstract


Transmission of infectious diseases in epidemiological models is usually based on the assumption that populations in random mixing. However, in reality this assumption is not fulfilled, because each individual has a limited set of contacts that they can pass through infection; the ensemble of all such contacts forms a complex network. Knowledge of network structure allows a model to calculate the dynamics of an epidemic at a population scale from individual level infection behavior. This paper discusses mathematical models to illustrate the epidemic pattern of transmission of infectious diseases in dynamic networks based on compartment systems.

Full Text:

PDF

References


Albert, R., Jeong, H. & Baraba´si, A.-L. 1999 Diameter of the world-wide web. Nature 401, 130-131.

Albert, R., Jeong, H. & Baraba´si, A.-L. 2000 Error and attack tolerance of complex networks. Nature 406, 378-381.

Bailey, N. T. J. 1957 The mathematical theory of epidemics. London: Griffin.

Bak, P., Chen, K. & Tang, C. 1990 A forest-fire model and some thoughts on turbulence. Phys. Lett. A 147, 297-300.

Baraba´si, A. L. & Albert, R. 1999 Emergence of scaling in random networks. Science 286, 509-512.

Barbour, A. & Mollison, D. 1990 Epidemics and random graphs. In Stochastic processes in epidemic theory (ed. J.-P. Gabriel, C. Lefe`vre & P. Picard), pp. 86-89. New York: Springer.

Bearman, P. S., Moody, J. & Stovel, K. 2004 Chains of affection: the structure of adolescent romantic and sexual networks. Am. J. Sociol. 110, 44-91.

Bolloba´s, B. 1979 Graph theory. New York: Springer.

Bolloba´s, B. 1985 Random graphs. London: Academic Press.

Boots, M. & Sasaki, A. 1999 ‘Small worlds’ and the evolution of virulence: infection occurs locally and at a distance. Proc. R. Soc. B 266, 1933-1938. (doi:10.1098/rspb.1999. 0869.)

Diekmann, O., Heesterbeek, J. A. P. & Metz, J. A. J. 1998 A deterministic epidemic model taking account of repeated contacts between the same individuals. J. Appl. Prob. 35, 462-468.

Dietz, K. & Hadeler, K. P. 1988 Epidemiological models for sexually transmitted diseases. J. Math. Biol. 26, 1-25.

Doherty, I. A., Padian, N. S., Marlow, C. & Aral, S. O. 2005 Determinants and consequences of sexual networks as they affect the spread of sexually transmitted infections. J. Infect. Dis. 191, S42-S54.

Eames, K. T. D. & Keeling, M. J. 2002 Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc. Natl Acad. Sci. USA 99, 13330-13335.

Eames, K. T. D. & Keeling, M. J. 2003 Contact tracing and disease control. Proc.R. Soc. B 270, 2565-2571. (doi:10.1098/rspb.2003.2554.)

Eames, K. T. D. & Keeling, M. J. 2004 Monogamous networks and the spread of sexually transmitted diseases. Math. Biosci. 189, 115-130.

Eichner, M. 2003 Case isolation and contact tracing can prevent the spread of smallpox. Am. J. Epidemiol. 158, 118-128.

Eubank, S., Guclu, H., Kumar, V. S. A., Marathe, M. V., Srinivasan, A., Toroczkai, Z. & Wang, N. 2004 Modelling disease outbreaks in realistic urban social networks. Nature 429, 180-184.

Ferguson, N. M. & Garnett, G. P. 2000 More realistic models of sexually transmitted disease transmission dynamics: sexual partnership networks, pair models, and moment closure. Sex. Transm. Dis. 27, 600-609.

Ferguson, N. M., Donnelly, C. A. & Anderson, R. M. 2001 The foot-and-mouth epidemic in Great Britain: pattern of spread and impact of interventions. Science 292, 1155-1160. Frank, O. & Strauss, D. 1986 Markov Graphs. J. Am. Stat. Soc. 81, 832-842.

Fraser, C., Riley, S., Anderson, R. M. & Ferguson, N. M. 2004 Factors that make an infectious disease outbreak controllable. Proc. Natl Acad. Sci. USA 101, 6146-6151.

Garnett, G. P. & Anderson, R. M. 1996 Sexually transmitted diseases and sexual behavior: insights from mathematical models. J. Infect. Dis. 174, S150-S161.

Ghani, A. C. & Garnett, G. P. 1998 Measuring sexual partner networks for transmission of sexually transmitted diseases. J. R. Stat. Soc. A 161, 227-238.

Ghani, A. C. & Garnett, G. P. 2000 Risks of acquiring and transmitting sexually transmitted diseases in sexual partner networks. Sex. Transm. Dis. 27, 579-587.

Ghani, A. C., Swinton, J. & Garnett, G. P. 1997 The role of sexual partnership networks in the epidemiology of gonorrhea. Sex. Transm. Dis. 24, 45-56.

Gilbert, M., Mitchell, A., Bourn, D., Mawdsley, J., Clifton-Hadley, R. & Wint, W. 2005 Cattle movements and bovine tuberculosis in Great Britain. Nature 435, 491-496.

Grassberger, P. 1983 On the critical behaviour of the general epidemic process and dynamical percolation. Math. Biosci. 63, 157-172.

Grenfell, B. T. 1992 Chance and chaos in measles dynamics. J. R. Stat. Soc. B 54, 383-398.

Grenfell, B. T., Bjornstad, O. N. & Kappey, J. 2001 Travelling waves and spatial hierarchies in measles epidemics. Nature 414, 716-723.

Grimmett, G. 1989 Percolation. Berlin: Springer.

Halloran, M. E., Longini Jr. I. M., Nizam, A. & Yang, Y. 2002 Containing bioterrorist smallpox. Science 298, 1428-1432.

Handcock, M. S. & Jones, J. H. 2004 Likelihood-based inference for stochastic models of sexual network formation. Theor. Popul. Biol. 65, 413-422. Harary, F. 1969 Graph theory. Reading, MA: Addison-Wesley.

Harris, T. E. 1974 Contact interactions on a lattice. Ann. Probab. 2, 969-988. Haydon, D. T., Chase-Topping, M., Shaw, D. J., Matthews, L., Friar, J. K., Wilesmith, J. & Woolhouse, M. E. J. 2003 The construction and analysis of epidemic trees with reference to the 2001 UK foot-and-mouth outbreak. Proc. R. Soc. B 270, 121-127. (doi:10.1098/rspb.2002.2191.)

Hethcote, H. W. & Yorke, J. A. 1984 Gonorrhea transmission dynamics and control. Springer Lecture Notes in Biomathematics. Berlin: Springer. Jeong, H., Tombar, B., Albert, R., Oltvai, Z. N. & Baraba´si, A.-L. 2000 The large-scale organization of metabolic networks. Nature 407, 651-654.

Jolly, A. M. & Wylie, J. L. 2002 Gonorrhoea and Chlamydia core groups and sexual networks in Manitoba. Sex. Transm. Infect. 78, i45-i51.

Karlberg, M. 1997 Testing transitivity in graphs. Soc. Networks 19, 325-343. Keeling, M. J. 1997 Modelling the persistence of measles. Trends Microbiol. 5, 513-518.




DOI: http://dx.doi.org/10.30829/zero.v4i2.3166

Refbacks

  • There are currently no refbacks.