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Article history: Accurate predictions of national rice production are crucial for food
on onc sustainability, vet data fluctuations pose a major challenge. This study aims to

Accepted 26 December 2025 L o o . . - . o
improve forecasting accuracy by developing a modified Fuzzy Time Series

(FTS) model that simplifies the Fuzzy Logical Relationship Group (FLRG) by
retaining only the logical relationships with the highest frequency of occurrence.
Monthly Indonesian rice production data from January 2018 to March 2025

Keywords: were used to test this model. To assess the effectiveness of this modification, the

model’s performance was compared with Chen’s conventional FT'S models of
Fuzzy Time Series; orders 1 to 3 through MAD, RMSE, and MAPE. Results indicate that the
Frequency-Based FLRG; modified third-order FLRG achieved the best accuracy (MAD = 196,410;
Modified FTS; RMSE = 271,774; MAPE = 5.46%), while reducing FLRG complexity by
High-order FTS; 10.849%. This demonstrates that FLLRG simplification effectively captures longer
Rice Production Forecasting. seasonal dependencies while reducing computational complexity. Nevertheless,

the model’s sensitivity to sudden structural changes underscores the need for
adaptive or probabilistic FLRG enhancement, with hybrid mechanisms as a
potential complement. Overall, the proposed approach provides an efticient
decision-support tool for maintaining food supply stability and guiding data-
driven agricultural policy in Indonesia.
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1. INTRODUCTION

The impact of imported rice can affect the welfare of local rice farmers, particularly in terms of selling prices,
as imported rice 1s often cheaper than domestically produced rice. Overreliance on rice imports also exposes
Indonesia to global food price volatility and disruptions in the international supply chain. Therefore, accurate
forecasting of national rice production is essential to support evidence-based food policy, particularly for import
planning and maintaining food supply stability [1]. Recent studies have highlighted the growing importance of
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intelligent forecasting systems, including machine learning and hybrid approaches, to support national food
security strategies when dealing with highly volatile agricultural commodities influenced by multiple external
drivers [2]. However, although such approaches often demonstrate strong predictive performance, they generally
require large training datasets and offer limited interpretability for policy-oriented decision making, motivating
the continued use of rule-based forecasting methods.

Among rule-based forecasting approaches, Fuzzy Time Series (FTS), initially introduced by Song and
Chissom [3] and later simplified by Chen [4], has emerged as a robust method for modeling agricultural data due
to its ability to handle uncertainty, seasonality, and non-stationary behavior. This framework was further enhanced
by Tsaur [5], who mtroduced techniques to refine fuzzy relationships, providing a more structured approach to
capturing temporal dependencies. Bilal et al. [6] then demonstrated that FTS-based models can accurately
forecast rice production and prices by effectively capturing seasonal agricultural patterns. In a more applied
nstitutional context, Wahyu et al. [7] showed that FT'S can be implemented within governmental agricultural
systems to support operational crop production planning with improved forecasting reliability. Meanwhile, Lestart
and Yurinanda [8] emphasized the suitability of FT'S model for economically sensitive time series, highlighting
its interpretability and stability when dealing with fluctuating real-world data. From a theoretical perspective, the
effectiveness of FT'S models 1s fundamentally grounded in fuzzy set theory, particularly in the construction of
linguistic variables and membership functions that enable the representation of uncertainty and imprecision in
real-world time series data [9].

Beyond classical univariate formulations, more recent studies have extended FTS into multivariate and
multi-rule combination frameworks to further enhance forecasting accuracy. In particular, Huang et al. [10]
proposed a multivariate fuzzy time series model that combines multiple fuzzy rules to capture complex
dependency structures, demonstrating improved predictive performance on compositional time series data.
Nevertheless, such advanced models typically increase rule complexity and computational requirements, which
may reduce their transparency and practical usability for policy-driven forecasting applications.

Despite their demonstrated effectiveness, these existing FT'S studies [6], [7], [8] primarily rely on first-order
or classical FTS formulations. Consequently, they struggle to capture long-term temporal dependencies in highly
volatile agricultural time series, limiting their predictive horizon and overall accuracy. A major limitation of these
conventional FT'S methods is the lack of flexibility in defining Fuzzy Logical Relationship Groups (FLRGs) that
specifically handle different variations or sub-patterns within highly volatile time series data. To overcome this,
High-order Fuzzy Time Series was developed as an extension of the classical FT'S framework, which is an
advancement of the Fuzzy Time Series (FTS) method introduced by Chen [11], where forecasting does not only
rely on previous historical data, but uses two or more historical data to form a more complex Fuzzy Logic Relation
(FLR) [12]. The purpose is to improve forecasting accuracy by incorporating more historical information into the
model. However, conventional high-order FT'S methods often produce complex Fuzzy Logic Relationship
Groups (FLRG) because they cover all possible state transitions [13]. This exhaustive approach generates "noisy"
logical relationships that are based on infrequent or coincidental data patterns. This noise directly reduces the
model's prediction accuracy and robustness, especially when dealing with volatile agricultural data.

Despite these advancements, a systematic frequency-based filtering of FLRG transitions in high-order FT'S
has not been adequately explored. This lack of simplification approach, specifically the failure to systematically
filter rare or insignificant state transitions constitutes the core research gap in current FT'S applications, where the
few studies that have introduced advanced FTS approaches, such as higher-order models [11], [12] and
multivariate or hybrid frameworks [9], [10], generally retain all transitions in the FLRG without filtering out rare
events. Addressing this limitation 1s crucial, as the resulting rule complexity significantly hampers the model's
performance and interpretability when applied to highly volatile real world time series like agricultural data.

To close this gap, this study proposes a novel modification to the FT'S framework. A simplified FLRG
formation rule is developed to mitigate the issues of noise and complexity in high-order FTS. The proposed
model simplifies the FLRG by retaining only the logical relationships with the highest frequency of occurrence,
thus filtering out the insignificant noise. This refinement aims to provide a cleaner and more interpretable
framework that potentially enhances both forecasting precision and model robustness. Such improvements are
relevant for national food security, as increased accuracy is a key requirement for supporting government
mtervention and data-driven agricultural policy in Indonesia.

To this end, the objectives of this study are to (1) propose a frequency-based FLRG simplification; (2)
compare the forecasting accuracy of the proposed approach with conventional Chen FT'S models of orders 1-3;
(3) quantify the reduction in FLRG complexity; and (4) assess the suitability of the modified FT'S model as a
decision-support tool for national rice production policy.

2. RESEFARCH METHOD
2.1 Fuzzy Time Series (FT'S) Method

Fuzzy Time Series (FTS) 1s a forecasting approach that utilizes the concept of fuzzy sets to estimate the
future value based on its historical data patterns [14], [15]. This method converts numerical data into fuzzy
linguistic representations, then analyses the relationships between data to make predictions, and converts the
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prediction results back into numerical form [16]. FT'S is highly appropriate for this study as it manages data
uncertainty, performs well with limited and non-stationary datasets, and derives forecasting knowledge directly
from historical patterns, making it suitable for agricultural forecasting. Unlike most statistical time series models,
FT'S does not rely on stationarity assumptions, which are rarely satisfied in practical datasets [17].
Definition of FTS

a. Fuzzy Set
For each linguistic value, define a fuzzy set with a specific membership function, which associates each value in
the universe of discourse with a membership value between 0 and 1. This change in value 1s called the fuzzification
of historical data [18]. In the fuzzy time series framework, membership functions define the degree to which each
data point belongs to a fuzzy set, directly influencing the model’s forecasting precision [19]. Generally, this is the
process of converting rigid numerical data into linguistic categories (words) to process uncertainty.

b. Fuzzy Logic Relations (FLR)
Fuzzy Logical Relationships (FLR) describe the temporal dependency between consecutive fuzzy sets,
establishing the basis for mapping transitions among linguistic states in the time series [20]. FLLR is formed after
time series data is converted into linguistic values through the fuzzification process. The goal is to model and
predict complex and uncertain historical data patterns [21]. FLR captures the dependency between past and
future states in linguistic form, making it ideal for predicting the next time value based on historical observations.

c. Fuzzy Logic Relations Group (FLRG)
Fuzzy Logical Relationship Groups (FLRG) are formed by aggregating FLLRs that share the same antecedent fuzzy
set, providing a grouped representation used in the forecasting inference stage [22]. FLRG serves to organize
mterrelated FLRs into a single group, where all FLRs that start from the same fuzzy set are grouped together [23].
FLRG functions as the model's knowledge base, it groups all possible outcomes that have historically occurred
following a specific condition.

2.2 Present the procedural steps

Chen introduced high-order Fuzzy Time Series in 2002 [11]. The difference between Chen's high-order
Fuzzy Time Series lies in the determination of Fuzzy Logic Relations (FLR) [24]. The FTS approach involves
partitioning historical data into intervals and transforming them into fuzzy sets to establish temporal dependencies
for forecasting [25]. This study follows the foundational FTS framework established by Song and Chissom [3], as
further refined in recent literature [26], [27], [28]. The systematic steps are outlined below:

1. Construction of universal sets
The universe of discourse

U = [Drmin ; Dmax] (D

is defined based on the smallest (D) and the largest (D,y,4,) values in historical data.

2. Constructions of intervals
The universal set Uis divided into several intervals with equal distances to represent data variability. The number
of intervals can be determined using average-based approach, forming linguistic values that represent fuzzy sets
within the defined range of U.

U={u,uy us,.., Uy} 2

where U denotes the universe of discourse, u; represents its elements, and i = 1,2,3,..., n refers to the
index of each interval.

3. Fuzafication
A fuzzy set is a class or group of objects with a continuum of degrees of membership. Suppose U is the universal
set, U = {ul,u2,...,un} where u; are elements of U (the possible values), then the linguistic variable A; with
respect to U can be formulated as follows:
A = Bai(ua) + Bai(uz) + Bai(us) T ot pai(un) 3)

51 Uz us Un

Uai: U > [0,1]. If 4; s membership of A; then py; (u;) is the degree of membership u; to 4;

4. Establishing the Fuzzy Logic Relations (FLR)
Determine the FLR according to the time,

e If F(t — 1) fuzzfication into A; and F(t) into A;, then formed FLR A; — A;

o A;is the LHS (left hand side) which represents the previous condition

e Ajis the RHS (right hand side) which represents the next condition

5. Establishing the Fuzzy Logic Relations Group (FLRG).
That is, grouping several fuzzy logic relations (FLR) that have the same Left Hand Side (LHS) but different Right
Hand Sides (RHS) into a single group. For example, A; = Aj,A; > A, A; = A, A; = Ay, Aj = Ay can be
grouped into 4; = Aj,3 Ay, Ag.
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6. Defuzzification
If F(t — 1) = A; resulting FLRG (4; = Ajy, Ajy, ..., Aji) than F(t) = Ajy, Ajp, ..., Aji., the defuzzification y(t):

9(t) = e @)

k
where mj, denotes the median value of Ajp

2.3 High-Order Fuzzy Time Series Chen

The setup of FLR in Chen's high-order Fuzzy Time Series method considers two or more data points from
the past according to the order used. If using order three, then in determining FLR, three historical data points
will be considered. For example, in the Chen Fuzzy Time Series method using an order of two, if three
consecutive fuzzy sets A;(t —2) and Aj(t — 1) and Ay(t) can be formed as FLR A;, A; - Ay. Hence, the
resulting FLRG also changes. For example, in FLR, we obtan 4,,A4; = Ay; A1, A1 = A,; A1, A1 > A3 The
resulting FLRG 1s A1, A1 = A4, Ay, A5 [29]. High-order fuzzy time series models extend the conventional first-
order structure by incorporating multiple past observations to establish more comprehensive fuzzy logical
relationships, thereby enhancing the model’s capability to capture long-term temporal dependencies and
improving forecasting accuracy [30].

2.4 Prediction Value Accuracy
The accuracy of forecasting results is a measure of the degree of difference between actual results and
forecast results [31]. In time series forecasting, the difference between actual observations and the forecast
estimate 1s referred to as the residual [32]. Good accuracy has a low level of difference between the actual results
and the forecast results, but if the level of difference between the actual results and the forecast results increases,
the accuracy will become worse [33].
Accuracy measures used n this study:
1. MAD
Mean Absolute Deviation (MAD) accuracy value Used to calculate the absolute average value of a prediction
error, the following is the calculation formula:
MAD =~ |A, — F| %)
2. RMSE
Root Mean Square Error (RMSE) It is a measure of error that measures the difference between the actual value
and the value predicted by the forecasting model. A lower RMSE value indicates higher forecast accuracy, the
following is the calculation formula:
(6)
RMSE =

3. MAPE
Mean Absolute Percentage Error (MAPE) accuracy value is a calculation of the error in a prediction to find
the average absolute percentage error, using the formula:
n
1< 4, —F, @)
MAPE =~ Z 125 % 100%
n = A

A¢ denotes the actual value, F; represents the predicted value, nrefers the number of observations in the sample.

2.5 Proposed Frequency-Based FLRG Modification
The proposed frequency-based modification focuses on the formation of the Fuzzy Logical Relationship
Group (FLRG) rather than on altering the membership functions. Specifically, a new rule is introduced for
constructing a simplified FLRG, where, for any given current state, the successor state(s) are determined based
on the highest transition frequency observed in the original FLRG. In cases where multiple successor states share
the same maximum transition frequency, a deterministic aggregation rule is applied to produce a unique successor
value and avoid arbitrary rule selection.
The following algorithm describes the FLLRG simplification process for a given antecedent fuzzy set, A;:
1. Form Standard FLRGs:
e  Generate all possible Fuzzy Logical Relations (FLRs) from the fuzzified training data based on
the chosen order (&).
e  Group these FLRs into standard FLRGs based on their antecedent. For a given antecedent 4;,
the initial group is A; = {Aj1, 4j2, ..., Ajm} where A; represents all observed subsequent states.
2. Count Transition Frequency:
e For the specific antecedent A;, calculate the frequency of each subsequent state A; occurring.
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3. Identify Maximum Frequency Transition:
o Identify the next state, Aqy, that occurred with the highest frequency count among all
subsequent states {Ajq, Ajz, ..., Aj}-
4. Simplify and Retain (The Modification):
e  Retain only the identified transition A; = A, 45 All other transitions (those with lower or equal
frequency) are discarded.
Replace FLRG:
e Replace the original multi-transition FLRG (which included all Aj) with the new, simplified
FLRG that contains only the most frequent transition:
Original A; = {Aj1, Ajp, ..., Ajin} 1s replaced by Simplified A; = {Apqx}
e If two or more successor fuzzy sets have the same highest transition frequency (tie condition),
a deterministic aggregation rule is applied. Let Ajy, Ajy, ..., Ajm denote successor fuzzy sets

2

whose frequencies equal the maximum frequency Fp, 4, Instead of selecting a single successor
arbitrarily, the model aggregates these fuzzy sets by computing the average of their
representative values. This aggregated value is then used as the unique successor for the
corresponding antecedent state.

In conventional high-order FT'S models, the FLLRG rule space grows rapidly with increasing model order
due to the expansion of possible antecedent state combinations. The proposed frequency-based filtering 1s
designed to control this growth by retaining only dominant transitions within each FLRG. The resulting reduction
in rule-space complexity across different model orders is quantitatively evaluated in Section 3.4 (Table 5).

2.6 Justification for FT'S Model order (&)

The FT'S model order (4 determines the number of preceding time periods used for forecasting. This
study tested and compared FTS models up to order 3 (&=1, 2, and 3) for both the conventional and the proposed
modified methodologies.

The selection of this range (up to order 8) is based on two primary considerations:
1. Computational Efficiency and Complexity: Preliminary analysis showed that increasing the model order
beyond &=3 provides negligible accuracy improvement while substantially enlarging FLRG complexity.
As the primary objective of this study is complexity reduction, testing higher orders was not pursued to
avold unnecessary computational burden.

2. Capturing Historical Dependence: FTS order 3 is sufficient to capture monthly dependencies over a
quarter-year period, which aligns well with the known seasonal and short-term trends present in national
rice production data.

The best model order is selected through empirical evaluation, with the configuration showing the lowest MAD,
RMSE, and MAPE considered optimal, ensuring that complexity 1s determined based on evidence rather than
assumption.

2.7 Research Flowchart

The overall procedure of this study, starting from data input to final forecasting, is illustrated in the Figure
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Figure 1. Research Flowchart
Figure 1 summarizes the overall forecasting process, from data preparation to performance evaluation. The
key novelty lies in the modified FLRG formation stage, in which only the highest-frequency relationships are
retained, and the New FLRG approach is applied to the orders (1-3) model.
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3. RESULT AND ANALYSIS
3.1 Data Description

The data used in this study consist of monthly national rice production figures from January 2018 to March
2025 (87 observations), obtained from the official online database of Badan Pusat Statistik (BPS), specifically the
TLuas Panen dan Produksi Padi Menurut Bulan' series (Code: 5403001.01). The selected series corresponds to
finalized monthly statistics, with no reported re-benchmarking or historical revisions for the study period.

Prior to analysis, the raw data were reviewed to ensure completeness and consistency, confirming that no
missing observations were present and that data imputation was unnecessary. No normalization, detrending, or
scale transformation was applied. This choice is justified by the Fuzzy Time Series (FTS) framework, in which
fuzzification through interval partitioning and membership functions inherently accommodates magnitude
differences in the original data without compromising membership resolution.

It should be noted that the production series may be affected by external factors such as agricultural policy
changes or climate-related anomalies that are not explicitly modeled. These factors may introduce structural
changes in the data; however, this study focuses on evaluating the proposed frequency-based FLRG simplification
under real-world conditions rather than modeling all exogenous influences.

Time Series Plot
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Figure 2. Time Series Plot of Indonesian rice food crops in 2018-2025

Figure 2 illustrates the strong seasonal cycle of Indonesia’s monthly rice production, which typically reaches
its lowest levels around January and peaks near April, with year-to-year variability in both peak intensity and
trough depth. These recurrent peaks correspond to major harvest periods, whereas the troughs reflect planting
or off-season intervals. Such volatility in production increases forecasting uncertainty, highlighting the need for
models capable of capturing long-term dependencies. Consequently, higher-order FTS models particularly order
3 are more effective due to their extended memory of previous states. These observations also support the
application of the modified FLRG approach in addressing unstable seasonal fluctuations.

3.2 Application of Fuzzy Time Series (Conventional Model)

The application of the FTS model commences with the definition of the universe of discourse, U. These
mitial steps ensure that the data structure aligns with the characteristics of the FT'S framework.
1.  Formation of the Universal Set U

The intervals formed were obtained by the universe of talks U = [1,516,040; 9,768,002]. Its by taking
Donin as the smallest value from the data and D,,,, as the largest value from the research data. The next step is
to determine data intervals.
2.  Constructions of intervals

The universe of discourse was partitioned into 16 equal sub-intervals, (uq, Uy, Us, ..., Uqg), as the basis for
mterval construction. The midpoint of each mterval was subsequently calculated to serve as the representative
value for fuzzification, providing the linguistic framework for the FT'S model (Table 1).

These median values function as reference points that enable each monthly observation to be mapped to
its most appropriate linguistic term. This structured mapping facilitates the identification of temporal production
patterns, which are essential for the subsequent formation of fuzzy logical relationships.

Table 1. Interval & Median Value (1)

Interval Lower Limit Upper Limit Median Value (m)
Uy 1,516,038 2,043,038 1,779,538
U, 2,043,038 2,570,038 2,306,538
Us 2,570,038 3,097,038 2,833,538
Usg 9,421,038 9,948,038 9,684,538

A Modified Frequency-Based FLRG- Fuzzy Time Series Model for National Rice Production Forecasting (Adika Setia Brata)
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Then the analysis is continued by determining the fuzzy set obtained defined as follows:
1 05 0 0 0
+—t— ot —}

Al = {_ +
Uy Uy Uz Uy Use
05 1 05 0 0
Ay={—+—+—"F+—++—}
Uy Uy Uz Uy U16
A —{0+0+6+ +0'5+1}
1 U U UuUg Uis  Use

Each fuzzy set A; represents the linguistic state associated with the corresponding interval and illustrates the
degree to which a given production value belongs to adjacent intervals through gradual membership transition
(e.g., coefficient 0.5). This overlapping structure enables smoother representation of boundary values and
improves the model’s ability to capture transitional behavior between states. Following the fuzzification stage, the
time-ordered sequence of fuzzy states is used to construct FLRs, which form the basis for subsequent forecasting.
3. Determining FLR

The subsequent step is data fuzzification, where each numerical data point is converted into its
corresponding linguistic value. For instance, the production value recorded in January 2018 (2,783,961 tons) falls
within interval Us, and 1s therefore fuzzified as A;. This process is applied to all subsequent observations, as
shown i Table 2.

Table 2. Determining Fuzzification & FLR

Period Data Fuzzification FLR
1 2783961 As -
2 5738544 Aqg A; = Aq
3 9678183 Aig Ag = Aqq
87 8931919 Aqs Ag = Aqs

Table 2 illustrates the transformation of raw production data into fuzzy categories and how these categories
evolve over time. The “Fuzzification” column assigns each monthly production value to its respective linguistic
term (A, Ag, ..., Aig) based on its interval midpoint. Meanwhile, the “FLLR” column captures the transitions
from one fuzzy state to the next, reflecting how production levels progress between months—for example, moving
from a lower to a higher-level during harvest periods or decreasing during planting phases. These fuzzy transitions
provide valuable insight into production dynamics and form the foundation for identifying forecasting patterns
through FLLRG construction in later stages
4.  Determining FLRG

At this stage, the Fuzzy Logical Relationships (FLLRs) identified previously are aggregated into Fuzzy Logical
Relationship Groups (FLRGs). This grouping process maps all observed transitions from a specific "Current
Stage" (antecedent) to its corresponding "Next Stage" (consequent).

For example, the production value in January 2018 was mapped to A3, while the value in February 2018
corresponded to Ag, resulting in the Fuzzy Logical Relationship (FLR) A3 = Aq. This procedure was applied
sequentially to all observations through March 2025 and repeated for each FT'S configuration (order 1, 2, and 3)
to capture various levels of temporal dependence.

Table 3. Formation of FLRG order 1

Curent Stage Next Stage FLRG order 1
Al Al’ASFAlFAZFAZJAZJ AZ;Aly AZ;AZ A1 - 3A1, 6A2 !AS
AZ AIO'AS'AS'A%A‘)'AS AZ = 3A5'A7'A91A10
As Ag, A1, A1, A1, A4 Az > 444, Aq
Ass A2, 40 A1, Avy, A1e = A, 345,

Table 3 illustrates the grouping of FLRs into FLLRGs based on their antecedent states. For instance, the
transition for A; 1s A;—3A41, 64, , As, this means that there are 3, 6, and 1 weight assigned to each respective
state. Under this conventional framework, all identified relationships are retained, which significantly increases
computational complexity, especially in higher-order models. Due to space considerations, Table 3 presents the
FLRG order 1 as a representative illustration, while the complete listings for all orders are documented in
Appendix A (Tables A1-A8). The subsequent analysis in Table 5 will provide a comparison with the proposed
modified methods.
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5. Defuzzification

Defuzzification is performed to convert the fuzzy forecasting results into numerical production values using
Equation (4). This process enables direct comparison between predicted and actual rice production for each FT'S
model order.

For the FTS order 1 model, the forecasting relies on a single historical observation F(t — 1), resulting in
limited contextual awareness of seasonal production dynamics. As a consequence, the model exhibits relatively
large forecasting errors, particularly during periods of rapid production increase at the onset of major harvest
cycles. This limitation reflects the restricted memory inherent in first-order formulations.

The FTS order 2 model incorporates two preceding observations F(t — 2 ) and F(t — 1), allowing it to
better capture general seasonal trends. Initial forecasts show improved accuracy compared to the first-order
model; however, the model remains sensitive to abrupt production shifts, leading to increased deviations in
certain periods.

By utilizing three historical observations F(t — 3),F(t —2) and F(t — 1), the FTS order 3 model
captures longer temporal dependencies and produces more context-aware forecasts. Overall, this model
demonstrates more stable and accurate predictions across the time series, indicating that higher-order memory
improves forecasting robustness in the presence of seasonal volatility.

These results indicate a clear improvement in forecasting performance as the model order increases,
motivating further evaluation using quantitative accuracy metrics and complexity comparisons in the subsequent
analysis.

3.3 Proposed Frequency-Based FLRG Modification

To address the limitations of conventional FT'S model—particularly the excessive number of fuzzy logical
relationships (FLLRGs), which often introduce noise and reduce interpretability—this study proposes a modified
FLRG formation method. The modification simplifies the rule structure by retaining only the most frequently
occurring transitions within each FLLRG, thereby eliminating low-frequency or irregular patterns that contribute
minimally to the forecasting process. This approach 1s expected to reduce computational complexity, produce a
more compact rule base, and enhance forecasting stability, particularly in time series with strong seasonal
dependencies such as rice production.

The proposed modification is applied during the FLRG construction stage. After the historical data are
fuzzified into linguistic terms, standard FLRG are first generated by grouping all observed fuzzy logical
relationships sharing the same antecedent. For each antecedent state, the frequency of each successor state 1s then
calculated. The modified FLRG is formed by retaining only the successor with the highest observed transition
frequency, while all other successors are discarded. As a result, each antecedent 1s associated with a domimant
successor, yielding a simplified and deterministic FLRG structure.

For example, a conventional FLRG such as A; = 3 A4, 64,, A5 1s simplified into a modified FLRG A4; =
A,, where Aj; represents the most frequently observed successor. A representative example of the modified
FLRG structure 1s provided in Table 4, while the complete FLLRG listings for all model orders are presented in
Appendix B (Tables B1-B3).

Table 4. Formation of New FLRG order 1

Current stage FLRG orde 1 New FLRG order 1
Aq Ay - 344,64, ,As A,
A, A, = 345,45, A4, Aq Ag
A A; — 444, Ag A
Ass A6 2 49,341, Ay

3.4 Reduction in FLRG Complexity

To assess the structural efficiency of the proposed modification, this subsection compares the number of
Fuzzy Logical Relationship Groups (FLRGs) produced by the conventional and modified approaches. Since
FLRG complexity influences interpretability, computational demand, and forecasting stability, measuring the
reduction in rules provides a clear indication of the effectiveness of the simplification strategy. The comparison
across all model orders is summarized in Table 5.

Tabel 5. Summary of FLRG Complexity Reduction Across Model orders

Model FLRG (Conventional) New FLRG (Modified) Reduction
FTS order 1 80 47 41.25%
FT'S order 2 84 73 13.09%
FTS order 3 83 74 10.849%
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As shown in Table 5, the most substantial simplification occurs in the order 1 model, where the number of
rules decreases from 80 to 47 (41.25%). This indicates that many low-frequency transitions are effectively
consolidated through the frequency-based modification. For the order 2 and 3 models, reductions of 13.09% (84
— 73) and 10.84% (83 — 74) are observed, respectively. Although the proportional reduction becomes smaller
at higher orders—reflecting the more structured nature of long-memory FLRGs—the modified approach
consistently eliminates irrelevant transitions and refines the rule base.

From a complexity perspective, conventional high-order FI'S models experience rapid growth in the
number of FLRGs due to the combinatorial expansion of historical state combinations. The proposed frequency-
based filtering limits this growth by retaining only dominant transitions within each FLRG, resulting in a more
compact, scalable, and computationally efficient model structure, as reflected in Table 5.

3.5 Model Accuracy Evaluation
Following model implementation, forecasting accuracy was evaluated using MAD, RMSE, and MAPE,
where lower values indicate better alignment between predicted and observed rice production. To provide a

compact and comprehensive comparison, the overall forecasting performance of the conventional and modified
FTS models across different orders is summarized in Table 6.

Table 6. Comparison of Forecasting Models with MAD, RMSE, and MAPE

Method MAD RMSE MAPE
FTS order 1 1,118,187 1,634,284 25.46%
Modified FT'S order 1 1,040,791 1,631,106 22.67%
FTS order 2 366,974 591,460 10.509%
Modified FTS order 2 365,085 515,509 9.32%
FTS order 3 197,614 305,017 5.77%
Modified FTS order 3 196,410 271,774 5.46%

As shown in Table 6, the proposed frequency-based FLLRG modification consistently improves forecasting
accuracy across all model orders. In the first-order configuration, MAPE decreases from 25.46% to 22.67% after
modification. More substantial improvements are observed in higher-order models, with MAPE reduced from
10.50% to 9.32% for order 2 and from 5.77% to 5.46% for order 3. These results indicate that the modified FTS
model achieves lower forecasting error while maintaining stable performance as model order increases.

The visual comparisons presented in Figures 3-5 further support these findings. Across all orders, the
modified FT'S model produces smoother prediction curves and follows the seasonal production pattern more
closely than the conventional approach. The improvement becomes increasingly evident at higher orders,
reflecting the combined benefit of longer historical memory and a simplified FLRG structure.

FTS Order 1 Modified FTS Order 1
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Figure 3. Forecasting Accuracy of the Conventional and Modified FT'S order 1
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Figure 5. Forecasting Accuracy of the Conventional and Modified FTS order 3

Although MAD, RMSE, and MAPE were used as standard accuracy metrics—and MAPE is particularly
relevant for policy interpretation—this study did not apply cross-validation or out-of-sample testing. Monthly rice
production is a temporally ordered and strongly seasonal time series; random cross-validation would disrupt the
chronological structure and distort seasonal dependencies captured by the FT'S model. Similarly, allocating a
limited portion of the data for out-of-sample testing would reduce the number of complete seasonal cycles
available for training. Therefore, the evaluation focuses on in-sample forecasting performance across different
model orders. Future studies may incorporate rolling-window or expanding-window validation to further assess
long-term forecasting stability.

The observed improvement in performance, as indicated by the reduction in MAPE, should be interpreted
in the context of Indonesia’s strongly seasonal rice production system. In conventional high-order FT'S models,
seasonal anomalies often generate rare logical transitions that introduce noise and reduce forecasting stability. By
retaining only the most frequent FLRs, the proposed model filters out these infrequent transitions and yields a
cleaner representation of dominant seasonal patterns. This structural refinement enhances robustness against
data volatility and improves forecasting accuracy, particularly around seasonal turning points.

3.6  Final Forecasting Outcome

Based on the accuracy evaluation, the modified FTS order 3 model was identified as the superior method,
achieving the lowest MAD (196,410), RMSE (271,774) and MAPE (5.46%). This model was selected to forecast
future production values. The forecasts for April-August 2025 (Table 7) are purely model-based extrapolations
intended for policy planning support and have not yet been empirically verified against official BPS data.

Table 7. Final Forecasting Outcome

No Period FLRG Prediction

1 April 2025 Ay, Ag, Arg > Aqy 7,576,538 tons
2 May 2025 Ag, Aig, Agp = Ag 3,887,538 tons
3 June 2025 A, A, As > Ag 4,414,538 tons
4 July 2025 Ay, Ag, Ag > A, 4,941,538 tons
5 August 2025 Ag, Ag, A7 = Ag 3,887,538 tons

The final forecasting outcome indicates a projected decline in national rice production from May to August
2025, providing an early warning signal for policymakers and supply regulators. Such information enables
anticipatory planning for supply stabilization measures, including the adjustment of buffer stock policies and
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import scheduling, to avoid sudden price spikes or reactive import decisions, as previously observed in early
2025. Using historical production patterns, the proposed model allows short-term forecasting up to five months
ahead, supporting proactive rather than reactive policy formulation.

Improved forecasting accuracy plays a strategic role i minimizing the risks of import oversupply or
undersupply. By offering a more reliable and timely projection of future production trends, the modified FT'S
model supports better-aligned import and logistics decisions, helping ensure that national rice availability remains
consistent with anticipated demand. In this sense, enhanced forecasting transforms import planning from a
retrospective adjustment process into a forward-looking decision-support mechanism.

From a methodological perspective, the contribution of this study is positioned as complementary to existing
FTS variants, including frequency-based partitioning approaches, optimization-driven methods such as PSO-
based FTS, and hybrid FTS-machine learning models. Rather than introducing additional model complexity,
the proposed frequency-based FLRG modification emphasizes structural simplification, interpretability, and
robustness, making it particularly suitable for operational and policy-oriented forecasting environments where
transparency and computational efficiency are essential.

The observed improvement in forecasting performance, as reflected by the consistent MAPE reduction
within the same model order, particularly in the third-order configuration (5.77% — 5.46%), has meaningful
practical implications. At peak production levels, even a small percentage reduction in forecasting error can
translate into substantial absolute differences in estimated rice volume, potentially on the order of hundreds of
thousands of tons. Such accuracy gains can reduce the risk of misestimating import requirements or buffer stock
levels, thereby supporting more reliable national food security planning.

Despite these advantages, the proposed frequency-based simplification introduces an inherent trade-off
between model parsimony and sensitivity to rare or extreme events. By prioritizing frequently occurring logical
transitions, the model may underrepresent infrequent but critical structural changes in production caused by
exceptional policy shifts or extreme climatic events. Consequently, the proposed approach is most appropriate
for baseline seasonal planning and medium-term supply forecasting, while extreme-event risk management may
require complementary modeling frameworks. This limitation also provides a clear direction for future research
aimed at integrating rare-event awareness into simplified FT'S structures.

4. CONCLUSION

Based on the testing and analysis of forecasting results using the Fuzzy Time Series model with modified
frequency-based FLLRG, several key conclusions can be drawn. First, prioritizing the highest-frequency logical
relationships significantly enhances the forecasting accuracy of national rice production. The proposed model
consistently outperforms the conventional Chen FT'S across all tested orders, achieving its best performance with
MAPE reduced to 5.46% for modified FT'S order 3. These results demonstrate not only numerical gains but also
improved capability in capturing seasonal lag structures inherent in rice production cycles. Second, the modified
frequency-based FLRG FT'S model effectively reduces rule complexity, as evidenced by the decrease in the
number of FLLRG relationships across all model orders. This simplification produces a more compact and
interpretable rule base, improves computational efficiency, and mitigates the risk of overfitting by eliminating
ifrequent and unstable transitions. Consequently, this study contributes theoretically to Fuzzy Time Series
development by showing that structural simplification can coexist with improved predictive performance,
particularly in high-order configurations. Furthermore, the enhanced model is particularly suitable for time series
characterized by strong seasonality and long historical dependencies, such as agricultural production data. The
improved forecasting stability and interpretability indicate that the model demonstrates potential suitability as a
transparent and computationally efficient decision-support tool for baseline seasonal planning in national rice
production policy. Beyond methodological advancements, this improved reliability may support policymakers in
anticipating scasonal supply trends, helping to inform import planning and buffer-stock management without
overreacting to short-term fluctuations. Finally, this study acknowledges several limitations. The frequency-based
FLRG simplification, while enhancing robustness against noise, introduces a potential trade-off by reducing the
model's sensitivity to sudden, rare structural breaks in production. Based on these constraints, future research
may focus on (1) rolling-window or expanding-window validation to assess long-term stability, (2) applications to
other agricultural commodities, and (3) integration with probabilistic or scenario-based approaches to better
address extreme events.
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