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 Accurate predictions of national rice production are crucial for food 

sustainability, yet data fluctuations pose a major challenge. This study aims to 

improve forecasting accuracy by developing a modified Fuzzy Time Series 

(FTS) model that simplifies the Fuzzy Logical Relationship Group (FLRG) by 

retaining only the logical relationships with the highest frequency of occurrence. 

Monthly Indonesian rice production data from January 2018 to March 2025 

were used to test this model. To assess the effectiveness of this modification, the 

model’s performance was compared with Chen’s conventional FTS models of 

orders 1 to 3 through MAD, RMSE, and MAPE. Results indicate that the 

modified third-order FLRG achieved the best accuracy (MAD = 196,410; 

RMSE = 271,774; MAPE = 5.46%), while reducing FLRG complexity by 

10.84%. This demonstrates that FLRG simplification effectively captures longer 

seasonal dependencies while reducing computational complexity. Nevertheless, 

the model’s sensitivity to sudden structural changes underscores the need for 

adaptive or probabilistic FLRG enhancement, with hybrid mechanisms as a 

potential complement. Overall, the proposed approach provides an efficient 

decision-support tool for maintaining food supply stability and guiding data-

driven agricultural policy in Indonesia.  
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1. INTRODUCTION 
The impact of imported rice can affect the welfare of local rice farmers, particularly in terms of selling prices, 

as imported rice is often cheaper than domestically produced rice. Overreliance on rice imports also exposes 

Indonesia to global food price volatility and disruptions in the international supply chain. Therefore, accurate 

forecasting of national rice production is essential to support evidence-based food policy, particularly for import 

planning and maintaining food supply stability [1]. Recent studies have highlighted the growing importance of 
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intelligent forecasting systems, including machine learning and hybrid approaches, to support national food 

security strategies when dealing with highly volatile agricultural commodities influenced by multiple external 

drivers [2]. However, although such approaches often demonstrate strong predictive performance, they generally 

require large training datasets and offer limited interpretability for policy-oriented decision making, motivating 

the continued use of rule-based forecasting methods. 

Among rule-based forecasting approaches, Fuzzy Time Series (FTS), initially introduced by Song and 

Chissom [3] and later simplified by Chen [4], has emerged as a robust method for modeling agricultural data due 

to its ability to handle uncertainty, seasonality, and non-stationary behavior. This framework was further enhanced 

by Tsaur [5], who introduced techniques to refine fuzzy relationships, providing a more structured approach to 

capturing temporal dependencies. Bilal et al. [6] then demonstrated that FTS-based models can accurately 

forecast rice production and prices by effectively capturing seasonal agricultural patterns. In a more applied 

institutional context, Wahyu et al. [7] showed that FTS can be implemented within governmental agricultural 

systems to support operational crop production planning with improved forecasting reliability. Meanwhile, Lestari 

and Yurinanda [8] emphasized the suitability of FTS model for economically sensitive time series, highlighting 

its interpretability and stability when dealing with fluctuating real-world data. From a theoretical perspective, the 

effectiveness of FTS models is fundamentally grounded in fuzzy set theory, particularly in the construction of 

linguistic variables and membership functions that enable the representation of uncertainty and imprecision in 

real-world time series data [9]. 

Beyond classical univariate formulations, more recent studies have extended FTS into multivariate and 

multi-rule combination frameworks to further enhance forecasting accuracy. In particular, Huang et al. [10] 

proposed a multivariate fuzzy time series model that combines multiple fuzzy rules to capture complex 

dependency structures, demonstrating improved predictive performance on compositional time series data. 

Nevertheless, such advanced models typically increase rule complexity and computational requirements, which 

may reduce their transparency and practical usability for policy-driven forecasting applications. 

Despite their demonstrated effectiveness, these existing FTS studies [6], [7], [8] primarily rely on first-order 

or classical FTS formulations. Consequently, they struggle to capture long-term temporal dependencies in highly 

volatile agricultural time series, limiting their predictive horizon and overall accuracy. A major limitation of these 

conventional FTS methods is the lack of flexibility in defining Fuzzy Logical Relationship Groups (FLRGs) that 

specifically handle different variations or sub-patterns within highly volatile time series data. To overcome this, 

High-order Fuzzy Time Series was developed as an extension of the classical FTS framework, which is an 

advancement of the Fuzzy Time Series (FTS) method introduced by Chen [11], where forecasting does not only 

rely on previous historical data, but uses two or more historical data to form a more complex Fuzzy Logic Relation 

(FLR) [12]. The purpose is to improve forecasting accuracy by incorporating more historical information into the 

model. However, conventional high-order FTS methods often produce complex Fuzzy Logic Relationship 

Groups (FLRG) because they cover all possible state transitions [13]. This exhaustive approach generates "noisy" 

logical relationships that are based on infrequent or coincidental data patterns. This noise directly reduces the 

model's prediction accuracy and robustness, especially when dealing with volatile agricultural data.  

Despite these advancements, a systematic frequency-based filtering of FLRG transitions in high-order FTS 

has not been adequately explored. This lack of simplification approach, specifically the failure to systematically 

filter rare or insignificant state transitions constitutes the core research gap in current FTS applications, where the 

few studies that have introduced advanced FTS approaches, such as higher-order models [11], [12] and 

multivariate or hybrid frameworks [9], [10], generally retain all transitions in the FLRG without filtering out rare 

events. Addressing this limitation is crucial, as the resulting rule complexity significantly hampers the model's 

performance and interpretability when applied to highly volatile real world time series like agricultural data.  

To close this gap, this study proposes a novel modification to the FTS framework. A simplified FLRG 

formation rule is developed to mitigate the issues of noise and complexity in high-order FTS. The proposed 

model simplifies the FLRG by retaining only the logical relationships with the highest frequency of occurrence, 

thus filtering out the insignificant noise. This refinement aims to provide a cleaner and more interpretable 

framework that potentially enhances both forecasting precision and model robustness. Such improvements are 

relevant for national food security, as increased accuracy is a key requirement for supporting government 

intervention and data-driven agricultural policy in Indonesia. 

To this end, the objectives of this study are to (1) propose a frequency-based FLRG simplification; (2) 

compare the forecasting accuracy of the proposed approach with conventional Chen FTS models of orders 1–3; 

(3) quantify the reduction in FLRG complexity; and (4) assess the suitability of the modified FTS model as a 

decision-support tool for national rice production policy. 

2. RESEARCH METHOD 
2.1 Fuzzy Time Series (FTS) Method 

Fuzzy Time Series (FTS) is a forecasting approach that utilizes the concept of fuzzy sets to estimate the 

future value based on its historical data patterns [14], [15]. This method converts numerical data into fuzzy 

linguistic representations, then analyses the relationships between data to make predictions, and converts the 
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prediction results back into numerical form [16]. FTS is highly appropriate for this study as it manages data 

uncertainty, performs well with limited and non-stationary datasets, and derives forecasting knowledge directly 

from historical patterns, making it suitable for agricultural forecasting. Unlike most statistical time series models, 

FTS does not rely on stationarity assumptions, which are rarely satisfied in practical datasets [17]. 

Definition of FTS 

a. Fuzzy Set 

For each linguistic value, define a fuzzy set with a specific membership function, which associates each value in 

the universe of discourse with a membership value between 0 and 1. This change in value is called the fuzzification 

of historical data [18]. In the fuzzy time series framework, membership functions define the degree to which each 

data point belongs to a fuzzy set, directly influencing the model’s forecasting precision [19]. Generally, this is the 

process of converting rigid numerical data into linguistic categories (words) to process uncertainty. 

b. Fuzzy Logic Relations (FLR) 

Fuzzy Logical Relationships (FLR) describe the temporal dependency between consecutive fuzzy sets, 

establishing the basis for mapping transitions among linguistic states in the time series [20]. FLR is formed after 

time series data is converted into linguistic values through the fuzzification process. The goal is to model and 

predict complex and uncertain historical data patterns [21]. FLR captures the dependency between past and 

future states in linguistic form, making it ideal for predicting the next time value based on historical observations. 

c. Fuzzy Logic Relations Group (FLRG) 

Fuzzy Logical Relationship Groups (FLRG) are formed by aggregating FLRs that share the same antecedent fuzzy 

set, providing a grouped representation used in the forecasting inference stage [22]. FLRG serves to organize 

interrelated FLRs into a single group, where all FLRs that start from the same fuzzy set are grouped together [23]. 
FLRG functions as the model's knowledge base, it groups all possible outcomes that have historically occurred 

following a specific condition. 

 

2.2 Present the procedural steps 

Chen introduced high-order Fuzzy Time Series in 2002 [11]. The difference between Chen's high-order 

Fuzzy Time Series lies in the determination of Fuzzy Logic Relations (FLR) [24]. The FTS approach involves 

partitioning historical data into intervals and transforming them into fuzzy sets to establish temporal dependencies 

for forecasting [25]. This study follows the foundational FTS framework established by Song and Chissom [3], as 

further refined in recent literature [26], [27], [28]. The systematic steps are outlined below: 

1. Construction of universal sets  

The universe of discourse  

𝑈 = [𝐷𝑚𝑖𝑛  ; 𝐷𝑚𝑎𝑥]  (1) 

is defined based on the smallest (𝐷𝑚𝑖𝑛) and the largest  (𝐷𝑚𝑎𝑥) values in historical data. 

2. Constructions of intervals 

The universal set U is divided into several intervals with equal distances to represent data variability. The number 

of intervals can be determined using average-based approach, forming linguistic values that represent fuzzy sets 

within the defined range of U. 

𝑈 = {𝑢1, 𝑢2, 𝑢3, . . , 𝑢𝑛}          (2) 

 where U denotes the universe of discourse, 𝑢𝑖  represents its elements, and 𝑖 = 1,2,3, . . . , 𝑛 refers to the 

index of each interval. 

3. Fuzzification 

A fuzzy set is a class or group of objects with a continuum of degrees of membership. Suppose U is the universal 

set, 𝑈 = {𝑢1 , 𝑢2 , … , 𝑢𝑛} where 𝑢𝑖 are elements of U (the possible values), then the linguistic variable 𝐴𝑖  with 

respect to 𝑈 can be formulated as follows: 

𝐴𝑖 =
𝜇𝐴𝑖(𝑢1)

𝑢1
+

𝜇𝐴𝑖(𝑢2)

𝑢2
+

𝜇𝐴𝑖(𝑢3)

𝑢3
+ ⋯ +

𝜇𝐴𝑖(𝑢𝑛)

𝑢𝑛
      (3) 

𝜇𝐴𝑖: 𝑈 → [0,1]. If 𝜇𝑖 s membership of 𝐴𝑖 then 𝜇𝐴𝑖(𝑢𝑖) is the degree of membership 𝑢𝑖 to 𝐴𝑖  

4. Establishing the Fuzzy Logic Relations (FLR)  

Determine the FLR according to the time,  

• If 𝐹(𝑡 − 1) fuzzification into 𝐴𝑖 and 𝐹(𝑡) into 𝐴𝑗, then formed FLR 𝐴𝑖 → 𝐴𝑗 

• 𝐴𝑖 is the LHS (left hand side) which represents the previous condition 

• 𝐴𝑗 is the RHS (right hand side) which represents the next condition 

 

5. Establishing the Fuzzy Logic Relations Group (FLRG).  

That is, grouping several fuzzy logic relations (FLR) that have the same Left Hand Side (LHS) but different Right 

Hand Sides (RHS) into a single group. For example, 𝐴𝑖 → 𝐴𝑗, 𝐴𝑖 → 𝐴𝑚 , 𝐴𝑖 → 𝐴𝑚 , 𝐴𝑖 → 𝐴𝑚 , 𝐴𝑖 → 𝐴𝑛 can be 

grouped into 𝐴𝑖 → 𝐴𝑗, 3 𝐴𝑚 , 𝐴𝑛 . 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&
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6. Defuzzification 

If 𝐹(𝑡 − 1) = 𝐴𝑖 resulting FLRG (𝐴𝑖 → 𝐴𝑗1, 𝐴𝑗2, … , 𝐴𝑗𝑘) than 𝐹(𝑡) = 𝐴𝑗1, 𝐴𝑗2, … , 𝐴𝑗𝑘, the defuzzification 𝒚̂(𝒕): 

𝑦̂(𝑡) =
∑ 𝑚𝑗𝑝

𝑘
𝑝

𝒌
     (4) 

where 𝒎𝒋𝒑 denotes the median value of 𝑨𝒋𝒑 

2.3 High-Order Fuzzy Time Series Chen 

The setup of FLR in Chen's high-order Fuzzy Time Series method considers two or more data points from 

the past according to the order used. If using order three, then in determining FLR, three historical data points 

will be considered. For example, in the Chen Fuzzy Time Series method using an order of two, if three 

consecutive fuzzy sets 𝐴𝑖(𝑡 − 2) and 𝐴𝑗(𝑡 − 1) and 𝐴𝑘(𝑡)  can be formed as FLR  𝐴𝑖, 𝐴𝑗 → 𝐴𝑘 . Hence, the 

resulting FLRG also changes. For example, in FLR, we obtain 𝐴1, 𝐴1 → 𝐴1;  𝐴1, 𝐴1 → 𝐴2;  𝐴1, 𝐴1 → 𝐴3  The 

resulting FLRG is 𝐴1, 𝐴1 → 𝐴1, 𝐴2, 𝐴3 [29]. High-order fuzzy time series models extend the conventional first-

order structure by incorporating multiple past observations to establish more comprehensive fuzzy logical 

relationships, thereby enhancing the model’s capability to capture long-term temporal dependencies and 

improving forecasting accuracy [30]. 

2.4 Prediction Value Accuracy 

The accuracy of forecasting results is a measure of the degree of difference between actual results and 

forecast results [31]. In time series forecasting, the difference between actual observations and the forecast 

estimate is referred to as the residual [32]. Good accuracy has a low level of difference between the actual results 

and the forecast results, but if the level of difference between the actual results and the forecast results increases, 

the accuracy will become worse [33]. 

Accuracy measures used in this study: 

1. MAD 

Mean Absolute Deviation (MAD) accuracy value Used to calculate the absolute average value of a prediction 

error, the following is the calculation formula: 

𝑀𝐴𝐷 =
1

𝑛
∑ |𝐴𝑡 − 𝐹𝑡|𝑛

𝑡=1  (5) 

2. RMSE 

Root Mean Square Error (RMSE) It is a measure of error that measures the difference between the actual value 

and the value predicted by the forecasting model. A lower RMSE value indicates higher forecast accuracy, the 

following is the calculation formula: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑|𝐴𝑡 − 𝐹𝑡|2

𝑛

𝑡=1

 

(6) 

3. MAPE 

 Mean Absolute Percentage Error (MAPE) accuracy value is a calculation of the error in a prediction to find 

the average absolute percentage error, using the formula: 

𝑀𝐴𝑃𝐸 =
1

n
 ∑ |

𝐴𝑡 − 𝐹𝑡

𝐴𝑡
|

𝑛

𝑡=1

× 100% 

(7) 

𝐴𝑡 denotes the actual value, 𝐹𝑡 represents the predicted value, n refers the number of observations in the sample. 

2.5 Proposed Frequency-Based FLRG Modification  

The proposed frequency-based modification focuses on the formation of the Fuzzy Logical Relationship 

Group (FLRG) rather than on altering the membership functions. Specifically, a new rule is introduced for 

constructing a simplified FLRG, where, for any given current state, the successor state(s) are determined based 

on the highest transition frequency observed in the original FLRG. In cases where multiple successor states share 

the same maximum transition frequency, a deterministic aggregation rule is applied to produce a unique successor 

value and avoid arbitrary rule selection. 

The following algorithm describes the FLRG simplification process for a given antecedent fuzzy set, 𝐴𝑖: 

1. Form Standard FLRGs: 

• Generate all possible Fuzzy Logical Relations (FLRs) from the fuzzified training data based on 

the chosen order (k). 

• Group these FLRs into standard FLRGs based on their antecedent. For a given antecedent 𝐴𝑖, 

the initial group is 𝐴𝑖 → {𝐴𝑗1, 𝐴𝑗2, … , 𝐴𝑗𝑚} where 𝐴𝑗 represents all observed subsequent states. 

2. Count Transition Frequency: 

• For the specific antecedent 𝐴𝑖, calculate the frequency of each subsequent state 𝐴𝑗 occurring. 
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3. Identify Maximum Frequency Transition: 

• Identify the next state, 𝐴𝑚𝑎𝑥, that occurred with the highest frequency count among all 

subsequent states {𝐴𝑗1, 𝐴𝑗2, … , 𝐴𝑗𝑚}. 

4. Simplify and Retain (The Modification): 

• Retain only the identified transition 𝐴𝑖 → 𝐴𝑚𝑎𝑥. All other transitions (those with lower or equal 

frequency) are discarded. 

5. Replace FLRG: 

• Replace the original multi-transition FLRG (which included all 𝐴𝑗) with the new, simplified 

FLRG that contains only the most frequent transition: 

   Original 𝐴𝑖 → {𝐴𝑗1, 𝐴𝑗2, … , 𝐴𝑗𝑚} is replaced by Simplified 𝐴𝑖 → {𝐴𝑚𝑎𝑥} 

• If two or more successor fuzzy sets have the same highest transition frequency (tie condition), 

a deterministic aggregation rule is applied. Let 𝐴𝑗1, 𝐴𝑗2, … , 𝐴𝑗𝑚 denote successor fuzzy sets 

whose frequencies equal the maximum frequency 𝐹𝑚𝑎𝑥. Instead of selecting a single successor 

arbitrarily, the model aggregates these fuzzy sets by computing the average of their 

representative values. This aggregated value is then used as the unique successor for the 

corresponding antecedent state. 

 In conventional high-order FTS models, the FLRG rule space grows rapidly with increasing model order 

due to the expansion of possible antecedent state combinations. The proposed frequency-based filtering is 

designed to control this growth by retaining only dominant transitions within each FLRG. The resulting reduction 

in rule-space complexity across different model orders is quantitatively evaluated in Section 3.4 (Table 5). 

2.6 Justification for FTS Model order (k) 

The FTS model order (k) determines the number of preceding time periods used for forecasting. This 

study tested and compared FTS models up to order 3 (k=1, 2, and 3) for both the conventional and the proposed 

modified methodologies. 

The selection of this range (up to order 3) is based on two primary considerations: 

1. Computational Efficiency and Complexity: Preliminary analysis showed that increasing the model order 

beyond k=3 provides negligible accuracy improvement while substantially enlarging FLRG complexity. 

As the primary objective of this study is complexity reduction, testing higher orders was not pursued to 

avoid unnecessary computational burden. 

2. Capturing Historical Dependence: FTS order 3 is sufficient to capture monthly dependencies over a 

quarter-year period, which aligns well with the known seasonal and short-term trends present in national 

rice production data. 

The best model order is selected through empirical evaluation, with the configuration showing the lowest MAD, 

RMSE, and MAPE considered optimal, ensuring that complexity is determined based on evidence rather than 

assumption. 

2.7 Research Flowchart 

The overall procedure of this study, starting from data input to final forecasting, is illustrated in the Figure 

1.  

 
Figure 1. Research Flowchart 

 Figure 1 summarizes the overall forecasting process, from data preparation to performance evaluation. The 

key novelty lies in the modified FLRG formation stage, in which only the highest-frequency relationships are 

retained, and the New FLRG approach is applied to the orders (1-3) model. 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&
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3. RESULT AND ANALYSIS 

3.1 Data Description 
The data used in this study consist of monthly national rice production figures from January 2018 to March 

2025 (87 observations), obtained from the official online database of Badan Pusat Statistik (BPS), specifically the 

'Luas Panen dan Produksi Padi Menurut Bulan' series (Code: 5403001.01). The selected series corresponds to 

finalized monthly statistics, with no reported re-benchmarking or historical revisions for the study period. 

Prior to analysis, the raw data were reviewed to ensure completeness and consistency, confirming that no 

missing observations were present and that data imputation was unnecessary. No normalization, detrending, or 

scale transformation was applied. This choice is justified by the Fuzzy Time Series (FTS) framework, in which 

fuzzification through interval partitioning and membership functions inherently accommodates magnitude 

differences in the original data without compromising membership resolution. 

It should be noted that the production series may be affected by external factors such as agricultural policy 

changes or climate-related anomalies that are not explicitly modeled. These factors may introduce structural 

changes in the data; however, this study focuses on evaluating the proposed frequency-based FLRG simplification 

under real-world conditions rather than modeling all exogenous influences. 

 

 
Figure 2. Time Series Plot of Indonesian rice food crops in 2018-2025 

 

Figure 2 illustrates the strong seasonal cycle of Indonesia’s monthly rice production, which typically reaches 

its lowest levels around January and peaks near April, with year-to-year variability in both peak intensity and 

trough depth. These recurrent peaks correspond to major harvest periods, whereas the troughs reflect planting 

or off-season intervals. Such volatility in production increases forecasting uncertainty, highlighting the need for 

models capable of capturing long-term dependencies. Consequently, higher-order FTS models particularly order 

3 are more effective due to their extended memory of previous states. These observations also support the 

application of the modified FLRG approach in addressing unstable seasonal fluctuations. 

 

3.2 Application of Fuzzy Time Series (Conventional Model) 

The application of the FTS model commences with the definition of the universe of discourse, 𝑈. These 

initial steps ensure that the data structure aligns with the characteristics of the FTS framework.  

1. Formation of the Universal Set U 

The intervals formed were obtained by the universe of talks 𝑈 =  [1,516,040;  9,768,002]. Its by taking 

𝐷𝑚𝑖𝑛 as the smallest value from the data and 𝐷𝑚𝑎𝑥   as the largest value from the research data. The next step is 

to determine data intervals.  

2. Constructions of intervals 

The universe of discourse was partitioned into 16 equal sub-intervals, (𝑢1, 𝑢2, 𝑢3, … , 𝑢16), as the basis for 

interval construction. The midpoint of each interval was subsequently calculated to serve as the representative 

value for fuzzification, providing the linguistic framework for the FTS model (Table 1).  

These median values function as reference points that enable each monthly observation to be mapped to 

its most appropriate linguistic term. This structured mapping facilitates the identification of temporal production 

patterns, which are essential for the subsequent formation of fuzzy logical relationships. 

Table 1. Interval & Median Value (m) 

Interval Lower Limit Upper Limit Median Value (𝒎) 

𝑢1 1,516,038 2,043,038 1,779,538 

𝑢2 2,043,038 2,570,038 2,306,538 

𝑢3  2,570,038 3,097,038 2,833,538 

⋮ ⋮ ⋮ ⋮ 
𝑢16 9,421,038 9,948,038 9,684,538 
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Then the analysis is continued by determining the fuzzy set obtained defined as follows: 

𝐴1 = {
1

𝑢1
+

0,5

𝑢2
+

0

𝑢3
+

0

𝑢4
+ ⋯ +

0

𝑢16
} 

𝐴2 = {
0,5

𝑢1
+

1

𝑢2
+

0,5

𝑢3
+

0

𝑢4
+ ⋯ +

0

𝑢16
} 

⋮ 

𝐴16 = {
0

𝑢1
+

0

𝑢2
+

0

𝑢3
+ ⋯ +

0,5

𝑢15
+

1

𝑢16
} 

Each fuzzy set 𝐴𝑖 represents the linguistic state associated with the corresponding interval and illustrates the 

degree to which a given production value belongs to adjacent intervals through gradual membership transition 

(e.g., coefficient 0.5). This overlapping structure enables smoother representation of boundary values and 

improves the model’s ability to capture transitional behavior between states. Following the fuzzification stage, the 

time-ordered sequence of fuzzy states is used to construct FLRs, which form the basis for subsequent forecasting. 

3. Determining FLR 

The subsequent step is data fuzzification, where each numerical data point is converted into its 

corresponding linguistic value. For instance, the production value recorded in January 2018 (2,783,961 tons) falls 

within interval  𝑈3, and is therefore fuzzified as 𝐴3. This process is applied to all subsequent observations, as 

shown in Table 2. 

 

Table 2. Determining Fuzzification & FLR 

Period Data Fuzzification FLR 

1 2783961 𝐴3 - 

2 5738544 𝐴9 𝐴3 → 𝐴9 

3 9678183 𝐴16 𝐴9 → 𝐴16 

⋮ ⋮ ⋮ ⋮ 
87 8931919 𝐴15 𝐴5 → 𝐴15 

Table 2 illustrates the transformation of raw production data into fuzzy categories and how these categories 

evolve over time. The “Fuzzification” column assigns each monthly production value to its respective linguistic 

term (A₁, A₂, …, A₁₆) based on its interval midpoint. Meanwhile, the “FLR” column captures the transitions 

from one fuzzy state to the next, reflecting how production levels progress between months—for example, moving 

from a lower to a higher-level during harvest periods or decreasing during planting phases. These fuzzy transitions 

provide valuable insight into production dynamics and form the foundation for identifying forecasting patterns 

through FLRG construction in later stages 

4. Determining FLRG 

At this stage, the Fuzzy Logical Relationships (FLRs) identified previously are aggregated into Fuzzy Logical 

Relationship Groups (FLRGs). This grouping process maps all observed transitions from a specific "Current 

Stage" (antecedent) to its corresponding "Next Stage" (consequent). 

For example, the production value in January 2018 was mapped to 𝐴3, while the value in February 2018 

corresponded to 𝐴9, resulting in the Fuzzy Logical Relationship (FLR) 𝐴3 → 𝐴9. This procedure was applied 

sequentially to all observations through March 2025 and repeated for each FTS configuration (order 1, 2, and 3) 

to capture various levels of temporal dependence. 

 

Table 3. Formation of FLRG order 1 

Curent Stage Next Stage FLRG order 1 

𝐴1 𝐴1, 𝐴5, 𝐴1, 𝐴2, 𝐴2, 𝐴2, 𝐴2, 𝐴1, 𝐴2, 𝐴2 𝐴1 → 3𝐴1, 6𝐴2 , 𝐴5 

𝐴2 𝐴10, 𝐴5, 𝐴5, 𝐴7, 𝐴9, 𝐴5 𝐴2 → 3𝐴5, 𝐴7, 𝐴9, 𝐴10 

𝐴3 𝐴9, 𝐴1, 𝐴1, 𝐴1, 𝐴1 𝐴3 → 4𝐴1, 𝐴9 

⋮ ⋮ ⋮ 
𝐴16 𝐴12, 𝐴9 𝐴12, 𝐴12,  𝐴16 → 𝐴9, 3𝐴12 

 

Table 3 illustrates the grouping of FLRs into FLRGs based on their antecedent states. For instance, the 

transition for 𝐴1 is 𝐴1→3𝐴1, 6𝐴2 , 𝐴5, this means that there are 3, 6, and 1 weight assigned to each respective 

state. Under this conventional framework, all identified relationships are retained, which significantly increases 

computational complexity, especially in higher-order models. Due to space considerations, Table 3 presents the 

FLRG order 1 as a representative illustration, while the complete listings for all orders are documented in 

Appendix A (Tables A1–A3). The subsequent analysis in Table 5 will provide a comparison with the proposed 

modified methods. 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&
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5. Defuzzification  

Defuzzification is performed to convert the fuzzy forecasting results into numerical production values using 

Equation (4). This process enables direct comparison between predicted and actual rice production for each FTS 

model order.  

For the FTS order 1 model, the forecasting relies on a single historical observation 𝐹(𝑡 − 1 ), resulting in 

limited contextual awareness of seasonal production dynamics. As a consequence, the model exhibits relatively 

large forecasting errors, particularly during periods of rapid production increase at the onset of major harvest 

cycles. This limitation reflects the restricted memory inherent in first-order formulations. 

The FTS order 2 model incorporates two preceding observations 𝐹(𝑡 − 2 ) and 𝐹(𝑡 − 1 ), allowing it to 

better capture general seasonal trends. Initial forecasts show improved accuracy compared to the first-order 

model; however, the model remains sensitive to abrupt production shifts, leading to increased deviations in 

certain periods. 

By utilizing three historical observations 𝐹(𝑡 − 3), 𝐹(𝑡 − 2 ) and 𝐹(𝑡 − 1 ), the FTS order 3 model 

captures longer temporal dependencies and produces more context-aware forecasts. Overall, this model 

demonstrates more stable and accurate predictions across the time series, indicating that higher-order memory 

improves forecasting robustness in the presence of seasonal volatility. 

These results indicate a clear improvement in forecasting performance as the model order increases, 

motivating further evaluation using quantitative accuracy metrics and complexity comparisons in the subsequent 

analysis. 

 

3.3 Proposed Frequency-Based FLRG Modification   

To address the limitations of conventional FTS model—particularly the excessive number of fuzzy logical 

relationships (FLRGs), which often introduce noise and reduce interpretability—this study proposes a modified 

FLRG formation method. The modification simplifies the rule structure by retaining only the most frequently 

occurring transitions within each FLRG, thereby eliminating low-frequency or irregular patterns that contribute 

minimally to the forecasting process. This approach is expected to reduce computational complexity, produce a 

more compact rule base, and enhance forecasting stability, particularly in time series with strong seasonal 

dependencies such as rice production.  

The proposed modification is applied during the FLRG construction stage. After the historical data are 

fuzzified into linguistic terms, standard FLRG are first generated by grouping all observed fuzzy logical 

relationships sharing the same antecedent. For each antecedent state, the frequency of each successor state is then 

calculated. The modified FLRG is formed by retaining only the successor with the highest observed transition 

frequency, while all other successors are discarded. As a result, each antecedent is associated with a dominant 

successor, yielding a simplified and deterministic FLRG structure. 

For example, a conventional FLRG such as 𝐴1 → 3 𝐴1, 6𝐴2, 𝐴5  is simplified into a modified FLRG  𝐴1 →
𝐴2, where A₂ represents the most frequently observed successor. A representative example of the modified 

FLRG structure is provided in Table 4, while the complete FLRG listings for all model orders are presented in 

Appendix B (Tables B1-B3). 

 

Table 4. Formation of New FLRG order 1 

Current stage FLRG orde 1 New FLRG order 1 

𝐴1 𝐴1 → 3𝐴1, 6𝐴2 , 𝐴5 𝐴2 

𝐴2 𝐴2 → 3𝐴5, 𝐴7, 𝐴9, 𝐴10 𝐴5 

𝐴3 𝐴3 → 4𝐴1, 𝐴9 𝐴1 

⋮ ⋮ ⋮ 
𝐴16 𝐴16 → 𝐴9, 3𝐴12 𝐴12 

 

3.4 Reduction in FLRG Complexity 

To assess the structural efficiency of the proposed modification, this subsection compares the number of 

Fuzzy Logical Relationship Groups (FLRGs) produced by the conventional and modified approaches. Since 

FLRG complexity influences interpretability, computational demand, and forecasting stability, measuring the 

reduction in rules provides a clear indication of the effectiveness of the simplification strategy. The comparison 

across all model orders is summarized in Table 5. 

 

Tabel 5. Summary of FLRG Complexity Reduction Across Model orders 

Model FLRG (Conventional) New FLRG (Modified) Reduction 

FTS order 1 80 47 41.25% 

FTS order 2 84 73 13.09% 

FTS order 3 83 74 10.84% 

 

https://drive.google.com/file/d/1zKmrIGtxEiy83wL0SOJcU7lFYQ7-vH_F/view?usp=sharing


                                                                                                    E-ISSN : 2580-5754; P-ISSN : 2580-569X 

Zero: Jurnal Sains, Matematika dan Terapan 

902 

As shown in Table 5, the most substantial simplification occurs in the order 1 model, where the number of 

rules decreases from 80 to 47 (41.25%). This indicates that many low-frequency transitions are effectively 

consolidated through the frequency-based modification. For the order 2 and 3 models, reductions of 13.09% (84 

→ 73) and 10.84% (83 → 74) are observed, respectively. Although the proportional reduction becomes smaller 

at higher orders—reflecting the more structured nature of long-memory FLRGs—the modified approach 

consistently eliminates irrelevant transitions and refines the rule base. 

From a complexity perspective, conventional high-order FTS models experience rapid growth in the 

number of FLRGs due to the combinatorial expansion of historical state combinations. The proposed frequency-

based filtering limits this growth by retaining only dominant transitions within each FLRG, resulting in a more 

compact, scalable, and computationally efficient model structure, as reflected in Table 5. 

 

3.5 Model Accuracy Evaluation 

Following model implementation, forecasting accuracy was evaluated using MAD, RMSE, and MAPE, 

where lower values indicate better alignment between predicted and observed rice production. To provide a 

compact and comprehensive comparison, the overall forecasting performance of the conventional and modified 

FTS models across different orders is summarized in Table 6.  

 

Table 6. Comparison of Forecasting Models with MAD, RMSE, and MAPE 

Method MAD RMSE MAPE 

FTS order 1 1,118,187 1,634,284 25.46% 

Modified FTS order 1 1,040,791 1,631,106 22.67% 

FTS order 2 366,974 591,460 10.50% 

Modified FTS order 2 365,085 515,509 9.32% 

FTS order 3 197,614 305,017 5.77% 

Modified FTS order 3 196,410 271,774 5.46% 

 

As shown in Table 6, the proposed frequency-based FLRG modification consistently improves forecasting 

accuracy across all model orders. In the first-order configuration, MAPE decreases from 25.46% to 22.67% after 

modification. More substantial improvements are observed in higher-order models, with MAPE reduced from 

10.50% to 9.32% for order 2 and from 5.77% to 5.46% for order 3. These results indicate that the modified FTS 

model achieves lower forecasting error while maintaining stable performance as model order increases. 

The visual comparisons presented in Figures 3–5 further support these findings. Across all orders, the 

modified FTS model produces smoother prediction curves and follows the seasonal production pattern more 

closely than the conventional approach. The improvement becomes increasingly evident at higher orders, 

reflecting the combined benefit of longer historical memory and a simplified FLRG structure. 

 

 
Figure 3. Forecasting Accuracy of the Conventional and Modified FTS order 1  
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Figure 4. Forecasting Accuracy of the Conventional and Modified FTS order 2 

 

 
Figure 5. Forecasting Accuracy of the Conventional and Modified FTS order 3 

 

Although MAD, RMSE, and MAPE were used as standard accuracy metrics—and MAPE is particularly 

relevant for policy interpretation—this study did not apply cross-validation or out-of-sample testing. Monthly rice 

production is a temporally ordered and strongly seasonal time series; random cross-validation would disrupt the 

chronological structure and distort seasonal dependencies captured by the FTS model. Similarly, allocating a 

limited portion of the data for out-of-sample testing would reduce the number of complete seasonal cycles 

available for training. Therefore, the evaluation focuses on in-sample forecasting performance across different 

model orders. Future studies may incorporate rolling-window or expanding-window validation to further assess 

long-term forecasting stability. 

The observed improvement in performance, as indicated by the reduction in MAPE, should be interpreted 

in the context of Indonesia’s strongly seasonal rice production system. In conventional high-order FTS models, 

seasonal anomalies often generate rare logical transitions that introduce noise and reduce forecasting stability. By 

retaining only the most frequent FLRs, the proposed model filters out these infrequent transitions and yields a 

cleaner representation of dominant seasonal patterns. This structural refinement enhances robustness against 

data volatility and improves forecasting accuracy, particularly around seasonal turning points. 

 

3.6 Final Forecasting Outcome 

Based on the accuracy evaluation, the modified FTS order 3 model was identified as the superior method, 

achieving the lowest MAD (196,410), RMSE (271,774) and MAPE (5.46%). This model was selected to forecast 

future production values. The forecasts for April–August 2025 (Table 7) are purely model-based extrapolations 

intended for policy planning support and have not yet been empirically verified against official BPS data. 

 

Table 7. Final Forecasting Outcome 

No Period FLRG Prediction 

1 April 2025 𝐴2, 𝐴5, 𝐴16 → 𝐴12 7,576,538 tons 

2 May 2025 𝐴5, 𝐴16, 𝐴12 → 𝐴5 3,887,538 tons 

3 June 2025 𝐴16, 𝐴12, 𝐴5 →  𝐴6 4,414,538 tons 

4 July 2025 𝐴12, 𝐴5, 𝐴6 → 𝐴7 4,941,538 tons 

5 August 2025 𝐴5, 𝐴6, 𝐴7 → 𝐴5 3,887,538 tons 

 

The final forecasting outcome indicates a projected decline in national rice production from May to August 

2025, providing an early warning signal for policymakers and supply regulators. Such information enables 

anticipatory planning for supply stabilization measures, including the adjustment of buffer stock policies and 
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import scheduling, to avoid sudden price spikes or reactive import decisions, as previously observed in early 

2025. Using historical production patterns, the proposed model allows short-term forecasting up to five months 

ahead, supporting proactive rather than reactive policy formulation. 

Improved forecasting accuracy plays a strategic role in minimizing the risks of import oversupply or 

undersupply. By offering a more reliable and timely projection of future production trends, the modified FTS 

model supports better-aligned import and logistics decisions, helping ensure that national rice availability remains 

consistent with anticipated demand. In this sense, enhanced forecasting transforms import planning from a 

retrospective adjustment process into a forward-looking decision-support mechanism. 

From a methodological perspective, the contribution of this study is positioned as complementary to existing 

FTS variants, including frequency-based partitioning approaches, optimization-driven methods such as PSO-

based FTS, and hybrid FTS–machine learning models. Rather than introducing additional model complexity, 

the proposed frequency-based FLRG modification emphasizes structural simplification, interpretability, and 

robustness, making it particularly suitable for operational and policy-oriented forecasting environments where 

transparency and computational efficiency are essential. 

The observed improvement in forecasting performance, as reflected by the consistent MAPE reduction 

within the same model order, particularly in the third-order configuration (5.77% → 5.46%), has meaningful 

practical implications. At peak production levels, even a small percentage reduction in forecasting error can 

translate into substantial absolute differences in estimated rice volume, potentially on the order of hundreds of 

thousands of tons. Such accuracy gains can reduce the risk of misestimating import requirements or buffer stock 

levels, thereby supporting more reliable national food security planning. 

Despite these advantages, the proposed frequency-based simplification introduces an inherent trade-off 

between model parsimony and sensitivity to rare or extreme events. By prioritizing frequently occurring logical 

transitions, the model may underrepresent infrequent but critical structural changes in production caused by 

exceptional policy shifts or extreme climatic events. Consequently, the proposed approach is most appropriate 

for baseline seasonal planning and medium-term supply forecasting, while extreme-event risk management may 

require complementary modeling frameworks. This limitation also provides a clear direction for future research 

aimed at integrating rare-event awareness into simplified FTS structures. 

 

4. CONCLUSION 

Based on the testing and analysis of forecasting results using the Fuzzy Time Series model with modified 

frequency-based FLRG, several key conclusions can be drawn. First, prioritizing the highest-frequency logical 

relationships significantly enhances the forecasting accuracy of national rice production. The proposed model 

consistently outperforms the conventional Chen FTS across all tested orders, achieving its best performance with 

MAPE reduced to 5.46% for modified FTS order 3. These results demonstrate not only numerical gains but also 

improved capability in capturing seasonal lag structures inherent in rice production cycles. Second, the modified 

frequency-based FLRG FTS model effectively reduces rule complexity, as evidenced by the decrease in the 

number of FLRG relationships across all model orders. This simplification produces a more compact and 

interpretable rule base, improves computational efficiency, and mitigates the risk of overfitting by eliminating 

infrequent and unstable transitions. Consequently, this study contributes theoretically to Fuzzy Time Series 

development by showing that structural simplification can coexist with improved predictive performance, 

particularly in high-order configurations. Furthermore, the enhanced model is particularly suitable for time series 

characterized by strong seasonality and long historical dependencies, such as agricultural production data. The 

improved forecasting stability and interpretability indicate that the model demonstrates potential suitability as a 

transparent and computationally efficient decision-support tool for baseline seasonal planning in national rice 

production policy. Beyond methodological advancements, this improved reliability may support policymakers in 

anticipating seasonal supply trends, helping to inform import planning and buffer-stock management without 

overreacting to short-term fluctuations. Finally, this study acknowledges several limitations. The frequency-based 

FLRG simplification, while enhancing robustness against noise, introduces a potential trade-off by reducing the 

model's sensitivity to sudden, rare structural breaks in production. Based on these constraints, future research 

may focus on (1) rolling-window or expanding-window validation to assess long-term stability, (2) applications to 

other agricultural commodities, and (3) integration with probabilistic or scenario-based approaches to better 

address extreme events. 

ACKNOWLEDGEMENT 

The author would like to express sincere gratitude to the Directorate of Research, Technology, and 

Community Service, Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia, 

for providing financial support through Penelitian Dosen Pemula for Fiscal Year 2025. Special thanks are also 

extended to the LPPM Institute Sains dan Teknologi Nahdlatul Ulama for their facilitation, guidance, and 

administrative support throughout the implementation of this research. Finally, the author would like to express 

appreciation to all individuals and institutions who have contributed, directly or indirectly, to the successful 

completion of this study. 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&


Zero: Jurnal Sains, Matematika dan Terapan   

                                                                   A Modified Frequency-Based FLRG Fuzzy Time Series Model for National Rice Production Forecasting (Adika Setia Brata)  

905 

5. REFERENCES 
  

[1] P. Filippi, S. Y. Han, and T. F. A. Bishop, “On crop yield modelling, predicting, and forecasting and 

addressing the common issues in published studies,” Precis Agric, vol. 26, no. 1, pp. 8, 2025. [Online]. 

Available: https://doi.org/10.1007/s11119-024-10212-2  

[2]  M. Sari, S. Duran, H. Kutlu, B. Guloglu, and Z. Atik, “Various optimized machine learning techniques to 

predict agricultural commodity prices,” Neural Comput Appl, vol. 36, no. 19, pp. 11439–11459, 2024. 

[Online]. Available: https://doi.org/10.1007/s00521-024-09679-x  

[3] Q. Song and B. S. Chissom, “Fuzzy time series and its models,” Fuzzy Sets Syst., vol. 54, no. 3, pp. 269–

277, 1993. [Online]. Available: https://doi.org/10.1016/0165-0114(93)90372-O 

[4] S. M. Chen, “Forecasting enrollments based on fuzzy time series,” Fuzzy Sets Syst., vol. 81, no. 3, pp. 311–

319, 1996. [Online]. Available: https://doi.org/10.1016/0165-0114(95)00220-0  

[5] R. C. Tsaur, “A fuzzy time series-backpropagation predictor for stock index forecasting,” IEEE Trans. Syst., 
Man, Cybern. B, Cybern., vol. 32, no. 1, pp. 70–80, 2002. 

[6] M. Bilal, M. A. Alrasheedi, M. Aamir, S. Abdullah, S. M. Norrulashikin, and R. Rezaiy, “Enhanced 

forecasting of rice price and production in Malaysia using novel multivariate fuzzy time series models,” Sci. 
Rep., vol. 14, no. 1, p. 29903, 2024. [Online]. Available: https://doi.org/10.1038/s41598-024-77907-4  

[7]  F. Wahyu, G. W. Nurcahyo and S. Arlis, “Penerapan metode fuzzy time series untuk memprediksi hasil 

panen kopi pada dinas pertanian,” J. KomtekInfo, vol. 11, no.3, pp. 139–148, 2024. [Online]. Available: 

https://doi.org/10.35134/komtekinfo.v11i3.543  

[8] S. Lestari and S. Yurinanda, “Prediksi pajak pertambahan nilai pada penyediaan jasa dengan metode fuzzy 

time series model Chen,” Euler: J. Ilm. Mat. Sains Teknol., vol. 11, no. 2, pp. 267–281, 2023. [Online]. 

Available: https://doi.org/10.37905/euler.v11i2.22724  

[9] S. Q. Li, “A simplified prediction model of structural seismic vulnerability considering a multivariate fuzzy 

membership algorithm,” J. Earthq. Eng., vol. 28, no. 3, pp. 707–730, 2024. [Online]. 

Available: https://doi.org/10.1080/13632469.2023.2217945  

[10] H. Huang, Y. Tian, and Z. Tao, “Multi-rule combination prediction of compositional data time series based 

on multivariate fuzzy time series model and its application,” Expert Syst. Appl., vol. 238, p. 121966, 2024. 

[Online]. Available: https://doi.org/10.1016/j.eswa.2023.121966 

[11] S. M. Chen, “Forecasting enrollments based on high-order fuzzy time series,” Appl. Intell., vol. 17, no. 1, 

pp. 39–48, 2002. [Online]. Available: https://doi.org/10.1023/A:1015316315805 

[12] N. M. Arfiana, E. Alisah, and D. Ismiarti, “Penerapan metode fuzzy time series Chen orde tinggi pada 

peramalan hasil penjualan (studi kasus: KPRI ‘Serba Guna’ Kecamatan Selorejo Kabupaten Blitar),” J. Ris. 
Mhs. Mat., vol. 1, no. 6, pp. 273–282, 2022. [Online]. Available: https://doi.org/10.18860/jrmm.v1i6.14561 

[13] N. Kumar and S. S. Susan, “Particle swarm optimization of partitions and fuzzy order for fuzzy time series 

forecasting of COVID-19,” Appl. Soft Comput., vol. 110, p. 107611, 2021. [Online]. Available: 

https://doi.org/10.1016/j.asoc.2021.107611 

[14] R. Fadillah, M. Ula, and R. Suwanda, “Machine learning to predict food prices in Aceh province using the 

fuzzy time series method based on average,” Sinkron, vol. 9, no. 2, pp. 755–761, 2023. [Online]. Available: 

https://doi.org/10.33395/sinkron.v9i2.14649 

[15] S. N. A. Rahman and M. A. Kamarudin, “Review of fuzzy time series forecasting models and their 

applications,” IEEE Access, vol. 9, pp. 161642–161658, 2021. [Online]. Available: 

https://doi.org/10.1109/ACCESS.2021.3132657 

[16] J. M. Mendel, “Type-1 Fuzzy Sets and Fuzzy Logic,” in Explainable Uncertain Rule-Based Fuzzy Systems, 
Cham, Switzerland: Springer, 2024, pp. 17–73. [Online]. Available: https://doi.org/10.1007/978-3-031-

35378-9_2 

[17] A. S. Brata, A. Anhar, W. Lestari, Y. Trisanti, and F. Nisa, “Metode fuzzy time series logika Ruey Chyn 

Tsaur untuk prediksi pola data trend naik (studi kasus pengiriman jumlah berat barang dengan transportasi 

kereta api Pulau Jawa satuan ribu ton tahun 2020-2022),” J. Math. Educ. Sci., vol. 6, no. 1, pp. 29–35, 2023. 

[Online]. Available: https://doi.org/10.32665/james.v6i1.887  

[18] F. Muzaki and N. Agustina, “Comparison of forecasting model using Chen and Lee high order fuzzy time 

series (farmer’s terms of trade of crops subsector in Nusa Tenggara Timur province case),” J. Mat. Stat. 
Komput., vol. 21, no. 2, pp. 467–481, 2025. [Online]. Available: https://doi.org/10.20956/j.v21i2.42000 

[19] R. Bhattacharyya and S. Mukherjee, “Fuzzy membership function evaluation by non-linear regression: An 

algorithmic approach,” Fuzzy Inf. Eng., vol. 12, no. 4, pp. 412–434, 2020. [Online]. Available: 

https://doi.org/10.1080/16168658.2021.1911567 

[20] S. Xian and Y. Cheng, “Pythagorean fuzzy time series model based on Pythagorean fuzzy c-means and 

improved Markov weighted in the prediction of the new COVID-19 cases,” Soft Comput., vol. 25, no. 18, 

pp. 13881–13896, 2021. [Online]. Available: https://doi.org/10.1007/s00500-021-06259-2 

https://doi.org/10.1007/s11119-024-10212-2
https://doi.org/10.1007/s00521-024-09679-x
https://doi.org/10.1016/0165-0114(93)90372-O
https://doi.org/10.1016/0165-0114(95)00220-0
https://doi.org/10.1038/s41598-024-77907-4
https://doi.org/10.35134/komtekinfo.v11i3.543
https://doi.org/10.37905/euler.v11i2.22724
https://doi.org/10.1080/13632469.2023.2217945
https://doi.org/10.1016/j.eswa.2023.121966
https://www.google.com/search?q=https://doi.org/10.1023/A:1015316315805
https://doi.org/10.18860/jrmm.v1i6.14561
https://doi.org/10.1016/j.asoc.2021.107611
https://doi.org/10.33395/sinkron.v9i2.14649
https://doi.org/10.1109/ACCESS.2021.3132657
https://doi.org/10.1007/978-3-031-35378-9_2
https://doi.org/10.1007/978-3-031-35378-9_2
https://doi.org/10.32665/james.v6i1.887
https://doi.org/10.20956/j.v21i2.42000
https://doi.org/10.1080/16168658.2021.1911567
https://doi.org/10.1007/s00500-021-06259-2


                                                                                                    E-ISSN : 2580-5754; P-ISSN : 2580-569X 

Zero: Jurnal Sains, Matematika dan Terapan 

906 

[21] A. S. Brata, A. Anhar, W. Lestari, M. Juliza, S. Rahmawati, and M. T. A. E. Nugroho, “Average based 

length fuzzy time series data seasonal untuk prediksi volume impor migas Indonesia,” J. Ekon. Manaj. dan 
Sekr., vol. 6, no. 1, pp. 15–21, 2021. [Online]. Available: https://doi.org/10.35870/jemensri.v6i1.1764  

[22] Y. Alyousifi, M. Othman, A. Husin, and U. Rathnayake, “A new hybrid fuzzy time series model with an 

application to predict PM10 concentration,” Ecotoxicol. Environ. Saf., vol. 227, p. 112875, 2021. [Online]. 

Available: https://doi.org/10.1016/j.ecoenv.2021.112875 

[23] M. R. Yuliyanto, T. Wuryandari, and I. T. Utami, “Peramalan pendapatan bulanan menggunakan fuzzy 

time series Chen orde tinggi,” J. Gaussian, vol. 12, no. 1, pp. 61–70, 2023. [Online]. Available: 

https://doi.org/10.14710/j.gauss.12.1.61-70 

[24] I. R. Al Kadry, J. Massalesse, and M. Nur, “Forecasting inflation in Indonesia using the modified fuzzy time 

series Cheng,” J. Mat. Stat. Komput., vol. 19, no. 1, pp. 165–177, 2022. [Online]. Available: 

https://doi.org/10.20956/j.v19i1.21868  

[25] D. E. Harmadji, S. Solikhin, U. Yudatama, and A. Purwanto, “Prediksi produksi biofarmaka menggunakan 

model fuzzy time series dengan pendekatan percentage change dan frequency based partition”, J. Teknol. 
Inf. Ilmu Komput., vol. 10, no. 1, pp. 173–184, 2023. [Online]. Available: 

https://doi.org/10.25126/jtiik.2023106267 

[26] L. Palomero, V. García, and J. S. Sánchez, “Fuzzy-based time series forecasting and modelling: A 

bibliometric analysis,” Appl. Sci., vol. 12, no. 14, p. 6894, 2022. [Online]. Available: 

https://doi.org/10.3390/app12146894 

[27] B. Uluoz, “A new fuzzy time series forecasting model based on modified fuzzy logical relationship groups,” 

J. Forecast., vol. 41, no. 5, pp. 984–1002, 2022. [Online]. Available: https://doi.org/10.1002/for.2846 

[28] S. Gupta and S. Kumar, “A new proposed fuzzy time series forecasting model for agricultural production 

data,” Int. J. Intell. Syst. Appl., vol. 12, no. 6, pp. 43–55, 2020. [Online]. Available: 

https://doi.org/10.5815/ijisa.2020.06.04 

[29] N. Herawati, S. Saidi, Setiawan E., Nisa K., Ropiudin, “Performance of high-order Chen fuzzy time series 

forecasting method and feedforward backpropagation neural network method in forecasting composite 

stock price index, Am. J. Comput. Appl. Math., vol. 12 no. 1, 2022, pp. 1-7. [Online]. Available: 

https://doi.org/10.5923/j.ajcam.20221201.01  

[30] R. Yolanda, D. Rahmi, A. Kurniati, and S. Yuniati, “Penerapan metode triple exponential smoothing dalam 

peramalan produksi buah nenas di Provinsi Riau,” J. Teknol. dan Manaj. Ind. Terap., vol. 3, no. I, 2024. 

[Online]. Available: https://doi.org/10.55826/tmit.v3ii.285  

[31] S. Haben, V. Marcus, and W. Holderbaum, “Time series forecasting: Core concepts and definitions,” in 

Core Concepts and Methods in Load Forecasting, Cham, Switzerland: Springer, 2023, pp. 55–66. [Online]. 

Available: https://doi.org/10.1007/978-3-031-27852-5_5  

[32] L. Sarifah, S. Kamilah, and S. Khotijah, “Penerapan metode single moving average dalam memprediksi 

jumlah penduduk miskin pada perencanaan pembangunan daerah Kabupaten Pamekasan,” Zeta - Math J., 
vol. 8, no. 2, pp. 47–54, 2023. [Online]. Available: https://doi.org/10.31102/zeta.2023.8.2.47-54  

[33] L. Fauziah and F. Fauziah, “Penerapan metode single exponential smoothing dan moving average pada 

prediksi stock produk retail berbasis web,” STRING (Satuan Tulisan Ris. dan Inov. Teknol.), vol. 7, no. 2, 

pp. 165–173, 2022. [Online]. Available: https://doi.org/10.30998/string.v7i2.13932  

 

 

 

 

 

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&
https://doi.org/10.35870/jemensri.v6i1.1764
https://doi.org/10.1016/j.ecoenv.2021.112875
https://doi.org/10.14710/j.gauss.12.1.61-70
https://doi.org/10.20956/j.v19i1.21868
https://doi.org/10.25126/jtiik.2023106267
https://doi.org/10.3390/app12146894
https://doi.org/10.1002/for.2846
https://doi.org/10.5815/ijisa.2020.06.04
https://doi.org/10.5923/j.ajcam.20221201.01
https://doi.org/10.55826/tmit.v3ii.285
https://doi.org/10.1007/978-3-031-27852-5_5
https://doi.org/10.31102/zeta.2023.8.2.47-54
https://doi.org/10.30998/string.v7i2.13932

