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The widespread adoption of cloud storage systems has increased the demand 

for cryptographic mechanisms that ensure data confidentiality while limiting 

security risks associated with static and long-lived encryption keys. Although 

hybrid RSA–AES schemes are commonly employed to balance security and 

computational efficiency, key management—particularly autonomous and 

quantitatively bounded key rotation—remains insufficiently formalized. This 

study proposes a hybrid RSA–AES cryptosystem equipped with an autonomous 

auto-key rotation mechanism defined through explicit analytical constraints. 

AES-256 is employed for bulk data encryption, while RSA-2048 is used for 

secure encapsulation of symmetric session keys. Key renewal is governed by 

inequality-based conditions on elapsed time (Δt ≤ 30 minutes) and encryption 

usage (n ≤ 10 operations), yielding a mathematically bounded key lifecycle 

without manual intervention or external infrastructure. System performance and 

operational security properties are evaluated in a simulated cloud environment 

using file sizes ranging from 100 KB to 10 MB. Quantitative metrics include 

encryption and decryption time complexity, computational overhead relative to 

AES-only encryption, key variability measured by Hamming distance, and data 

integrity verification using SHA-256. Experimental results demonstrate linear 

scalability and a stable average overhead of approximately 12.8%, indicating a 

bounded constant-factor cost independent of workload size. Successive AES-

256 keys exhibit a mean Hamming distance of 127.42 bits, consistent with high 

key variability and effective key freshness. These findings show that analytically 

constrained key rotation enables controlled symmetric-key exposure while 

preserving practical efficiency overall. 
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1. INTRODUCTION 
The rapid adoption of cloud computing has fundamentally transformed how organizations and individuals 

store, access, and manage data. As a core component of cloud services, cloud storage provides scalability, 

accessibility, and cost efficiency[1][2]. However, its decentralized and shared architecture introduces significant 

security challenges, particularly in ensuring data confidentiality, integrity, and effective cryptographic key 

management. One of the most critical vulnerabilities arises from the continued use of static or long-lived 

encryption keys, which increases the risk of unauthorized access, prolonged key exposure, and large-scale data 

breaches. 

Symmetric encryption algorithms such as the Advanced Encryption Standard (AES) are computationally 

efficient and well suited for encrypting large data volumes. Nevertheless, AES-based systems suffer from inherent 

key-management limitations, including secure key distribution and uncontrolled key reuse. In contrast, 

asymmetric cryptographic schemes such as the Rivest–Shamir–Adleman (RSA) algorithm provide secure key 

exchange but incur substantial computational overhead when applied to bulk data encryption. Consequently, 

hybrid cryptosystems combining AES for data encryption and RSA for key encapsulation have become a standard 

solution to balance efficiency and security[3]–[7]. Despite their widespread adoption, many existing RSA–AES 

hybrid implementations still rely on static or manually refreshed keys, leaving them vulnerable to brute-force 

attacks and long-term key compromise[8][9]. 

This study addresses these limitations by designing and evaluating a hybrid RSA–AES cryptosystem 

equipped with an autonomous key-rotation mechanism[10][11]. he proposed system ensures periodic and event-

driven key renewal, reducing symmetric-key exposure while preserving acceptable performance for cloud storage 

environments. The main contributions of this work are twofold: (1) the development of a replicable hybrid 

cryptographic framework integrating AES-256 and RSA-2048 with automated key-lifecycle management, and (2) 

an empirical evaluation of the impact of autonomous key rotation on security-related indicators and 

computational performance. Recent studies have attempted to improve key management in hybrid encryption 

systems, yet important gaps remain. Dhamodharan (2023) proposed a dynamic RSA–AES scheme with manual 

key updates, which improves flexibility but still depends on administrator intervention, introducing security 

exposure during idle periods[12]. Khalaf and Sagheer (2025) incorporated blockchain technology into hybrid 

encryption to decentralize key management, achieving improved resilience at the cost of significant computational 

overhead, limiting applicability in real-time or resource-constrained environments [13]. Other works have 

explored ECC–AES hybrid models to reduce computational cost; however, the absence of automated key-

rotation mechanisms restricts their ability to provide effective forward secrecy [14]. Time-based key-rotation 

strategies have also been proposed, but reliance on centralized synchronization servers introduces single points 

of failure and scalability constraints[15]. From an applied-mathematics perspective, these limitations reveal 

deficiencies in the formal modeling of cryptographic key lifecycles and their associated performance constraints. 

Many prior studies emphasize implementation and measurement without explicitly formulating key-rotation 

conditions, bounding key exposure analytically, or modeling overhead behavior. In contrast, this work frames 

key rotation as an analytically constrained process governed by inequality-based conditions on time and usage. 

Symmetric-key exposure is explicitly bounded as a function of elapsed time (Δt) and encryption count (n), while 

computational overhead is modeled as a constant-factor perturbation of baseline AES complexity. Additional 

mathematical descriptors, including Hamming-distance–based key variability metrics, are used to quantify key 

freshness in a reproducible manner. 

The novelty of this research therefore lies not merely in integrating hybrid encryption with key rotation, but 

in the explicit formulation of an autonomous, timestamp- and usage-driven key-rotation model supported by 

analytical constraints and measurable performance bounds. By unifying formal key-lifecycle modeling with 

empirical evaluation, the proposed system provides a lightweight yet mathematically grounded approach for 

securing cloud storage environments, consistent with the scope of applied mathematics and computational 

science. 

2. RESEARCH METHODE 

This study adopts an experimental and analytical research methodology to design, formalize, and evaluate 

a hybrid RSA–AES cryptosystem equipped with an autonomous key-rotation mechanism for cloud storage 

security[16][17][18]. The methodology is structured into four main components. 

2.1 System and Threat Model 

The proposed system adopts a client-side encryption paradigm, in which all cryptographic operations—

including key generation, encryption, decryption, and autonomous key rotation—are executed exclusively on the 

client. Under this model, cryptographic keys are never transmitted to or stored on the cloud infrastructure. The 

cloud server therefore functions solely as a passive storage entity, responsible only for storing encrypted data 

objects and associated metadata, and has no capability to access plaintext content or secret cryptographic material. 
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The assumed threat model reflects realistic risks commonly considered in cloud storage environments and 

includes two primary adversarial scenarios: 

a. External adversary is assumed to be capable of gaining access to stored ciphertexts, encrypted AES session 

keys, and non-sensitive metadata, for example through unauthorized access to cloud storage or data leakage 

incidents. 

b. The cloud provider is modeled as an honest-but-curious entity, meaning that it correctly follows prescribed 

storage and retrieval protocols but may attempt to infer information from encrypted data that it can observe, 

without possessing the cryptographic keys required for decryption. 

Certain assumptions are explicitly made to delimit the scope of the analysis. In particular, the model 

excludes compromise of the RSA private key and the pseudo-random number generator (PRNG) used for key 

generation, as such failures would undermine the security of virtually all public-key-based cryptographic systems 

and fall outside the intended threat scope. Within these assumptions, the primary security objectives of the 

proposed system are to enforce bounded symmetric-key exposure and to achieve practical forward secrecy at the 

level of symmetric encryption keys. Rather than claiming formal or information-theoretic security guarantees, the 

security properties of the system are supported through analytical modeling of the key-lifecycle constraints and 

empirical evaluation of observable security indicators under the defined threat model. 

2.2 Cryptographic Construction 

The proposed cryptographic framework integrates three tightly coupled components to achieve both 

efficiency and controlled key management.  

a. Advanced Encryption Standard (AES) is employed as a symmetric cipher for encrypting file contents, owing 

to its high computational efficiency and suitability for large data volumes. AES operates on fixed-size data 

blocks and provides predictable linear-time performance with respect to file size, making it well suited for 

cloud storage workloads.  

b. The Rivest–Shamir–Adleman (RSA) algorithm is used for the asymmetric encryption of AES session keys. 

By restricting RSA operations to key encapsulation rather than bulk data encryption, the framework 

leverages the secure key-distribution properties of public-key cryptography while avoiding excessive 

computational overhead. 

c. Distinguishing component is the auto-rotation key mechanism, which enforces periodic regeneration of 

AES session keys based on formally defined time-based and usage-based conditions. This mechanism 

ensures that no single symmetric key remains active beyond a bounded lifetime or a predefined number of 

encryption operations, thereby limiting key reuse and reducing the impact of potential key compromise. 

Unlike manual or externally managed key refresh strategies, the rotation logic is fully autonomous and 

integrated into the cryptographic workflow. 

 

All encryption and decryption operations are performed entirely on the client side, ensuring that 

cryptographic keys are never disclosed to the cloud service provider. As a result, the cloud server functions solely 

as a passive storage entity, responsible only for storing encrypted data and associated metadata, without access to 

plaintext or secret keys[19][20]. This design aligns with a client-side encryption model and strengthens data 

confidentiality by minimizing trust assumptions regarding the cloud infrastructure. 

2.3 AES Encryption Model 

AES is modeled as a symmetric block cipher with a block size of 128 bits and a key size of 256 

bits[21][22][23]. Let P = {𝑃1, 𝑃2, … , 𝑃𝑛} denote the plaintext blocks and K the AES-256 key. The AES 

encryption function is formally defined as:[24][25][26]: 

𝐶 = 𝐴𝐸𝑆𝐾(𝑃) (1) 

Where: C denotes the ciphertext and K is the 256-bit symmetric key generated by the system. 

For Cipher Block Chaining (CBC) mode, ciphertext generation is expressed as:[27][28][29]: 

𝐶𝑖 = 𝐴𝐸𝑆𝐾(𝑃𝑖 ⊕ 𝐶𝑖 − 1), 𝐶0 = 𝐼𝑉 (2) 

In Equation (2), Pi denotes the iii-th plaintext block and CiC_iCi denotes the corresponding ciphertext 

block. The term IV represents the Initialization Vector, a cryptographically secure random binary vector of length 

128 bits, equal to the AES block size. The Initialization Vector is generated independently for each encryption 

session and is used to initialize the Cipher Block Chaining (CBC) process by defining C0=IV. Its primary function 

is to ensure semantic security by preventing identical plaintext blocks from producing identical ciphertext blocks 

under the same encryption key K, thereby mitigating pattern leakage and replay-based inference attacks. The IV 

itself does not need to be kept secret but must be unpredictable and unique for each encryption instance to 

preserve the security properties of the CBC mode. 
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2.4 RSA-Based Key Encapsulation 

RSA is used exclusively for encrypting and protecting AES session keys during storage and transmission. 

RSA key generation follows the standard formulation using two large primes p and q, modulus n=pq, Euler’s 

totient 𝜙(𝑛) = (𝑝 − 1)(𝑞 − 1), and public exponent eee such that gcd(𝑒, 𝜙(𝑛)) = 1. The private exponent d 

satisfies: 

𝑒𝑑 ≡ 1 (𝑚𝑜𝑑𝜙(𝑛)) (3) 

In practical implementation, RSA encryption of AES keys is performed using a standardized padding 

scheme consistent with modern cryptographic practice (e.g., OAEP). The padding mechanism mitigates 

deterministic encryption and chosen-ciphertext vulnerabilities, ensuring semantic security of key encapsulation. 

While the mathematical formulation focuses on the RSA core operation, padding is an integral part of the applied 

cryptographic construction. 

2.5 Auto-Rotation Key Mechanism 

The central novelty of this research lies in the autonomous AES key-rotation mechanism governed by 

explicit analytical conditions. Key renewal is triggered by two independent thresholds: 

a. Time-Based Rotation: 

𝑖𝑓 (𝑡 − 𝑡𝑙𝑎𝑠𝑡) ≥ 𝛥𝑡 (4) 

b. Event-Based Rotation: 

𝑖𝑓 𝑖 ≥ 𝑛 (5) 

where 𝑡𝑙𝑎𝑠𝑡 denotes the timestamp of the previous key generation, i is the encryption operation counter, Δt 

is the time threshold, and n is the usage threshold. In this study, Δt=30 minutes and n=10 encryption operations. 

These parameters are selected empirically to balance key freshness and computational overhead. Rather than 

claiming optimality, the chosen thresholds represent a conservative configuration that bounds key exposure while 

maintaining stable system performance. Comparative evaluation of alternative threshold values is identified as 

future work. 

2.6 Implementation and Experimental Setup 

The system is implemented using Python 3.11 with the PyCryptodome cryptographic library, which 

provides standardized and widely adopted implementations of AES and RSA primitives. All experiments are 

conducted on a workstation running Ubuntu 22.04 LTS, equipped with an Intel Core i7 processor and 16 GB 

of RAM, ensuring sufficient computational resources and minimizing interference from hardware bottlenecks. 

Experimental metadata including timestamps of key generation, key identifiers, usage counters, and rotation 

events are persistently stored in an SQLite database, enabling precise tracking and post-experiment verification 

of the key-lifecycle behavior. To evaluate scalability and performance trends, test files of sizes 100 KB, 1 MB, 5 

MB, and 10 MB are used, covering small to moderately large workloads typically encountered in cloud storage 

applications. File contents are generated using pseudo-random binary data to eliminate bias introduced by file 

structure, redundancy, or compression effects, thereby ensuring that measured performance reflects 

cryptographic processing costs rather than data-dependent artifacts. This design choice allows for a fair 

assessment of encryption and decryption behavior under uniform entropy conditions. 

Each experimental configuration is executed multiple times under identical conditions, and all reported 

values correspond to the arithmetic mean of the observed measurements. To quantify variability and assess 

execution stability, the standard deviation is computed for each metric across repeated trials. This repeated-trial 

methodology reduces the influence of transient system fluctuations, such as background processes or scheduling 

variability, and improves the statistical reliability of the reported results. Consequently, observed performance 

trends can be attributed with greater confidence to the proposed cryptographic design rather than to incidental 

measurement noise. 

2.7 Evaluation Metrics and Statistical Analysis 

System performance and security-related properties are evaluated using a set of quantitative metrics 

designed to capture both computational efficiency and operational security characteristics of the proposed 

cryptosystem. These metrics are selected to align with the objectives of the study while remaining consistent with 

an empirical, applied-cryptography evaluation framework: 

a. Encryption and decryption time is measured in milliseconds to assess computational efficiency and 

scalability. This metric reflects the direct cost of cryptographic processing and is evaluated across multiple 

file sizes to observe how execution time scales with increasing data volume. 
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b. Key randomness and variability are quantified using the Hamming distance between successive AES-256 

session keys generated by the auto-rotation mechanism. This metric provides a statistical indicator of bit-

level differences between keys and serves as an empirical measure of key freshness and variability over time, 

rather than as a formal randomness test. 

c. Data integrity is verified using SHA-256 hash equivalence between original plaintext files and their 

decrypted counterparts. This metric ensures that the encryption–decryption process preserves data 

correctness and that the introduction of automated key rotation does not result in data corruption or 

functional errors. 

d. Computational overhead is calculated relative to an AES-only baseline to quantify the additional cost 

introduced by RSA-based key encapsulation and the key-rotation logic. Reporting overhead as a relative 

percentage allows for a normalized comparison across different file sizes and provides insight into the 

practical performance impact of the proposed design. 

e. Statistical dispersion is reported using the standard deviation of repeated measurements for each metric. 

This enables an assessment of execution stability and measurement uncertainty, ensuring that reported 

mean values are representative and not dominated by transient system effects. 

The absence of a formal cryptographic proof is explicitly acknowledged. As a result, all findings are 

interpreted within the scope of empirical security evaluation under the defined threat model, focusing on 

measurable properties such as bounded key exposure, performance stability, and functional correctness rather 

than provable security guarantees. 

3. RESULT AND DISCUSSION 

The proposed hybrid RSA–AES cryptosystem with an autonomous key-rotation mechanism was evaluated 

in a controlled experimental environment to assess both computational performance and empirically observable 

security-related properties under the defined threat model. The analysis focuses on five interrelated aspects: 

computational efficiency and scalability, enforcement of bounded key reuse, statistical indicators of key variability, 

data integrity preservation, and system overhead relative to an AES-only baseline. Together, these aspects provide 

a unified view of how the analytically defined key-rotation model influences both security-related behavior and 

performance characteristics.  

3.1 Computational Performance and Asymptotic Behavior 

Encryption and decryption times increase approximately linearly with file size, consistent with the block-

based operation of AES. Let B denote the number of AES blocks processed for a given file, and let TAES(B)=αB 

represent the baseline AES execution time. The hybrid system introduces additional costs associated with RSA-

based key encapsulation and rotation checks, which are independent of B. Thus, the total execution time can be 

approximated as: 

𝑇ℎ𝑦𝑏𝑟𝑖𝑑(𝐵) = 𝛼𝐵 + 𝛽 (6) 

where β is a constant term capturing RSA operations and rotation logic. This formulation explains the empirically 

observed linear scalability and the constant-factor overhead reported in the experiments. 

3.2 Key-Rotation Effectiveness and Bounded Key Exposure 

The auto-rotation mechanism enforces key renewal based on two analytical constraints: a time threshold Δt 

and a usage threshold nnn. For a sequence of encryption operations over an observation interval T, the expected 

maximum key lifetime is bounded by: 

𝐿𝑘𝑒𝑦 ≤ 𝑚𝑖𝑛(𝛥𝑡, 𝑛/𝜆) (7) 

where λ denotes the average encryption rate. The empirical results confirm that observed key lifetimes remain 

below the configured bounds, demonstrating consistency between the analytical rotation model and measured 

key-exposure metrics. 

3.3 Key Variability, Integrity, and Overhead Stability 

Statistical analysis of Hamming distances between successive AES keys indicates high bit-level variability, 

consistent with effective key freshness under the enforced rotation constraints. Data integrity is preserved across 

all test cases, confirming functional correctness of the encryption–decryption pipeline. System overhead remains 

stable at approximately 12.8%, which aligns with the constant-term β\betaβ in the analytical model and confirms 

that key rotation introduces a bounded, input-size-independent perturbation to baseline AES performance. 
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3.4 Encryption and Decryption Time with Uncertainty Analysis 

Encryption and decryption performance was evaluated using files of sizes 100 KB, 1 MB, 5 MB, and 10 

MB. AES-256 in CBC mode was used for data encryption with a 128-bit random Initialization Vector (IV), while 

AES session keys were encrypted using RSA-2048. Each configuration was executed repeatedly (r ≥ 10), and 

execution times were summarized using the arithmetic mean (μ) and standard deviation (σ), defined as: 

𝜇 =
1

𝑟
∑ 𝑡𝑖

𝑟
𝑖=1  (8) 

Represents the sample mean of the measured values. Here, r denotes the total number of experimental 

repetitions, and 𝑡𝑖 is the measured execution time in the i-th trial. The mean μ therefore gives the average 

execution time across all repetitions and is used as a single representative value for performance comparison. 

𝜎 = √
1

𝑟−1
∑ (𝑡𝑖 − 𝜇)2𝑟

𝑖=1  (9) 

Defines the sample standard deviation, which quantifies the dispersion of the measured values around the 

mean. The term (𝑡𝑖 − 𝜇)2 measures the squared deviation of each observation from the average, and the 

normalization factor 
1

𝑟−1
 is used to obtain an unbiased estimator of variance for a finite sample. The square root 

converts variance into standard deviation, expressed in the same unit as the original measurements. 

Table 1. Encryption and decryption time with uncertainty 

File Size 
Hybrid 

Encryption (ms) 
Std. Dev. (ms) 

Hybrid 

Decryption (ms) 
Std. Dev. (ms) 

100 KB 9.87 0.42 9.12 0.39 

1 MB 37.46 1.61 36.88 1.54 

5 MB 182.22 7.95 179.94 7.60 

10 MB 361.51 15.42 355.67 14.88 

 

The coefficient of variation (CV = σ/μ) remains below 5% for all file sizes, indicating low runtime variability 

and stable execution behavior. Encryption and decryption times scale approximately linearly with file size, 

consistent with the theoretical linear time complexity of AES. The additional cost introduced by RSA key 

encapsulation and key-rotation logic appears as a bounded constant-factor overhead, without affecting asymptotic 

scalability. To evaluate the performance of the proposed hybrid RSA–AES cryptosystem with auto-rotation key 

mechanism, encryption and decryption times were measured for files of varying sizes (100 KB, 1 MB, 5 MB, 

and 10 MB). The AES-256 algorithm in CBC mode was used for encrypting file contents, and RSA-2048 was 

used for encrypting the AES session key.  

3.5 Quantitative Evaluation of Key Rotation Effectiveness 

The auto-rotation mechanism operates under two threshold conditions: time-based rotation every 30 

minutes and event-based rotation after 10 encryption operations. Over a 6-hour observation period (360 minutes) 

with 42 encryption operations, the theoretical upper bound on the number of generated keys can be estimated 

as: 

𝑁𝑀𝑎𝑥 = ⌊
𝑇𝑜𝑏𝑠

∆𝑡
⌋ + ⌊

𝑁𝑜𝑝𝑠

𝑛
⌋ (10) 

𝑁𝑀𝑎𝑥 denotes the maximum possible number of key rotations within the observation window. The symbol 

⌊⋅⌋ represents the floor function, which returns the greatest integer less than or equal to its argument. In this case, 

an observation period of 360 minutes with a rotation interval of 30 minutes yields ⌊360/30⌋=⌊12⌋, indicating that 

up to 12 keys could be generated solely due to time-based rotation. 

𝑁𝑀𝑎𝑥 = ⌊
𝑇𝑜𝑏𝑠

∆𝑡
⌋ + ⌊

𝑁𝑜𝑝𝑠

𝑛
⌋ = ⌊12⌋ + ⌊4.2⌋ = 16 

The observed number of keys is significantly below the theoretical upper bound, demonstrating 

quantitatively that key reuse is bounded and prolonged exposure of a single symmetric key is avoided under 

normal operational conditions. This result in Table 2. reflects effective enforcement of the defined key-lifecycle 

constraints 
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Table 2.  Quantitative summary of key rotation 

Parameter Value 

Observation time 6 hours 

File operations 42 

Theoretical maximum keys 16 

Observed AES keys 6 

Average key lifetime = 60 minutes 

3.6 Key Variability and Statistical Randomness Indicators 

Key variability was assessed using the Hamming distance between consecutive 256-bit AES keys. In addition 

to the mean value, dispersion and statistical range are reported to provide greater analytical depth. The statistical 

properties of key variability were analyzed using the Hamming distance between consecutive 256-bit AES keys 

generated by the auto-rotation mechanism, as summarized in Table 3. This metric provides a quantitative 

indication of bit-level differences between successive keys and serves as an empirical descriptor of key variability 

over time. To move beyond a single average value, several descriptive statistics are reported in Table 3, including 

the mean, standard deviation, minimum and maximum observed distances, as well as the expected value for 

uniformly random 256-bit binary strings. In addition, the interval defined by μ±2σ\mu \pm 2\sigmaμ±2σ is 

included to capture the range in which most observed values are expected to lie under a normal variability 

assumption, thereby providing insight into the consistency and dispersion of key differences across the 

experimental runs. 

Table 3. Statistical summary of hamming distance 

Metric Value (bits) 

Mean (μ) 127.42 

Standard deviation (σ) 5.13 

Minimum 116 

Maximum 139 

Expected value 128 

μ ± 2σ interval [117.16, 137.68] 

 

The mean Hamming distance is very close to the theoretical expectation of 128 bits for uniformly random 

256-bit keys, indicating substantial bit-level variability. The observed values fall within a statistically reasonable 

range, with no evidence of clustering or deterministic patterns. 

However, Hamming distance alone is insufficient as a cryptographic randomness or security metric. In this study, 

it is used strictly as a descriptive statistical indicator of key variability, not as a substitute for comprehensive 

randomness testing or formal security analysis. More rigorous tests (e.g., NIST SP 800-22) are outside the scope 

of this work. 

3.7 Quantitative Security Indicators under a Limited Threat Model 

Security evaluation is restricted to quantitative indicators that are directly observable under the defined 

threat model. The quantitative security-related properties of the proposed system are summarized in Table 4, 

which reports measurable indicators derived directly from the experimental observations. Rather than presenting 

abstract security claims, these indicators capture operational aspects of security that can be empirically verified, 

including bounded key exposure, controlled key reuse, key variability, data integrity preservation, and 

performance stability. Each metric in Table 4 reflects a specific dimension of the defined threat model, providing 

a concise numerical summary of how the autonomous key-rotation mechanism constrains symmetric-key usage 

while maintaining predictable system behavior under the tested workload. 

Table 4. Quantitative security indicators 

Aspect Metric Result 

Key exposure Maximum key lifetime ≤ 30 minutes / 10 operations 

Key reuse Average reuse count ≤ 10 

Key variability Mean Hamming distance 127.42 bits 

Data integrity SHA-256 mismatches 0 / 42 files 

Overhead stability Std. dev. of overhead < 0.2% 

These indicators provide empirical evidence of bounded key exposure, functional correctness, and predictable 

overhead, but do not constitute formal cryptographic security guarantees. 
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3.8 System Overhead with Statistical Dispersion 

The impact of the proposed hybrid RSA–AES cryptosystem on computational efficiency is further detailed 

in Table 5, which reports the mean system overhead along with its variability across different file sizes. By 

presenting both the average overhead and the corresponding standard deviation, Table 5 provides insight into 

the consistency and stability of the additional computational cost introduced by RSA-based key encapsulation 

and the auto-rotation mechanism. The low standard deviation values indicate minimal fluctuation across repeated 

trials, confirming that the observed overhead remains stable and behaves as a bounded constant factor 

independent of input size. 

Table 5.  System overhead with variability 

File Size Mean Overhead (%) Std. Dev. (%) 

100 KB 12.8 0.15 

1 MB 12.7 0.14 

5 MB 12.9 0.17 

10 MB 12.8 0.16 

From a performance analysis perspective, the most prominent observation in Figure 1 is the remarkable 

consistency of overhead across all tested file sizes. The mean overhead values range narrowly between 12.7% and 

12.9%, indicating that the additional computational cost imposed by the hybrid architecture is largely independent 

of input size. This behavior aligns with the theoretical expectation that RSA operations and key-rotation logic 

introduce a constant-factor cost, while the dominant AES encryption workload scales linearly with file size. As a 

result, the relative overhead remains stable even as the data volume increases by two orders of magnitude, from 

100 KB to 10 MB. For the smallest file size (100 KB), the mean overhead is reported as 12.8% with a standard 

deviation of 0.15%. At this scale, the fixed cost of RSA key encryption and rotation logic constitutes a relatively 

larger fraction of the total execution time compared to AES-only encryption. Nevertheless, the overhead does 

not spike disproportionately, demonstrating that the proposed system avoids excessive initialization or setup costs 

that could otherwise penalize small workloads. The low standard deviation further indicates that repeated trials 

yield highly consistent results, suggesting that the overhead is not sensitive to transient system fluctuations or 

background processes. At a file size of 1 MB, the mean overhead slightly decreases to 12.7%, accompanied by a 

standard deviation of 0.14%. This minor reduction is consistent with the amortization of fixed cryptographic costs 

over a larger data payload. Importantly, the difference between 12.8% and 12.7% is well within the margin of 

statistical dispersion, reinforcing the conclusion that overhead remains effectively constant rather than exhibiting 

any systematic trend with respect to file size. The very small standard deviation again highlights the stability of the 

measured performance across repeated executions. For the 5 MB test case, the mean overhead increases 

marginally to 12.9%, with a standard deviation of 0.17%, the highest variability observed among the tested 

configurations. Even so, this variation remains extremely small in absolute terms and does not indicate any 

degradation in performance predictability. Instead, it reflects normal measurement noise associated with longer 

execution times, such as minor variations in system scheduling or cache behavior. Crucially, there is no evidence 

of nonlinear growth in overhead, which would be indicative of scalability bottlenecks introduced by the key-

rotation mechanism. At the largest tested file size of 10 MB, the mean overhead returns to 12.8%, with a standard 

deviation of 0.16%. This result confirms that the overhead stabilizes as file size increases and does not accumulate 

or compound over longer encryption tasks. From a practical standpoint, this finding is particularly important for 

cloud storage scenarios involving large files, where predictable performance is essential. The consistent overhead 

at 10 MB demonstrates that the proposed system can handle larger workloads without introducing 

disproportionate delays. From an applied mathematics perspective, Figure 1 provides empirical evidence that the 

proposed cryptographic design introduces a bounded constant-factor perturbation to the baseline AES 

performance. In complexity terms, AES encryption exhibits linear time complexity O(n) with respect to file size 

nnn, while RSA-based key encapsulation and key-rotation checks contribute an O(1) cost per encryption session. 

The flat profile of the bars in Figure 1 visually confirms this analytical interpretation: as nnn increases, the ratio 

between hybrid encryption time and AES-only encryption time converges to a constant value, rather than 

diverging. The inclusion of standard deviation values, as reported in Table 5, adds an important layer of scientific 

rigor to the interpretation of Figure 1. The standard deviation remains below 0.2% for all file sizes, indicating low 

dispersion and high repeatability of the measurements. This statistical stability strengthens the validity of the 

reported mean overhead values and reduces the likelihood that the observed results are artifacts of isolated 

experimental runs. In the context of performance evaluation, such low variability suggests that the overhead 

introduced by the auto-rotation mechanism is deterministic and well controlled. 
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Figure 1. Performance Overhead of the Hybrid RSA–AES Cryptosystem with Auto-Rotation Key Mechanism 

Figure 1 illustrates the performance overhead introduced by the proposed hybrid RSA–AES cryptosystem 

with an auto-rotation key mechanism across different file sizes, namely 100 KB, 1 MB, 5 MB, and 10 MB. The 

overhead values shown in the bar chart correspond directly to the quantitative results summarized in Table 5, 

where each bar represents the mean overhead percentage, and variability is captured through the reported 

standard deviation. This visualization provides an intuitive and consolidated view of how the additional 

cryptographic mechanisms—specifically RSA-based key encapsulation and autonomous key rotation—affect 

system performance relative to an AES-only baseline. Figure 1 complements the numerical data in Table 5 by 

providing a clear visual summary of the system’s overhead characteristics. While the table conveys precise 

quantitative values, the bar chart immediately communicates the absence of significant variation across file sizes. 

Together, they reinforce the central conclusion that the hybrid RSA–AES cryptosystem with auto-rotation key 

mechanism delivers enhanced key management capabilities at a stable and bounded computational cost, 

supporting its suitability for practical deployment in cloud storage systems. 

3.9 Critical Assessment and Scientific Limitations 

Although the reported results are internally consistent and exhibit numerical stability across repeated trials, 

several limitations constrain the overall scientific strength and generalizability of the findings. First, the uncertainty 

analysis is restricted to the reporting of standard deviation, without the inclusion of formal confidence intervals 

or statistical hypothesis testing, which limits the ability to draw probabilistic inferences beyond descriptive 

comparison. Second, the security evaluation is inherently empirical and operational in nature; it focuses on 

observable indicators such as bounded key exposure, key variability, and integrity preservation, rather than on 

formal cryptographic proofs or adversarial security models. Third, the assessment of randomness relies on a 

single descriptive metric—namely, the Hamming distance which, while informative for bit-level variability, is 

insufficient to characterize cryptographic randomness or resistance to sophisticated attacks. Finally, the key-

rotation parameters (Δt and n) are selected empirically to balance performance and security considerations, but 

they are not optimized through sensitivity analysis, comparative benchmarking, or formal parameter tuning. 

In light of these limitations, the proposed method should be interpreted as a lightweight and empirically 

validated key-rotation framework tailored to practical cloud storage environments, rather than as a 

cryptographically optimal or formally proven secure system. From an applied mathematics perspective, the 

principal contribution of this work lies in the abstraction of key rotation as a bounded and quantifiable process, 

and in the explicit linkage between analytically defined key-lifecycle constraints and measurable system 

performance. This perspective provides a structured foundation for future studies aimed at extending the model 

toward stronger statistical rigor, broader security evaluation, and more comprehensive optimization of key-

management parameters. 

4. CONCLUSION 

This study has developed and empirically evaluated a hybrid RSA–AES cryptosystem incorporating an 

autonomous, threshold-based key-rotation mechanism for cloud storage security. The results demonstrate that 

integrating automated key lifecycle management into a conventional hybrid encryption framework can bound 

symmetric-key reuse while preserving computational scalability. Experimental evaluation confirms that the 

proposed mechanism maintains linear encryption complexity with respect to file size and introduces a stable, 

bounded overhead, indicating that autonomous key rotation does not impose adverse performance penalties 

under typical cloud storage workloads. From an applied mathematics perspective, the primary contribution of 

this work lies in the formalization of key rotation as a bounded perturbation of baseline encryption complexity, 

governed by explicit time- and usage-based constraints. By modeling key renewal through analytically defined 
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inequalities and relating these constraints to observable performance and variability metrics, this study provides 

a quantitative framework for examining security–performance trade-offs in hybrid cryptosystems. This approach 

moves beyond implementation-centric evaluations by treating key lifecycle management as a mathematically 

constrained process with measurable operational consequences. 

Several limitations should be acknowledged. The evaluation is conducted in a simulated environment, and 

security analysis remains empirical rather than proof-based. In addition, randomness assessment relies on 

descriptive metrics, and rotation parameters are selected empirically without formal sensitivity analysis. Future 

work will therefore focus on validating the proposed model under real-world cloud workloads, extending the 

analysis with statistical randomness testing and adversarial simulations, and exploring parameter optimization and 

alternative key encapsulation schemes to further reduce overhead in high-frequency encryption scenarios. 

Overall, this research offers a lightweight yet mathematically grounded approach to autonomous key 

management, providing a clear analytical basis for future developments in adaptive and performance-aware 

cryptographic systems. 

  

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&


Zero: Jurnal Sains, Matematika dan Terapan  

 

                                                                   RSA-AES Cryptosystem with Auto-Key Rotation for Cloud Storage (Azanuddin)  

1041 

5. References 
 

[1] V. Verma, P. Kumar, R. K. Verma, and S. Priya, “A Novel Approach for Security in Cloud Data Storage 

Using AES-DES-RSA Hybrid Cryptography,” in 2021 Emerging Trends in Industry 4.0 (ETI 4.0), 2021, 

doi: 10.1109/ETI4.051663.2021.9619274. 

[2] R. Adee and H. Mouratidis, “A Dynamic Four-Step Data Security Model for Data in Cloud Computing 

Based on Cryptography and Steganography,” Sensors (Switzerland), vol. 1109, no. 22, pp. 1–23, 2022, doi: 

https://doi.org/10.3390/s22031109. 

[3] A. M. Qadir and N. Varol, “A review paper on cryptography,” 7th Int. Symp. Digit. Forensics Secur. ISDFS 
2019, 2019, doi: 10.1109/ISDFS.2019.8757514. 

[4] M. Mumtaz and L. Ping, “Forty years of attacks on the RSA cryptosystem : A brief survey,” vol. 0529, 2019, 

doi: 10.1080/09720529.2018.1564201. 

[5] K. Sharma, A. Agrawal, D. Pandey, R. A. Khan, and S. Kumar, “RSA based encryption approach for 

preserving con fi dentiality of big data,” vol. 34, pp. 2088–2097, 2022. 

[6] Y. Luo, X. Ouyang, J. Liu, and L. Cao, “An Image Encryption Method Based on Elliptic Curve Elgamal 

Encryption and Chaotic Systems,” IEEE Access, vol. 7, no. c, pp. 38507–38522, 2019, doi: 

10.1109/ACCESS.2019.2906052. 

[7] E. Jintcharadze and M. Iavich, “Hybrid Implementation of Twofish, AES, ElGamal and RSA 

Cryptosystems,” in 2020 IEEE East-West Design & Test Symposium (EWDTS), 2020, doi: 

10.1109/EWDTS50664.2020.9224901. 

[8] H. Byun, J. Kim, Y. Jeong, B. Seok, and S. Gong, “A Security Analysis of Cryptocurrency Wallets against 

Password Brute-Force Attacks,” Electronics, pp. 1–15, 2024, doi: 

https://doi.org/10.3390/electronics13132433. 

[9] A. I. Mallick and R. Nath, “Navigating the Cyber security Landscape: A Comprehensive Review of Cyber-

Attacks, Emerging Trends, and Recent Developments,” World Sci. News An Int. Sci. J., vol. 190, no. 1, 

pp. 1–69, 2024. 

[10] R. K. Muhammed, K. H. A. Faraj, J. F. Gul-Mohammed, T. N. A. Al Attar, S. J. Saydah, and D. A. Rashid, 

“Automated Performance analysis E-services by AES-Based Hybrid Cryptosystems with RSA, ElGamal, 

and ECC,” Adv. Sci. Technol. Eng. Syst. J., vol. 9, no. 3, pp. 84–91, 2024, doi: 

https://dx.doi.org/10.25046/aj090308. 

[11] D. Shivaramakrishna and M. Nagaratna, “A novel hybrid cryptographic framework for secure data storage 

in cloud computing: Integrating AES-OTP and RSA with adaptive key management and Time-Limited 

access control,” Alexandria Eng. J., vol. 84, no. December, pp. 275–284, 2023, doi: 

https://doi.org/10.1016/j.aej.2023.10.054. 

[12] G. Dhamodharan, “An Enhanced and Dynamic Key AES Algorithm for Internet of Things Data Security,” 

J. Adv. Zool., vol. 44, no. S-6, pp. 1323–1332, 2023, doi: 10.17762/jaz.v44iS6.2444. 

[13] F. M. Khalaf and A. M. Sagheer, “A Hybrid Encryption Model with Blockchain Integration for Secure 

Cloud Data Storage and Retrieval,” vol. 10, 2025. 

[14] A. O. Aseeri and A. Anjum, “Hybrid AES-ECC Model for the Security of Data over Cloud Storage,” vol. 

10, pp. 1–20, 2021, doi: https://doi.org/10.3390/electronics10212673. 

[15] J. Reuben and J. O. Ouma, “Secure management of encryption keys for small and medium enterprises in 

Africa : A comparative study .,” no. May, 2022. 

[16] P. Elumalaivasan, T. Munirathinam, V. Kayalvizhi, G. Sekar, T. M. Sivanesan, and S. G, “Comparative 

Analysis of AES and AES-RSA Hybrid Techniques for Securing Visual Data Integrity,” in 11th 
International Conference on Communication and Signal Processing (ICCSP), 2025, vol. July, doi: 

10.1109/ICCSP64183.2025.11089233. 

[17] C. U. Betrand, C. G. Onukwugha, M. E. Benson-emenike, C. Ofoegbu, and N. M. Awaji, “File Storage 

Security in Cloud Computing Using Hybrid Encryption File Storage Security in Cloud Computing Using 

Hybrid Encryption,” vol. 12, no. 1, pp. 1–9, 2024, doi: 10.11648/j.iotcc.20241201.11. 

[18] M. E. Smid, “Development of the Advanced Encryption Standard,” vol. 126, no. 126024, pp. 1–18, 2022. 

[19] N. E. El-attar, D. S. El-morshedy, and W. A. Awad, “A New Hybrid Automated Security Framework to 

Cloud Storage System,” cryptography, no. December, pp. 1–20, 2021, doi: 

https://doi.org/10.3390/cryptography5040037. 

[20] H. T. Assa, I. A. Hashim, A. A. Naser, and I. A. Hashim, “Advanced Encryption Standard ( AES ) 

acceleration and analysis using graphical processing unit ( GPU ),” no. 0123456789, pp. 1–6, 2021. 

[21] O. C. Abikoye, A. D. Haruna, A. Abubakar, N. O. Akande, and E. O. Asani, “Modified Advanced 

Encryption Standard Algorithm for Information Security,” pp. 1–16, 2019, doi: 10.3390/sym11121484. 

[22] J. Kaur, S. Lamba, and P. Saini, “Advanced Encryption Standard: Attacks and Current Research Trends,” 

2021, pp. 112–116, doi: 10.1109/ICACITE51222.2021.9404716. 

[23] S. Devi and H. D. Kotha, “AES encryption and decryption standards,” in International conference on 
computer vision and machine learning, 2019, pp. 1–11, doi: 10.1088/1742-6596/1228/1/012006. 

[24] M. F. Abdelwahed, “A hybrid method for data compression and encryption based on bit packing , 128-

based numerals , and bitmap manipulations : application to seismic data,” 2020. 



                                                                                                 E-ISSN : 2580-5754; P-ISSN : 2580-569X 

 

Zero: Jurnal Sains, Matematika dan Terapan 

1042 

[25] S. Arshad and M. Khan, “New extension of data encryption standard over 128-bit key for digital images,” 

vol. 5, 2021. 

[26] S. Camtepe, J. Duda, A. Mahboubi, P. Morawiecki, M. Pawłowski, and J. Pieprzyk, “ANS-based 

compression and encryption with 128-bit security,” Int. J. Inf. Secur., vol. 21, no. 5, pp. 1051–1067, 2022, 

doi: 10.1007/s10207-022-00597-4. 

[27] A. Ghosh, S. Adhikari, S. Karforma, and W. Bengal, “A Fast And Efficient Document Encryption Method 

For E-Learning Applications Usingmodified Aes-Cbcwith Chaotic Logistic Pseudo Random Number 

Sequence,” Adv. Mech., vol. 9, no. 3, pp. 1051–1060, 2021. 

[28] S. Lee and K. Sim, “Design and Hardware Implementation of a Simplified DAG-Based Blockchain and 

New AES-CBC Algorithm for IoT Security,” 2021. 

[29] A. S. Al-Bayati, “Enhancing Performance of Hybrid AES, RSA and Quantum Encryption Algorithm,” 

University for the degree of Master of Philosophy (MPhil), 2021. 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&

