
Zero : Jurnal Sains, Matematika, dan Terapan

E-ISSN : 2580-5754; P-ISSN : 2580-569X

Volume 9, Number 3, 2025

DOI: 10.30829/zero.v9i3.26827

Page: 1031-1042

Journal homepage: http://jurnal.uinsu.ac.id/index.php/zero/index

RSA-AES Cryptosystem with Auto-Key Rotation for Cloud Storage

1 Azanuddin

 Departement of Computer Engineering and Informatics, Politeknik Negeri Medan, Indonesia

2 Asyahri Hadi Nasyuha

 Faculty of Information Technology, Universitas Teknologi Digital Indonesia, Indonesia

3 Ikhwan Ruslianto

 Faculty of Mathematics and Natural Sciences, Universitas Tanjungpura, Indonesia

4 Moch. Iswan Perangin Angin

 Faculty of Computer Science and Information Technology, Budi Darma University, Indonesia

5 Moustafa H. Aly

 Arab Academy for Science Technology and Maritime Transport, Egypt

6 Moses Adeolu Agoi

 Lagos State University of Education, Nigeria

Article Info ABSTRACT

Article history:

Accepted 26 December 2025

The widespread adoption of cloud storage systems has increased the demand

for cryptographic mechanisms that ensure data confidentiality while limiting

security risks associated with static and long-lived encryption keys. Although

hybrid RSA–AES schemes are commonly employed to balance security and

computational efficiency, key management—particularly autonomous and

quantitatively bounded key rotation—remains insufficiently formalized. This

study proposes a hybrid RSA–AES cryptosystem equipped with an autonomous

auto-key rotation mechanism defined through explicit analytical constraints.

AES-256 is employed for bulk data encryption, while RSA-2048 is used for

secure encapsulation of symmetric session keys. Key renewal is governed by

inequality-based conditions on elapsed time (Δt ≤ 30 minutes) and encryption

usage (n ≤ 10 operations), yielding a mathematically bounded key lifecycle

without manual intervention or external infrastructure. System performance and

operational security properties are evaluated in a simulated cloud environment

using file sizes ranging from 100 KB to 10 MB. Quantitative metrics include

encryption and decryption time complexity, computational overhead relative to

AES-only encryption, key variability measured by Hamming distance, and data

integrity verification using SHA-256. Experimental results demonstrate linear

scalability and a stable average overhead of approximately 12.8%, indicating a

bounded constant-factor cost independent of workload size. Successive AES-

256 keys exhibit a mean Hamming distance of 127.42 bits, consistent with high

key variability and effective key freshness. These findings show that analytically

constrained key rotation enables controlled symmetric-key exposure while

preserving practical efficiency overall.

Keywords:

Auto-Rotation Key;

Cloud Storage;

Hybrid Cryptosystem;

Key Lifecycle Modeling;

RSA–AES.

This is an open access article under the CC BY-SA license.

Corresponding Author:

Azanuddin,

Departement of Computer Engineering and Informatics,

Politeknik Negeri Medan,

Email: azanuddin@polmed.ac.id

http://jurnal.uinsu.ac.id/index.php/zero/index
https://creativecommons.org/licenses/by-sa/4.0/
mailto:azanuddin@polmed.ac.id

  E-ISSN : 2580-5754; P-ISSN : 2580-569X

Zero: Jurnal Sains, Matematika dan Terapan

1032

1. INTRODUCTION
The rapid adoption of cloud computing has fundamentally transformed how organizations and individuals

store, access, and manage data. As a core component of cloud services, cloud storage provides scalability,

accessibility, and cost efficiency[1][2]. However, its decentralized and shared architecture introduces significant

security challenges, particularly in ensuring data confidentiality, integrity, and effective cryptographic key

management. One of the most critical vulnerabilities arises from the continued use of static or long-lived

encryption keys, which increases the risk of unauthorized access, prolonged key exposure, and large-scale data

breaches.

Symmetric encryption algorithms such as the Advanced Encryption Standard (AES) are computationally

efficient and well suited for encrypting large data volumes. Nevertheless, AES-based systems suffer from inherent

key-management limitations, including secure key distribution and uncontrolled key reuse. In contrast,

asymmetric cryptographic schemes such as the Rivest–Shamir–Adleman (RSA) algorithm provide secure key

exchange but incur substantial computational overhead when applied to bulk data encryption. Consequently,

hybrid cryptosystems combining AES for data encryption and RSA for key encapsulation have become a standard

solution to balance efficiency and security[3]–[7]. Despite their widespread adoption, many existing RSA–AES

hybrid implementations still rely on static or manually refreshed keys, leaving them vulnerable to brute-force

attacks and long-term key compromise[8][9].

This study addresses these limitations by designing and evaluating a hybrid RSA–AES cryptosystem

equipped with an autonomous key-rotation mechanism[10][11]. he proposed system ensures periodic and event-

driven key renewal, reducing symmetric-key exposure while preserving acceptable performance for cloud storage

environments. The main contributions of this work are twofold: (1) the development of a replicable hybrid

cryptographic framework integrating AES-256 and RSA-2048 with automated key-lifecycle management, and (2)

an empirical evaluation of the impact of autonomous key rotation on security-related indicators and

computational performance. Recent studies have attempted to improve key management in hybrid encryption

systems, yet important gaps remain. Dhamodharan (2023) proposed a dynamic RSA–AES scheme with manual

key updates, which improves flexibility but still depends on administrator intervention, introducing security

exposure during idle periods[12]. Khalaf and Sagheer (2025) incorporated blockchain technology into hybrid

encryption to decentralize key management, achieving improved resilience at the cost of significant computational

overhead, limiting applicability in real-time or resource-constrained environments [13]. Other works have

explored ECC–AES hybrid models to reduce computational cost; however, the absence of automated key-

rotation mechanisms restricts their ability to provide effective forward secrecy [14]. Time-based key-rotation

strategies have also been proposed, but reliance on centralized synchronization servers introduces single points

of failure and scalability constraints[15]. From an applied-mathematics perspective, these limitations reveal

deficiencies in the formal modeling of cryptographic key lifecycles and their associated performance constraints.

Many prior studies emphasize implementation and measurement without explicitly formulating key-rotation

conditions, bounding key exposure analytically, or modeling overhead behavior. In contrast, this work frames

key rotation as an analytically constrained process governed by inequality-based conditions on time and usage.

Symmetric-key exposure is explicitly bounded as a function of elapsed time (Δt) and encryption count (n), while

computational overhead is modeled as a constant-factor perturbation of baseline AES complexity. Additional

mathematical descriptors, including Hamming-distance–based key variability metrics, are used to quantify key

freshness in a reproducible manner.

The novelty of this research therefore lies not merely in integrating hybrid encryption with key rotation, but

in the explicit formulation of an autonomous, timestamp- and usage-driven key-rotation model supported by

analytical constraints and measurable performance bounds. By unifying formal key-lifecycle modeling with

empirical evaluation, the proposed system provides a lightweight yet mathematically grounded approach for

securing cloud storage environments, consistent with the scope of applied mathematics and computational

science.

2. RESEARCH METHODE

This study adopts an experimental and analytical research methodology to design, formalize, and evaluate

a hybrid RSA–AES cryptosystem equipped with an autonomous key-rotation mechanism for cloud storage

security[16][17][18]. The methodology is structured into four main components.

2.1 System and Threat Model

The proposed system adopts a client-side encryption paradigm, in which all cryptographic operations—

including key generation, encryption, decryption, and autonomous key rotation—are executed exclusively on the

client. Under this model, cryptographic keys are never transmitted to or stored on the cloud infrastructure. The

cloud server therefore functions solely as a passive storage entity, responsible only for storing encrypted data

objects and associated metadata, and has no capability to access plaintext content or secret cryptographic material.

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&

Zero: Jurnal Sains, Matematika dan Terapan 

 RSA-AES Cryptosystem with Auto-Key Rotation for Cloud Storage (Azanuddin)

1033

The assumed threat model reflects realistic risks commonly considered in cloud storage environments and

includes two primary adversarial scenarios:

a. External adversary is assumed to be capable of gaining access to stored ciphertexts, encrypted AES session

keys, and non-sensitive metadata, for example through unauthorized access to cloud storage or data leakage

incidents.

b. The cloud provider is modeled as an honest-but-curious entity, meaning that it correctly follows prescribed

storage and retrieval protocols but may attempt to infer information from encrypted data that it can observe,

without possessing the cryptographic keys required for decryption.

Certain assumptions are explicitly made to delimit the scope of the analysis. In particular, the model

excludes compromise of the RSA private key and the pseudo-random number generator (PRNG) used for key

generation, as such failures would undermine the security of virtually all public-key-based cryptographic systems

and fall outside the intended threat scope. Within these assumptions, the primary security objectives of the

proposed system are to enforce bounded symmetric-key exposure and to achieve practical forward secrecy at the

level of symmetric encryption keys. Rather than claiming formal or information-theoretic security guarantees, the

security properties of the system are supported through analytical modeling of the key-lifecycle constraints and

empirical evaluation of observable security indicators under the defined threat model.

2.2 Cryptographic Construction

The proposed cryptographic framework integrates three tightly coupled components to achieve both

efficiency and controlled key management.

a. Advanced Encryption Standard (AES) is employed as a symmetric cipher for encrypting file contents, owing

to its high computational efficiency and suitability for large data volumes. AES operates on fixed-size data

blocks and provides predictable linear-time performance with respect to file size, making it well suited for

cloud storage workloads.

b. The Rivest–Shamir–Adleman (RSA) algorithm is used for the asymmetric encryption of AES session keys.

By restricting RSA operations to key encapsulation rather than bulk data encryption, the framework

leverages the secure key-distribution properties of public-key cryptography while avoiding excessive

computational overhead.

c. Distinguishing component is the auto-rotation key mechanism, which enforces periodic regeneration of

AES session keys based on formally defined time-based and usage-based conditions. This mechanism

ensures that no single symmetric key remains active beyond a bounded lifetime or a predefined number of

encryption operations, thereby limiting key reuse and reducing the impact of potential key compromise.

Unlike manual or externally managed key refresh strategies, the rotation logic is fully autonomous and

integrated into the cryptographic workflow.

All encryption and decryption operations are performed entirely on the client side, ensuring that

cryptographic keys are never disclosed to the cloud service provider. As a result, the cloud server functions solely

as a passive storage entity, responsible only for storing encrypted data and associated metadata, without access to

plaintext or secret keys[19][20]. This design aligns with a client-side encryption model and strengthens data

confidentiality by minimizing trust assumptions regarding the cloud infrastructure.

2.3 AES Encryption Model

AES is modeled as a symmetric block cipher with a block size of 128 bits and a key size of 256

bits[21][22][23]. Let P = {𝑃1, 𝑃2, … , 𝑃𝑛} denote the plaintext blocks and K the AES-256 key. The AES

encryption function is formally defined as:[24][25][26]:

𝐶 = 𝐴𝐸𝑆𝐾(𝑃) (1)

Where: C denotes the ciphertext and K is the 256-bit symmetric key generated by the system.

For Cipher Block Chaining (CBC) mode, ciphertext generation is expressed as:[27][28][29]:

𝐶𝑖 = 𝐴𝐸𝑆𝐾(𝑃𝑖 ⊕ 𝐶𝑖 − 1), 𝐶0 = 𝐼𝑉 (2)

In Equation (2), Pi denotes the iii-th plaintext block and CiC_iCi denotes the corresponding ciphertext

block. The term IV represents the Initialization Vector, a cryptographically secure random binary vector of length

128 bits, equal to the AES block size. The Initialization Vector is generated independently for each encryption

session and is used to initialize the Cipher Block Chaining (CBC) process by defining C0=IV. Its primary function

is to ensure semantic security by preventing identical plaintext blocks from producing identical ciphertext blocks

under the same encryption key K, thereby mitigating pattern leakage and replay-based inference attacks. The IV

itself does not need to be kept secret but must be unpredictable and unique for each encryption instance to

preserve the security properties of the CBC mode.

  E-ISSN : 2580-5754; P-ISSN : 2580-569X

Zero: Jurnal Sains, Matematika dan Terapan

1034

2.4 RSA-Based Key Encapsulation

RSA is used exclusively for encrypting and protecting AES session keys during storage and transmission.

RSA key generation follows the standard formulation using two large primes p and q, modulus n=pq, Euler’s

totient 𝜙(𝑛) = (𝑝 − 1)(𝑞 − 1), and public exponent eee such that gcd(𝑒, 𝜙(𝑛)) = 1. The private exponent d

satisfies:

𝑒𝑑 ≡ 1 (𝑚𝑜𝑑𝜙(𝑛)) (3)

In practical implementation, RSA encryption of AES keys is performed using a standardized padding

scheme consistent with modern cryptographic practice (e.g., OAEP). The padding mechanism mitigates

deterministic encryption and chosen-ciphertext vulnerabilities, ensuring semantic security of key encapsulation.

While the mathematical formulation focuses on the RSA core operation, padding is an integral part of the applied

cryptographic construction.

2.5 Auto-Rotation Key Mechanism

The central novelty of this research lies in the autonomous AES key-rotation mechanism governed by

explicit analytical conditions. Key renewal is triggered by two independent thresholds:

a. Time-Based Rotation:

𝑖𝑓 (𝑡 − 𝑡𝑙𝑎𝑠𝑡) ≥ 𝛥𝑡 (4)

b. Event-Based Rotation:

𝑖𝑓 𝑖 ≥ 𝑛 (5)

where 𝑡𝑙𝑎𝑠𝑡 denotes the timestamp of the previous key generation, i is the encryption operation counter, Δt

is the time threshold, and n is the usage threshold. In this study, Δt=30 minutes and n=10 encryption operations.

These parameters are selected empirically to balance key freshness and computational overhead. Rather than

claiming optimality, the chosen thresholds represent a conservative configuration that bounds key exposure while

maintaining stable system performance. Comparative evaluation of alternative threshold values is identified as

future work.

2.6 Implementation and Experimental Setup

The system is implemented using Python 3.11 with the PyCryptodome cryptographic library, which

provides standardized and widely adopted implementations of AES and RSA primitives. All experiments are

conducted on a workstation running Ubuntu 22.04 LTS, equipped with an Intel Core i7 processor and 16 GB

of RAM, ensuring sufficient computational resources and minimizing interference from hardware bottlenecks.

Experimental metadata including timestamps of key generation, key identifiers, usage counters, and rotation

events are persistently stored in an SQLite database, enabling precise tracking and post-experiment verification

of the key-lifecycle behavior. To evaluate scalability and performance trends, test files of sizes 100 KB, 1 MB, 5

MB, and 10 MB are used, covering small to moderately large workloads typically encountered in cloud storage

applications. File contents are generated using pseudo-random binary data to eliminate bias introduced by file

structure, redundancy, or compression effects, thereby ensuring that measured performance reflects

cryptographic processing costs rather than data-dependent artifacts. This design choice allows for a fair

assessment of encryption and decryption behavior under uniform entropy conditions.

Each experimental configuration is executed multiple times under identical conditions, and all reported

values correspond to the arithmetic mean of the observed measurements. To quantify variability and assess

execution stability, the standard deviation is computed for each metric across repeated trials. This repeated-trial

methodology reduces the influence of transient system fluctuations, such as background processes or scheduling

variability, and improves the statistical reliability of the reported results. Consequently, observed performance

trends can be attributed with greater confidence to the proposed cryptographic design rather than to incidental

measurement noise.

2.7 Evaluation Metrics and Statistical Analysis

System performance and security-related properties are evaluated using a set of quantitative metrics

designed to capture both computational efficiency and operational security characteristics of the proposed

cryptosystem. These metrics are selected to align with the objectives of the study while remaining consistent with

an empirical, applied-cryptography evaluation framework:

a. Encryption and decryption time is measured in milliseconds to assess computational efficiency and

scalability. This metric reflects the direct cost of cryptographic processing and is evaluated across multiple

file sizes to observe how execution time scales with increasing data volume.

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&

Zero: Jurnal Sains, Matematika dan Terapan 

 RSA-AES Cryptosystem with Auto-Key Rotation for Cloud Storage (Azanuddin)

1035

b. Key randomness and variability are quantified using the Hamming distance between successive AES-256

session keys generated by the auto-rotation mechanism. This metric provides a statistical indicator of bit-

level differences between keys and serves as an empirical measure of key freshness and variability over time,

rather than as a formal randomness test.

c. Data integrity is verified using SHA-256 hash equivalence between original plaintext files and their

decrypted counterparts. This metric ensures that the encryption–decryption process preserves data

correctness and that the introduction of automated key rotation does not result in data corruption or

functional errors.

d. Computational overhead is calculated relative to an AES-only baseline to quantify the additional cost

introduced by RSA-based key encapsulation and the key-rotation logic. Reporting overhead as a relative

percentage allows for a normalized comparison across different file sizes and provides insight into the

practical performance impact of the proposed design.

e. Statistical dispersion is reported using the standard deviation of repeated measurements for each metric.

This enables an assessment of execution stability and measurement uncertainty, ensuring that reported

mean values are representative and not dominated by transient system effects.

The absence of a formal cryptographic proof is explicitly acknowledged. As a result, all findings are

interpreted within the scope of empirical security evaluation under the defined threat model, focusing on

measurable properties such as bounded key exposure, performance stability, and functional correctness rather

than provable security guarantees.

3. RESULT AND DISCUSSION

The proposed hybrid RSA–AES cryptosystem with an autonomous key-rotation mechanism was evaluated

in a controlled experimental environment to assess both computational performance and empirically observable

security-related properties under the defined threat model. The analysis focuses on five interrelated aspects:

computational efficiency and scalability, enforcement of bounded key reuse, statistical indicators of key variability,

data integrity preservation, and system overhead relative to an AES-only baseline. Together, these aspects provide

a unified view of how the analytically defined key-rotation model influences both security-related behavior and

performance characteristics.

3.1 Computational Performance and Asymptotic Behavior

Encryption and decryption times increase approximately linearly with file size, consistent with the block-

based operation of AES. Let B denote the number of AES blocks processed for a given file, and let TAES(B)=αB

represent the baseline AES execution time. The hybrid system introduces additional costs associated with RSA-

based key encapsulation and rotation checks, which are independent of B. Thus, the total execution time can be

approximated as:

𝑇ℎ𝑦𝑏𝑟𝑖𝑑(𝐵) = 𝛼𝐵 + 𝛽 (6)

where β is a constant term capturing RSA operations and rotation logic. This formulation explains the empirically

observed linear scalability and the constant-factor overhead reported in the experiments.

3.2 Key-Rotation Effectiveness and Bounded Key Exposure

The auto-rotation mechanism enforces key renewal based on two analytical constraints: a time threshold Δt

and a usage threshold nnn. For a sequence of encryption operations over an observation interval T, the expected

maximum key lifetime is bounded by:

𝐿𝑘𝑒𝑦 ≤ 𝑚𝑖𝑛(𝛥𝑡, 𝑛/𝜆) (7)

where λ denotes the average encryption rate. The empirical results confirm that observed key lifetimes remain

below the configured bounds, demonstrating consistency between the analytical rotation model and measured

key-exposure metrics.

3.3 Key Variability, Integrity, and Overhead Stability

Statistical analysis of Hamming distances between successive AES keys indicates high bit-level variability,

consistent with effective key freshness under the enforced rotation constraints. Data integrity is preserved across

all test cases, confirming functional correctness of the encryption–decryption pipeline. System overhead remains

stable at approximately 12.8%, which aligns with the constant-term β\betaβ in the analytical model and confirms

that key rotation introduces a bounded, input-size-independent perturbation to baseline AES performance.

  E-ISSN : 2580-5754; P-ISSN : 2580-569X

Zero: Jurnal Sains, Matematika dan Terapan

1036

3.4 Encryption and Decryption Time with Uncertainty Analysis

Encryption and decryption performance was evaluated using files of sizes 100 KB, 1 MB, 5 MB, and 10

MB. AES-256 in CBC mode was used for data encryption with a 128-bit random Initialization Vector (IV), while

AES session keys were encrypted using RSA-2048. Each configuration was executed repeatedly (r ≥ 10), and

execution times were summarized using the arithmetic mean (μ) and standard deviation (σ), defined as:

𝜇 =
1

𝑟
∑ 𝑡𝑖

𝑟
𝑖=1 (8)

Represents the sample mean of the measured values. Here, r denotes the total number of experimental

repetitions, and 𝑡𝑖 is the measured execution time in the i-th trial. The mean μ therefore gives the average

execution time across all repetitions and is used as a single representative value for performance comparison.

𝜎 = √
1

𝑟−1
∑ (𝑡𝑖 − 𝜇)2𝑟

𝑖=1 (9)

Defines the sample standard deviation, which quantifies the dispersion of the measured values around the

mean. The term (𝑡𝑖 − 𝜇)2 measures the squared deviation of each observation from the average, and the

normalization factor
1

𝑟−1
 is used to obtain an unbiased estimator of variance for a finite sample. The square root

converts variance into standard deviation, expressed in the same unit as the original measurements.

Table 1. Encryption and decryption time with uncertainty

File Size
Hybrid

Encryption (ms)
Std. Dev. (ms)

Hybrid

Decryption (ms)
Std. Dev. (ms)

100 KB 9.87 0.42 9.12 0.39

1 MB 37.46 1.61 36.88 1.54

5 MB 182.22 7.95 179.94 7.60

10 MB 361.51 15.42 355.67 14.88

The coefficient of variation (CV = σ/μ) remains below 5% for all file sizes, indicating low runtime variability

and stable execution behavior. Encryption and decryption times scale approximately linearly with file size,

consistent with the theoretical linear time complexity of AES. The additional cost introduced by RSA key

encapsulation and key-rotation logic appears as a bounded constant-factor overhead, without affecting asymptotic

scalability. To evaluate the performance of the proposed hybrid RSA–AES cryptosystem with auto-rotation key

mechanism, encryption and decryption times were measured for files of varying sizes (100 KB, 1 MB, 5 MB,

and 10 MB). The AES-256 algorithm in CBC mode was used for encrypting file contents, and RSA-2048 was

used for encrypting the AES session key.

3.5 Quantitative Evaluation of Key Rotation Effectiveness

The auto-rotation mechanism operates under two threshold conditions: time-based rotation every 30

minutes and event-based rotation after 10 encryption operations. Over a 6-hour observation period (360 minutes)

with 42 encryption operations, the theoretical upper bound on the number of generated keys can be estimated

as:

𝑁𝑀𝑎𝑥 = ⌊
𝑇𝑜𝑏𝑠

∆𝑡
⌋ + ⌊

𝑁𝑜𝑝𝑠

𝑛
⌋ (10)

𝑁𝑀𝑎𝑥 denotes the maximum possible number of key rotations within the observation window. The symbol

⌊⋅⌋ represents the floor function, which returns the greatest integer less than or equal to its argument. In this case,

an observation period of 360 minutes with a rotation interval of 30 minutes yields ⌊360/30⌋=⌊12⌋, indicating that

up to 12 keys could be generated solely due to time-based rotation.

𝑁𝑀𝑎𝑥 = ⌊
𝑇𝑜𝑏𝑠

∆𝑡
⌋ + ⌊

𝑁𝑜𝑝𝑠

𝑛
⌋ = ⌊12⌋ + ⌊4.2⌋ = 16

The observed number of keys is significantly below the theoretical upper bound, demonstrating

quantitatively that key reuse is bounded and prolonged exposure of a single symmetric key is avoided under

normal operational conditions. This result in Table 2. reflects effective enforcement of the defined key-lifecycle

constraints

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&

Zero: Jurnal Sains, Matematika dan Terapan 

 RSA-AES Cryptosystem with Auto-Key Rotation for Cloud Storage (Azanuddin)

1037

Table 2. Quantitative summary of key rotation

Parameter Value

Observation time 6 hours

File operations 42

Theoretical maximum keys 16

Observed AES keys 6

Average key lifetime = 60 minutes

3.6 Key Variability and Statistical Randomness Indicators

Key variability was assessed using the Hamming distance between consecutive 256-bit AES keys. In addition

to the mean value, dispersion and statistical range are reported to provide greater analytical depth. The statistical

properties of key variability were analyzed using the Hamming distance between consecutive 256-bit AES keys

generated by the auto-rotation mechanism, as summarized in Table 3. This metric provides a quantitative

indication of bit-level differences between successive keys and serves as an empirical descriptor of key variability

over time. To move beyond a single average value, several descriptive statistics are reported in Table 3, including

the mean, standard deviation, minimum and maximum observed distances, as well as the expected value for

uniformly random 256-bit binary strings. In addition, the interval defined by μ±2σ\mu \pm 2\sigmaμ±2σ is

included to capture the range in which most observed values are expected to lie under a normal variability

assumption, thereby providing insight into the consistency and dispersion of key differences across the

experimental runs.

Table 3. Statistical summary of hamming distance

Metric Value (bits)

Mean (μ) 127.42

Standard deviation (σ) 5.13

Minimum 116

Maximum 139

Expected value 128

μ ± 2σ interval [117.16, 137.68]

The mean Hamming distance is very close to the theoretical expectation of 128 bits for uniformly random

256-bit keys, indicating substantial bit-level variability. The observed values fall within a statistically reasonable

range, with no evidence of clustering or deterministic patterns.

However, Hamming distance alone is insufficient as a cryptographic randomness or security metric. In this study,

it is used strictly as a descriptive statistical indicator of key variability, not as a substitute for comprehensive

randomness testing or formal security analysis. More rigorous tests (e.g., NIST SP 800-22) are outside the scope

of this work.

3.7 Quantitative Security Indicators under a Limited Threat Model

Security evaluation is restricted to quantitative indicators that are directly observable under the defined

threat model. The quantitative security-related properties of the proposed system are summarized in Table 4,

which reports measurable indicators derived directly from the experimental observations. Rather than presenting

abstract security claims, these indicators capture operational aspects of security that can be empirically verified,

including bounded key exposure, controlled key reuse, key variability, data integrity preservation, and

performance stability. Each metric in Table 4 reflects a specific dimension of the defined threat model, providing

a concise numerical summary of how the autonomous key-rotation mechanism constrains symmetric-key usage

while maintaining predictable system behavior under the tested workload.

Table 4. Quantitative security indicators

Aspect Metric Result

Key exposure Maximum key lifetime ≤ 30 minutes / 10 operations

Key reuse Average reuse count ≤ 10

Key variability Mean Hamming distance 127.42 bits

Data integrity SHA-256 mismatches 0 / 42 files

Overhead stability Std. dev. of overhead < 0.2%

These indicators provide empirical evidence of bounded key exposure, functional correctness, and predictable

overhead, but do not constitute formal cryptographic security guarantees.

  E-ISSN : 2580-5754; P-ISSN : 2580-569X

Zero: Jurnal Sains, Matematika dan Terapan

1038

3.8 System Overhead with Statistical Dispersion

The impact of the proposed hybrid RSA–AES cryptosystem on computational efficiency is further detailed

in Table 5, which reports the mean system overhead along with its variability across different file sizes. By

presenting both the average overhead and the corresponding standard deviation, Table 5 provides insight into

the consistency and stability of the additional computational cost introduced by RSA-based key encapsulation

and the auto-rotation mechanism. The low standard deviation values indicate minimal fluctuation across repeated

trials, confirming that the observed overhead remains stable and behaves as a bounded constant factor

independent of input size.

Table 5. System overhead with variability

File Size Mean Overhead (%) Std. Dev. (%)

100 KB 12.8 0.15

1 MB 12.7 0.14

5 MB 12.9 0.17

10 MB 12.8 0.16

From a performance analysis perspective, the most prominent observation in Figure 1 is the remarkable

consistency of overhead across all tested file sizes. The mean overhead values range narrowly between 12.7% and

12.9%, indicating that the additional computational cost imposed by the hybrid architecture is largely independent

of input size. This behavior aligns with the theoretical expectation that RSA operations and key-rotation logic

introduce a constant-factor cost, while the dominant AES encryption workload scales linearly with file size. As a

result, the relative overhead remains stable even as the data volume increases by two orders of magnitude, from

100 KB to 10 MB. For the smallest file size (100 KB), the mean overhead is reported as 12.8% with a standard

deviation of 0.15%. At this scale, the fixed cost of RSA key encryption and rotation logic constitutes a relatively

larger fraction of the total execution time compared to AES-only encryption. Nevertheless, the overhead does

not spike disproportionately, demonstrating that the proposed system avoids excessive initialization or setup costs

that could otherwise penalize small workloads. The low standard deviation further indicates that repeated trials

yield highly consistent results, suggesting that the overhead is not sensitive to transient system fluctuations or

background processes. At a file size of 1 MB, the mean overhead slightly decreases to 12.7%, accompanied by a

standard deviation of 0.14%. This minor reduction is consistent with the amortization of fixed cryptographic costs

over a larger data payload. Importantly, the difference between 12.8% and 12.7% is well within the margin of

statistical dispersion, reinforcing the conclusion that overhead remains effectively constant rather than exhibiting

any systematic trend with respect to file size. The very small standard deviation again highlights the stability of the

measured performance across repeated executions. For the 5 MB test case, the mean overhead increases

marginally to 12.9%, with a standard deviation of 0.17%, the highest variability observed among the tested

configurations. Even so, this variation remains extremely small in absolute terms and does not indicate any

degradation in performance predictability. Instead, it reflects normal measurement noise associated with longer

execution times, such as minor variations in system scheduling or cache behavior. Crucially, there is no evidence

of nonlinear growth in overhead, which would be indicative of scalability bottlenecks introduced by the key-

rotation mechanism. At the largest tested file size of 10 MB, the mean overhead returns to 12.8%, with a standard

deviation of 0.16%. This result confirms that the overhead stabilizes as file size increases and does not accumulate

or compound over longer encryption tasks. From a practical standpoint, this finding is particularly important for

cloud storage scenarios involving large files, where predictable performance is essential. The consistent overhead

at 10 MB demonstrates that the proposed system can handle larger workloads without introducing

disproportionate delays. From an applied mathematics perspective, Figure 1 provides empirical evidence that the

proposed cryptographic design introduces a bounded constant-factor perturbation to the baseline AES

performance. In complexity terms, AES encryption exhibits linear time complexity O(n) with respect to file size

nnn, while RSA-based key encapsulation and key-rotation checks contribute an O(1) cost per encryption session.

The flat profile of the bars in Figure 1 visually confirms this analytical interpretation: as nnn increases, the ratio

between hybrid encryption time and AES-only encryption time converges to a constant value, rather than

diverging. The inclusion of standard deviation values, as reported in Table 5, adds an important layer of scientific

rigor to the interpretation of Figure 1. The standard deviation remains below 0.2% for all file sizes, indicating low

dispersion and high repeatability of the measurements. This statistical stability strengthens the validity of the

reported mean overhead values and reduces the likelihood that the observed results are artifacts of isolated

experimental runs. In the context of performance evaluation, such low variability suggests that the overhead

introduced by the auto-rotation mechanism is deterministic and well controlled.

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&

Zero: Jurnal Sains, Matematika dan Terapan 

 RSA-AES Cryptosystem with Auto-Key Rotation for Cloud Storage (Azanuddin)

1039

Figure 1. Performance Overhead of the Hybrid RSA–AES Cryptosystem with Auto-Rotation Key Mechanism

Figure 1 illustrates the performance overhead introduced by the proposed hybrid RSA–AES cryptosystem

with an auto-rotation key mechanism across different file sizes, namely 100 KB, 1 MB, 5 MB, and 10 MB. The

overhead values shown in the bar chart correspond directly to the quantitative results summarized in Table 5,

where each bar represents the mean overhead percentage, and variability is captured through the reported

standard deviation. This visualization provides an intuitive and consolidated view of how the additional

cryptographic mechanisms—specifically RSA-based key encapsulation and autonomous key rotation—affect

system performance relative to an AES-only baseline. Figure 1 complements the numerical data in Table 5 by

providing a clear visual summary of the system’s overhead characteristics. While the table conveys precise

quantitative values, the bar chart immediately communicates the absence of significant variation across file sizes.

Together, they reinforce the central conclusion that the hybrid RSA–AES cryptosystem with auto-rotation key

mechanism delivers enhanced key management capabilities at a stable and bounded computational cost,

supporting its suitability for practical deployment in cloud storage systems.

3.9 Critical Assessment and Scientific Limitations

Although the reported results are internally consistent and exhibit numerical stability across repeated trials,

several limitations constrain the overall scientific strength and generalizability of the findings. First, the uncertainty

analysis is restricted to the reporting of standard deviation, without the inclusion of formal confidence intervals

or statistical hypothesis testing, which limits the ability to draw probabilistic inferences beyond descriptive

comparison. Second, the security evaluation is inherently empirical and operational in nature; it focuses on

observable indicators such as bounded key exposure, key variability, and integrity preservation, rather than on

formal cryptographic proofs or adversarial security models. Third, the assessment of randomness relies on a

single descriptive metric—namely, the Hamming distance which, while informative for bit-level variability, is

insufficient to characterize cryptographic randomness or resistance to sophisticated attacks. Finally, the key-

rotation parameters (Δt and n) are selected empirically to balance performance and security considerations, but

they are not optimized through sensitivity analysis, comparative benchmarking, or formal parameter tuning.

In light of these limitations, the proposed method should be interpreted as a lightweight and empirically

validated key-rotation framework tailored to practical cloud storage environments, rather than as a

cryptographically optimal or formally proven secure system. From an applied mathematics perspective, the

principal contribution of this work lies in the abstraction of key rotation as a bounded and quantifiable process,

and in the explicit linkage between analytically defined key-lifecycle constraints and measurable system

performance. This perspective provides a structured foundation for future studies aimed at extending the model

toward stronger statistical rigor, broader security evaluation, and more comprehensive optimization of key-

management parameters.

4. CONCLUSION

This study has developed and empirically evaluated a hybrid RSA–AES cryptosystem incorporating an

autonomous, threshold-based key-rotation mechanism for cloud storage security. The results demonstrate that

integrating automated key lifecycle management into a conventional hybrid encryption framework can bound

symmetric-key reuse while preserving computational scalability. Experimental evaluation confirms that the

proposed mechanism maintains linear encryption complexity with respect to file size and introduces a stable,

bounded overhead, indicating that autonomous key rotation does not impose adverse performance penalties

under typical cloud storage workloads. From an applied mathematics perspective, the primary contribution of

this work lies in the formalization of key rotation as a bounded perturbation of baseline encryption complexity,

governed by explicit time- and usage-based constraints. By modeling key renewal through analytically defined

  E-ISSN : 2580-5754; P-ISSN : 2580-569X

Zero: Jurnal Sains, Matematika dan Terapan

1040

inequalities and relating these constraints to observable performance and variability metrics, this study provides

a quantitative framework for examining security–performance trade-offs in hybrid cryptosystems. This approach

moves beyond implementation-centric evaluations by treating key lifecycle management as a mathematically

constrained process with measurable operational consequences.

Several limitations should be acknowledged. The evaluation is conducted in a simulated environment, and

security analysis remains empirical rather than proof-based. In addition, randomness assessment relies on

descriptive metrics, and rotation parameters are selected empirically without formal sensitivity analysis. Future

work will therefore focus on validating the proposed model under real-world cloud workloads, extending the

analysis with statistical randomness testing and adversarial simulations, and exploring parameter optimization and

alternative key encapsulation schemes to further reduce overhead in high-frequency encryption scenarios.

Overall, this research offers a lightweight yet mathematically grounded approach to autonomous key

management, providing a clear analytical basis for future developments in adaptive and performance-aware

cryptographic systems.

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&

Zero: Jurnal Sains, Matematika dan Terapan 

 RSA-AES Cryptosystem with Auto-Key Rotation for Cloud Storage (Azanuddin)

1041

5. References

[1] V. Verma, P. Kumar, R. K. Verma, and S. Priya, “A Novel Approach for Security in Cloud Data Storage

Using AES-DES-RSA Hybrid Cryptography,” in 2021 Emerging Trends in Industry 4.0 (ETI 4.0), 2021,

doi: 10.1109/ETI4.051663.2021.9619274.

[2] R. Adee and H. Mouratidis, “A Dynamic Four-Step Data Security Model for Data in Cloud Computing

Based on Cryptography and Steganography,” Sensors (Switzerland), vol. 1109, no. 22, pp. 1–23, 2022, doi:

https://doi.org/10.3390/s22031109.

[3] A. M. Qadir and N. Varol, “A review paper on cryptography,” 7th Int. Symp. Digit. Forensics Secur. ISDFS
2019, 2019, doi: 10.1109/ISDFS.2019.8757514.

[4] M. Mumtaz and L. Ping, “Forty years of attacks on the RSA cryptosystem : A brief survey,” vol. 0529, 2019,

doi: 10.1080/09720529.2018.1564201.

[5] K. Sharma, A. Agrawal, D. Pandey, R. A. Khan, and S. Kumar, “RSA based encryption approach for

preserving con fi dentiality of big data,” vol. 34, pp. 2088–2097, 2022.

[6] Y. Luo, X. Ouyang, J. Liu, and L. Cao, “An Image Encryption Method Based on Elliptic Curve Elgamal

Encryption and Chaotic Systems,” IEEE Access, vol. 7, no. c, pp. 38507–38522, 2019, doi:

10.1109/ACCESS.2019.2906052.

[7] E. Jintcharadze and M. Iavich, “Hybrid Implementation of Twofish, AES, ElGamal and RSA

Cryptosystems,” in 2020 IEEE East-West Design & Test Symposium (EWDTS), 2020, doi:

10.1109/EWDTS50664.2020.9224901.

[8] H. Byun, J. Kim, Y. Jeong, B. Seok, and S. Gong, “A Security Analysis of Cryptocurrency Wallets against

Password Brute-Force Attacks,” Electronics, pp. 1–15, 2024, doi:

https://doi.org/10.3390/electronics13132433.

[9] A. I. Mallick and R. Nath, “Navigating the Cyber security Landscape: A Comprehensive Review of Cyber-

Attacks, Emerging Trends, and Recent Developments,” World Sci. News An Int. Sci. J., vol. 190, no. 1,

pp. 1–69, 2024.

[10] R. K. Muhammed, K. H. A. Faraj, J. F. Gul-Mohammed, T. N. A. Al Attar, S. J. Saydah, and D. A. Rashid,

“Automated Performance analysis E-services by AES-Based Hybrid Cryptosystems with RSA, ElGamal,

and ECC,” Adv. Sci. Technol. Eng. Syst. J., vol. 9, no. 3, pp. 84–91, 2024, doi:

https://dx.doi.org/10.25046/aj090308.

[11] D. Shivaramakrishna and M. Nagaratna, “A novel hybrid cryptographic framework for secure data storage

in cloud computing: Integrating AES-OTP and RSA with adaptive key management and Time-Limited

access control,” Alexandria Eng. J., vol. 84, no. December, pp. 275–284, 2023, doi:

https://doi.org/10.1016/j.aej.2023.10.054.

[12] G. Dhamodharan, “An Enhanced and Dynamic Key AES Algorithm for Internet of Things Data Security,”

J. Adv. Zool., vol. 44, no. S-6, pp. 1323–1332, 2023, doi: 10.17762/jaz.v44iS6.2444.

[13] F. M. Khalaf and A. M. Sagheer, “A Hybrid Encryption Model with Blockchain Integration for Secure

Cloud Data Storage and Retrieval,” vol. 10, 2025.

[14] A. O. Aseeri and A. Anjum, “Hybrid AES-ECC Model for the Security of Data over Cloud Storage,” vol.

10, pp. 1–20, 2021, doi: https://doi.org/10.3390/electronics10212673.

[15] J. Reuben and J. O. Ouma, “Secure management of encryption keys for small and medium enterprises in

Africa : A comparative study .,” no. May, 2022.

[16] P. Elumalaivasan, T. Munirathinam, V. Kayalvizhi, G. Sekar, T. M. Sivanesan, and S. G, “Comparative

Analysis of AES and AES-RSA Hybrid Techniques for Securing Visual Data Integrity,” in 11th
International Conference on Communication and Signal Processing (ICCSP), 2025, vol. July, doi:

10.1109/ICCSP64183.2025.11089233.

[17] C. U. Betrand, C. G. Onukwugha, M. E. Benson-emenike, C. Ofoegbu, and N. M. Awaji, “File Storage

Security in Cloud Computing Using Hybrid Encryption File Storage Security in Cloud Computing Using

Hybrid Encryption,” vol. 12, no. 1, pp. 1–9, 2024, doi: 10.11648/j.iotcc.20241201.11.

[18] M. E. Smid, “Development of the Advanced Encryption Standard,” vol. 126, no. 126024, pp. 1–18, 2022.

[19] N. E. El-attar, D. S. El-morshedy, and W. A. Awad, “A New Hybrid Automated Security Framework to

Cloud Storage System,” cryptography, no. December, pp. 1–20, 2021, doi:

https://doi.org/10.3390/cryptography5040037.

[20] H. T. Assa, I. A. Hashim, A. A. Naser, and I. A. Hashim, “Advanced Encryption Standard (AES)

acceleration and analysis using graphical processing unit (GPU),” no. 0123456789, pp. 1–6, 2021.

[21] O. C. Abikoye, A. D. Haruna, A. Abubakar, N. O. Akande, and E. O. Asani, “Modified Advanced

Encryption Standard Algorithm for Information Security,” pp. 1–16, 2019, doi: 10.3390/sym11121484.

[22] J. Kaur, S. Lamba, and P. Saini, “Advanced Encryption Standard: Attacks and Current Research Trends,”

2021, pp. 112–116, doi: 10.1109/ICACITE51222.2021.9404716.

[23] S. Devi and H. D. Kotha, “AES encryption and decryption standards,” in International conference on
computer vision and machine learning, 2019, pp. 1–11, doi: 10.1088/1742-6596/1228/1/012006.

[24] M. F. Abdelwahed, “A hybrid method for data compression and encryption based on bit packing , 128-

based numerals , and bitmap manipulations : application to seismic data,” 2020.

  E-ISSN : 2580-5754; P-ISSN : 2580-569X

Zero: Jurnal Sains, Matematika dan Terapan

1042

[25] S. Arshad and M. Khan, “New extension of data encryption standard over 128-bit key for digital images,”

vol. 5, 2021.

[26] S. Camtepe, J. Duda, A. Mahboubi, P. Morawiecki, M. Pawłowski, and J. Pieprzyk, “ANS-based

compression and encryption with 128-bit security,” Int. J. Inf. Secur., vol. 21, no. 5, pp. 1051–1067, 2022,

doi: 10.1007/s10207-022-00597-4.

[27] A. Ghosh, S. Adhikari, S. Karforma, and W. Bengal, “A Fast And Efficient Document Encryption Method

For E-Learning Applications Usingmodified Aes-Cbcwith Chaotic Logistic Pseudo Random Number

Sequence,” Adv. Mech., vol. 9, no. 3, pp. 1051–1060, 2021.

[28] S. Lee and K. Sim, “Design and Hardware Implementation of a Simplified DAG-Based Blockchain and

New AES-CBC Algorithm for IoT Security,” 2021.

[29] A. S. Al-Bayati, “Enhancing Performance of Hybrid AES, RSA and Quantum Encryption Algorithm,”

University for the degree of Master of Philosophy (MPhil), 2021.

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&

