Egg Quality Classification Using Support Vector Machine Based on Image and Non-Image Fusion

Faizal Abrolillah, Irwan Budi Santoso, Totok Chamidy

Abstract


Egg production and consumption in Indonesia continue to rise, highlighting the need for accurate egg quality assessment. This study evaluated egg quality using a Support Vector Machine (SVM) model that integrates image and non-image features through feature-level fusion. A total of 750 eggs were analyzed based on external characteristics (shell color, cleanliness, texture, weight, and images) and internal characteristics (odor, albumen, yolk, black spots, images). Image data were reprocessed through grayscale conversion, resizing, and texture extraction using the Gray Level Co-occurrence Matrix (GLCM). Both linear and polynomial SVM kernel with varying degrees were tested, and the polynomial kernel (degree 6) achieved the best, with 86% accuracy, 91% precision, and 87% recall. These results demonstrate that integrating image and non-image features significantly enhances egg quality classification compared to using either data type alone. These findings provide valuable insights for developing automated egg grading system in the poultry industry.


Keywords


Egg; Support Vektor Machine; Image; Non-Image

References


Kementan, “Buku Outlook Komoditas Peternakan Daging Domba,” 2023.

N. U. Idayanti, Darmawati S, “105435-ID-perbedaan-variasi-lama-simpan-telur-ayam.pdf,” Jurnal Kesehatan, vol. 2, no. 1. pp. 19–26, 2009.

G. Kralik, Z. Kralik, M. Grčević, and D. Hanžek, “Quality of Chicken Meat,” in Animal Husbandry and Nutrition, 2018. doi: 10.5772/intechopen.72865.

F. G. Silversides and T. A. Scott, “Effect of Storage and Layer Age on Quality of Eggs.pdf,” pp. 1240–1245, 2001.

R. S. Vargas Cruz, L. C. Ruiz Salvador, and M. C. Navas Lema, “Combinando la ovoscopía manual y automática: una soluciónsegura y socialmente responsable,” Enfoque UTE, no. 2, pp. 70–76, 2018.

T. Eshetie, A. Tesema, D. Bekele, and T. Assefa, “Effect of Genotype, Environment, and Their Interactions on Internal as well as External Egg Quality Traits of Different Chicken Genotypes and Poultry Species in Ethiopia and Beyond: A Review,” Mathews J. Nutr. Diet., vol. 7, no. 1, pp. 1–15, 2024, doi: 10.30654/mjnd.10031.

H. E. Samli, A. Agma, and N. Senkoylu, “Effects of storage time and temperature on egg quality in old laying hens,” J. Appl. Poult. Res., vol. 14, no. 3, pp. 548–553, 2005, doi: 10.1093/japr/14.3.548.

S. Saifullah and R. Drezewski, “Non-Destructive Egg Fertility Detection in Incubation Using SVM Classifier Based on GLCM Parameters,” Procedia Comput. Sci., vol. 207, no. Kes, pp. 3248–3257, 2022, doi: 10.1016/j.procs.2022.09.383.

W. Zhang, L. Pan, S. Tu, G. Zhan, and K. Tu, “Non-destructive internal quality assessment of eggs using a synthesis of hyperspectral imaging and multivariate analysis,” J. Food Eng., vol. 157, pp. 41–48, 2015, doi: 10.1016/j.jfoodeng.2015.02.013.

J. H. So, S. Y. Joe, S. H. Hwang, S. J. Hong, and S. H. Lee, “Current advances in detection of abnormal egg: a review,” J. Anim. Sci. Technol., vol. 64, no. 5, pp. 813–829, 2022, doi: 10.5187/jast.2022.e56.

J. U. Raji, A. O.; Aliyu, J.; Igwebuike, “Effect of storage methods and time on egg quality traits of laying hens in a hot dry climate,” ARPN J. Agric. Biol. Sci., vol. 4, no. 4, pp. 1–7, 2009.

E. Altuntaş and A. Şekeroǧlu, “Effect of egg shape index on mechanical properties of chicken eggs,” J. Food Eng., vol. 85, no. 4, pp. 606–612, 2008, doi: 10.1016/j.jfoodeng.2007.08.022.

D. N. Kanasuah, K. Adomako, B. A. Hagan, and O. S. Olympio, “Influence of Feather Genotype, Storage Duration and Temperature on the External and Internal Qualities of Chicken Table Eggs,” Online J. Anim. Feed Res., vol. 15, no. 1, pp. 21–32, 2025, doi: 10.51227/ojafr.2025.4.

A. Gacem et al., “Valorization of eggshell waste as sustainable mechanical reinforcement in biodegradable bio-packaging materials,” J. Agric. Food Res., vol. 23, p. 102273, 2025, doi: 10.1016/j.jafr.2025.102273.

T. Rho and B. Cho, “Non-Destructive Evaluation of Physicochemical Properties for Egg Freshness : A Review,” Agricultue, vol. 14, no. 11, pp. 1–19, 2024, doi: 10.3390/agriculture14112049.

Z. Gao, J. Zheng, and G. Xu, “Research Progress and Technological Application Prospects of Comprehensive Evaluation Methods for Egg Freshness,” Foods, vol. 14, no. 9, pp. 1–19, 2025, doi: 10.3390/foods14091507.

W. Zhou et al., “Analysis of egg consumption trends: Gen Z egg consumption preferences and the classification of pink-shell eggs in China,” Poult. Sci., vol. 104, no. 11, p. 105727, 2025, doi: 10.1016/j.psj.2025.105727.

K. Lokaewmanee, K. Yamauchi, T. Komori, and K. Saito, “Enhancement of egg yolk color by paprika combined with a probiotic,” J. Appl. Poult. Res., vol. 20, no. 1, pp. 90–94, 2011, doi: 10.3382/japr.2009-00140.

Maimunah, “Deteksi Kebersihan Kerabang Telur Ayam Berdasarkan Pengolahan Ctra Digital,” J. Penelit. Ilmu Komputer, Syst. Embed. Log., vol. 3, no. 1, pp. 41–49, 2015.

Y. D. Distya, Z. Ludfi, D. Sari, B. Cahya, and E. Putra, “‘ EGG-GRADING ’ Mesin Klasifikasi Telur Ayam ( Berat Telur dan Telur Rusak ) Otomatis Berbasis Microcontroller,” Pros. Nas. Rekayasa Teknol. Ind. dan Inf. XIV Tahun 2019, vol. 2019, no. November, pp. 380–385, 2019. https://journal.itny.ac.id/index.php/ReTII/article/view/1429

X. Yang, R. B. Bist, S. Subedi, and L. Chai, “A Computer Vision-Based Automatic System for Egg Grading and Defect Detection,” Animals, vol. 13, no. 14, 2023, doi: 10.3390/ani13142354.

C. Kanan and G. W. Cottrell, “Color-to-grayscale: Does the method matter in image recognition?,” PLoS One, vol. 7, no. 1, 2012, doi: 10.1371/journal.pone.0029740.

F. Bolikulov, R. Nasimov, A. Rashidov, F. Akhmedov, and Y. I. Cho, “Effective Methods of Categorical Data Encoding for Artificial Intelligence Algorithms,” Mathematics, vol. 12, no. 16, 2024, doi: 10.3390/math12162553.

A. Seveso, A. Campagner, D. Ciucci, and F. Cabitza, “Ordinal labels in machine learning: A user-centered approach to improve data validity in medical settings,” BMC Med. Inform. Decis. Mak., vol. 20, no. Suppl 5, pp. 1–14, 2020, doi: 10.1186/s12911-020-01152-8.

D. Anelli, P. Morano, F. Tajani, and M. R. Guarini, “The Interpretative Effects of Normalization Techniques on Complex Regression Modeling: An Application to Real Estate Values Using Machine Learning,” Inf., vol. 16, no. 6, pp. 1–28, 2025, doi: 10.3390/info16060486.

V. Cortes, Corinna; vapnik, “In silico log p prediction for a large data set with support vector machines, radial basis neural networks and multiple linear regression,” Chem. Biol. Drug Des., vol. 74, no. 2, pp. 142–147, 1995, doi: 10.1111/j.1747-0285.2009.00840.x.

Armanda, Syamsul Bahri Agus, and Jonson Lumban Gaol, “Classification and Distribution Of Mangrove Genus Using Multispectral Unmanned Aerial Vehicle (UAV) In The Waters Of Lancang Island, Kepulauan Seribu, Indonesia,” J. Geosci. Eng. Environ. Technol., vol. 9, no. 2, pp. 210–220, 2024, doi: 10.25299/jgeet.2024.9.2.17195.

S. Arlot and A. Celisse, “A survey of cross-validation procedures for model selection,” Stat. Surv., vol. 4, pp. 40–79, 2010, doi: 10.1214/09-SS054.

J. Kivimäki, J. Białek, W. Kuberski, and J. K. Nurminen, “Performance Estimation in Binary Classification Using Calibrated Confidence,” no. Ml, 2025. https://doi.org/10.48550/arXiv.2505.05295

X. Liu and C. Zhao, “Research on Image Feature Extraction Algorithm of the Egg and Egg White Protein Thermal Gelation Based on PCA/ICA,” Comput. Intell. Neurosci., vol. 2022, pp. 1–11, 2022, doi: 10.1155/2022/1266332.

I. S. Isa, U. K. Yusof, and M. M. Zain, “Image Processing Approach for Grading IVF Blastocyst: A State-of-the-Art Review and Future Perspective of Deep Learning-Based Models,” Appl. Sci., vol. 13, no. 2, pp. 1–22, 2023, doi: 10.3390/app13021195.




DOI: http://dx.doi.org/10.30829/zero.v9i2.26263

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Publisher :
Department of Mathematics
Faculty of Science and Technology
Universitas Islam Negeri Sumatera Utara Medan
📱 WhatsApp:085270009767 (Admin Official)
SINTA 2 Google Scholar CrossRef Garuda DOAJ