Zero : Jurnal Sains, Matematika, dan Terapan

E-ISSN: 2580-5754; P-ISSN: 2580-569X

Volume 9, Number 2, 2025 DOI: 10.30829/zero.v9i2.26063

Page: 407-417



# Comparison of User Satisfaction of Mobile-Based Document Scanner Applications on Camscanner and Simple Scanner Using the TAM Method

# <sup>1</sup> Restu Apriyanto



Department of Information Systems, Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia

# <sup>2</sup> Zarnelly ([

Department of Information Systems, Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia

# <sup>3</sup> Megawati



Department of Information Systems, Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia

# <sup>4</sup> M. Afdal



Department of Information Systems, Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia

#### Article Info

# **ABSTRACT**

## Article history:

Accepted, 16 October 2025

# Keywords:

DocumentScanner; Camscanner; SimpleScanner; Technology Acceptance Model. CamScanner and Simple Scanner users were not very satisfied with the services and performance of their applications. Complaints included annoying ads, technical difficulties, limited features, and problems with the paid version. To analyze user satisfaction, this study used the Technology Acceptance Model (TAM) involving five main variables: Perceived Usefulness (PU), Perceived Ease of Use (PEOU), Attitude Toward Using (ATU), Behavioral Intention to Use (BI), and Actual Use (AU). This study aimed to compare user satisfaction of both applications. The results showed that for CamScanner, four hypotheses were accepted and one was rejected, while for Simple Scanner, all hypotheses were accepted. This indicates that for CamScanner, 80% of the variables influence user satisfaction, and for Simple Scanner, 100%. In general, this study confirms that perceived ease of use and usefulness of both applications are important factors that shape user attitudes, intentions, and behavior in using document scanning applications.

This is an open access article under the CC BY-SA license.



# Corresponding Author:

Restu Apriyanto,

Department of Information Systems,

Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Indonesia

Email: 12050313102@students.uin-suska.ac.id

#### 1. INTRODUCTION

Today, digital technology is used as a tool, while information technology is rapidly developing through smartphones[1]. One form of digital technology widely used by the public is smartphone-based document scanning applications[2]. These document scanning applications allow users to convert physical documents into digital files (PDF or JPEG) more practically, quickly, and efficiently, without the need for a conventional scanner [3]. Among the many scanner applications available in the digital market, CamScanner and Simple Scanner are the two applications most frequently used by the public, especially students[4].

CamScanner, created and developed by CamSoft Information, plays an important role in helping students manage academic documents, especially when they have to collect assignments in digital format, both for daily assignments and in compiling final assignments[5]. CamScanner works much like a regular scanner, using your smartphone's photo app or camera to scan objects and convert them to digital format[6]. Meanwhile, Simple Scanner, developed by Easy Inc., is also a popular choice for users due to its simplicity, lightweight design, and the lack of excessive advertising in the free version. This app offers similar scanning features, including document conversion, file size adjustment, storage, and document security [7].

Despite both apps' high popularity, not all users are satisfied with their service and performance. Some CamScanner user reviews complain about intrusive ads, technical issues opening files, and glitches with the paid version. Meanwhile, Simple Scanner is considered to have minimal features by some users, although in terms of stability and simplicity it is considered adequate[8]. These differences in perception and satisfaction indicate that further evaluation of user satisfaction levels is essential, particularly by using a theoretical framework that can measure user acceptance and behavior towards technology applications[5].

One of the models that is widely used in measuring the acceptance of information technology is the Technology Acceptance Model (TAM)[9]. According to the TAM theory, which was first put forward by Davis in 1986, perceived usefulness can also be predicted by simplicity of use. [10]. Individual acceptance of the use of information technology systems is explained by the widely accepted theory of information systems use (TAM). [11]. In this study, the TAM model is a relevant basis because it can explain why users prefer one application over another even though their functions are similar. CamScanner and Simple Scanner were chosen as research objects because both have the same main function (a mobile-based document scanner), but have significant differences in popularity, features, and user reviews. The TAM concept is in **Figure 1**.

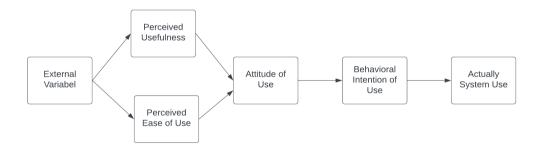



Figure 1. The Technology Acceptance Model (TAM)

According to this paradigm, a number of characteristics, including Attitude Toward Using (ATU), Behavioral Intention to Use (BI), Actual Use (AU), Perceived Usefulness (PU), and Perceived Ease of Use (PEOU), influence how people use technology. Additionally, TAM can be extended by including characteristics such as perceived enjoyment (the enjoyment of using technology) and trust[12].

- a. Perceived Usefulness (PU), is a high level of perceived usefulness indicating the user's belief that the product or service obtained can satisfy needs and provide benefits[13].
- b. Perceived Ease of Use (PEOU), is the user's perception of the ease of using the technology, without feeling it is difficult or requiring a lot of time to understand it[14].
- c. Attitude Toward Using (ATU), is a concept in the Technology Adoption model which refers to a person's attitude or feelings towards using a technology or system[15].
- d. Behavioral Intention of Use (BI), is the behavioral tendency to continue using a technology[16].
- e. Actual System Use (ASU), describes how often or to what extent the technology is actually used in practice[17].

Using the Partial Least Squares-Structural Equation Modeling (PLS-SEM) approach, Khaerunisa's earlier research on the Camscanner application's usefulness measure showed effects of 0.111, 0.146, and -0.090, respectively. In the meantime, the CamScanner application's use was positively impacted by the memory burden and ease of learning variables, with corresponding total effects of 0.436 and 0.245. Students are among the groups of people who can use this CamScanner program. Furthermore, research conducted by Rohmatus Sholihah in

2022 "Analysis of Camscanner Application User Satisfaction Using the Technology Acceptance Model (TAM) and End-User Computing Satisfaction (EUCS) Methods" where the results stated that 93.75% of CamScanner application users were in the very satisfied category [6].

Several previous studies have applied the TAM model to evaluate user acceptance and satisfaction with specific applications[18]. However, studies directly comparing two mobile document scanning applications in terms of user satisfaction using the TAM approach are still very limited[7]. In fact, this comparison is important for understanding user preferences more comprehensively and provides valuable input for application developers in improving service quality. Therefore, This study aims to analyze and compare user satisfaction with CamScanner and Simple Scanner applications using the Technology Acceptance Model (TAM) approach. Based on the variables Perceived Usefulness (PU), Perceived Ease of Use (PEOU), Attitude Toward Using (ATU), Behavioral Intention to Use (BI), and Actual Use (AU), the hypothesis in this study seeks to determine significant differences in the level of satisfaction and acceptance of technology between the two applications and provide an in-depth understanding of the factors that influence user acceptance and satisfaction [5].

## 2. RESEARCH METHOD

This research has several systematic steps. The following are the steps to achieve the research objectives:

#### 2.1 Planning Stage

This research begins with a planning stage consisting of identifying the problem, finding methods and variables, determining respondents and designing questionnaire questions [19]. To determine user satisfaction, the questionnaire items were taken from previous research references related to user satisfaction analysis of the CamScanner and Simple Scanner applications. The questionnaire consisted of 16 research-related items designed based on indicators from the Technology Acceptance Model (TAM) method[20]. To determine the research respondents, the researcher administered a questionnaire to CamScanner and Simple Scanner app users, and then performed calculations using the Lemeshow equation, considering the unknown and unlimited population of CamScanner and Simple Scanner app users[21]. The formula for determining the sample is as follows:

$$n = \frac{Za^2 \times P \times Q}{L^2} \tag{1}$$

where,

n = Number of samples

- Z = The standard value of the distribution corresponds to a value of 1.96. taken from a standard normal distribution
- a = 5% or sampling error = 5%. A 5% error rate means that the researcher accepts a 5% possibility that the research results will deviate from the actual population conditions.
- P = Maximum estimate = 0.5. In determining sample size, the P value is used to describe the proportion of population characteristics.
- L = Accuracy level 10%. A margin of error of 10% indicates the tolerance for deviation between sample results and population conditions.

The following is a calculation using the Lemeshow equation to determine the number of samples in this study.

$$n = \frac{Z\alpha^2 x P x (1 - P)}{L^2}$$

$$n = \frac{(1,96)^2 x 0.5 x (1 - 0.5)}{(0,1)^2}$$

$$n = \frac{3,8416 \times 0.25}{0.01}$$

$$n = 96.04$$

Based on the calculations that have been carried out, a sample of 96 respondents was obtained, which was then rounded up to 100 respondents who are active users of the CamScanner and Simple Scanner applications.

# 2.2 Data Collection Stage

At this stage, various literature such as books, journals, and related studies were reviewed, as well as interviews with active users of the CamScanner and Simple Scanner applications[22]. Data collection was carried out by distributing a questionnaire via Google Forms online via WhatsApp. The questionnaire consists of 16 question items based on previous research with a total of 100 respondents collect the questionnaire consisted of 16 question items based on previous research, with the number of respondents successfully collected being 100 respondents who were active users of the Camscanner and Simple Scanner applications, consisting of students and the general

public. The questionnaire was measured using a Likert scale with a scale of 1 (strongly disagree) – 5 (strongly agree)[23].

 Table 1. Questionnaire

| Variable                    | Questions                                                                |
|-----------------------------|--------------------------------------------------------------------------|
| Perceived Ease of Use       | CamScanner and Simple Scanner app is easy to learn and use.              |
|                             | The menus and features in the CamScanner and Simple Scanner              |
|                             | application are easy to understand.                                      |
|                             | I had no difficulty in utilizing the features.                           |
| Perceived Usefullness       | CamScanner and Simple Scanner application for academic needs.            |
|                             | CamScanner and Simple Scanner app helps me to complete academic          |
|                             | assignments faster.                                                      |
|                             | CamScanner and Simple Scanner app features support my need to scan       |
|                             | documents and convert them into digital files.                           |
|                             | By using CamScanner, I feel that my work has become more efficient.      |
| Attitude Toward Use         | I feel comfortable using the CamScanner and Simple Scanner app for       |
|                             | academic purposes.                                                       |
|                             | Using CamScanner and Simple Scanner suits my needs as a student.         |
|                             | I am satisfied with the results of the documents scanned using           |
|                             | CamScanner and Simple Scanner.                                           |
|                             | I will continue to use CamScanner and Simple Scanner apps in the         |
| Behavioral Intention to Use | future for academic purposes.                                            |
|                             | I would recommend CamScanner and Simple Scanner apps to my friends       |
|                             | or fellow students.                                                      |
|                             | If there is another app that has similar functionality, I will still use |
|                             | CamScanner.                                                              |
| Actual System Use           | I use this scanner app regularly for my document needs.                  |
|                             | I use this scanner app every time I need to scan a document.             |

#### 2.3 Data Processing and Data Analysis Stage

At this stage, the contribution of the research findings to the problem being studied will be explained, suggestions for further research knowledge development in this field, and recommendations based on the research results will be provided to provide solutions to the identified problems. This study uses Structural Equation Modeling (SEM) with the Partial Least Square (PLS) approach using Smart-PLS software version 4.1.0.5 [24]. Validity and reliability tests were conducted to determine whether the questions in the questionnaire were truly able to measure what should be measured (valid) and provide consistent results (reliable) before hypothesis testing, and bootstrapping to test the significance of the relationship between variables[25].

# 3. RESULT AND ANALYSIS

The questionnaire data collected from 100 respondents was then processed using demographic analysis and model analysis (PLS SEM) to obtain the outer model and inner model results.

# 3.1 Demographic Analysis Results

Table 2. Demographic Analysis

| Items         | Frequency | Percentage |
|---------------|-----------|------------|
| Gender        |           |            |
| Women         | 53        | 54%        |
| Men           | 47        | 46%        |
| Age           |           |            |
| 18 - 23 Years | 53        | 52%        |
| 24 - 29 Years | 33        | 37%        |
| >30 Years     | 16        | 17%        |
| Education     |           |            |
| <b>D</b> 3    | 51        | 51%        |
| S1            | 37        | 38%        |
| <b>S</b> 2    | 12        | 11%        |
| Handphone     |           |            |
| Android       | 63        | 64%        |
| iOS           | 37%       | 36%        |

Zero: Jurnal Sains, Matematika dan Terapan

Based on table 2 above, the number of respondents in this study was 100 people. Respondents consisted of 53 women (54%) and 47 men (46%). Based on age, respondents were grouped into three categories, namely 18–23 years old (53 people (52%), 24–29 years old (31%), and >30 years old (16 people (17%). Based on education level, the majority of respondents had a bachelor's degree (51 people (51%), while 37 people (38%) had a diploma (D3), and 12 people (11%) had a master's degree. In terms of device usage, the majority of respondents used Android phones (63 people (64%), while 37 people (36%) used iOS.

## 3.2 Outer model analysis

Several important aspects that need to be considered in measuring the outer model using Structural Equation Modeling-Partial Least Square (SEM-PLS) include reliability, convergent validity, and discriminant validity.

#### Convergent Validity and Reliability

The following are the results of convergent validity and reliability on the CamScanner and Simple Scanner applications which can be seen in the table below.

**Table 3.** Convergent Validity and Reliability of the CamScanner Application

| Variable                    | ITEM | LOADING | VIF   | CA    | CR    | AVE   |
|-----------------------------|------|---------|-------|-------|-------|-------|
| Perceived Usefulness        | PU1  | 0.935   | 1.580 | 0.920 | 0.949 | 0.861 |
|                             | PU2  | 0.954   | 1.580 |       |       |       |
|                             | PU3  | 0.894   | 1.551 |       |       |       |
| Perceived Ease of Use       | PEU1 | 0.840   | 1.952 | 0.830 | 0.893 | 0.736 |
|                             | PEU2 | 0.846   | 2.285 |       |       |       |
|                             | PEU3 | 0.887   | 1.033 |       |       |       |
| Attitude Toward Using       | ATU1 | 0.867   | 2.246 | 0.810 | 0.882 | 0.713 |
|                             | ATU2 | 0.772   | 2.243 |       |       |       |
|                             | ATU3 | 0.890   | 2.261 |       |       |       |
| Behavioral Intention to Use | BIU1 | 0.753   | 2.197 | 0.727 | 0.807 | 0.603 |
|                             | BIU2 | 0.898   | 1.618 |       |       |       |
|                             | BIU3 | 0.908   | 3.715 |       |       |       |
| Actually System Use         | ASU1 | 0.920   | 4.218 | 0.754 | 0.889 | 0.801 |
|                             | ASU2 | 0.870   | 2.821 |       |       |       |

The loading factor values for the CamScanner Application range from 0.753 to 0.954, as shown in **Table 3**. Since all indicators have loading values higher than 0.7, indicating them in evaluating the related constructs, reliability convergent validity has been met. Furthermore, Cronbach's Alpha (CA) scores range from 0.727 to 0.920, while Composite Reliability (CR) ratings range from 0.807 to 0.949. These findings demonstrated that the investigated constructs had high composite and internal reliability, exceeding the criteria of 0.8 (for CR) and 0.7 (for CA). Furthermore, all of the Average Variance Extracted (AVE) values, which range from 0.603 to 0.861, are higher than the 0.5 minimum criterion. Thus, convergent validity is clearly met. Since the Variance Inflation Factor (VIF) values range from 1.033 to 4.218, which is still below the usual criterion of 5, there is no indication of multicollinearity among the constructs.

**Table 4.** Convergent Validity and Reliability of the Simple Scanner Application

| Variable                    | ITEM | LOADING | VIF   | CA    | CR    | AVE   |
|-----------------------------|------|---------|-------|-------|-------|-------|
| Perceived Usefulness        | PU1  | 0.976   | 5.779 | 0.921 | 0.949 | 0.863 |
|                             | PU2  | 0.978   | 5.779 |       |       |       |
|                             | PU3  | 0.956   | 5.628 |       |       |       |
| Perceived Ease of Use       | PEU1 | 0.904   | 2.819 | 0.945 | 0.965 | 0.901 |
|                             | PEU2 | 0.956   | 5.693 |       |       |       |
|                             | PEU3 | 0.849   | 1.987 |       |       |       |
| Attitude Toward Using       | ATU1 | 0.876   | 2.317 | 0.932 | 0.957 | 0.881 |
|                             | ATU2 | 0.926   | 3.143 |       |       |       |
|                             | ATU3 | 0.946   | 4.660 |       |       |       |
| Behavioral Intention to Use | BIU1 | 0.968   | 6.989 | 0.860 | 0.915 | 0.782 |
|                             | BIU2 | 0.934   | 4.235 |       |       |       |
|                             | BIU3 | 0.946   | 4.572 |       |       |       |
| Actually System Use         | ASU1 | 0.962   | 5.572 | 0.953 | 0.977 | 0.955 |
|                             | ASU2 | 0.876   | 2.583 |       |       |       |

Based on **Table 4**, for the Simple Scanner Application, all indicators have loading factor values above 0.7, with values ranging from 0.849 to 0.978. This indicates that all indicators have good convergent validity for their respective constructs, in accordance with the recommended minimum criteria (≥ 0.7). Cronbach's Alpha (CA) values for all constructs also indicate excellent internal reliability, with values ranging from 0.860 (Behavioral Intention to Use) to 0.953 (Actual System Use), and all exceeding the minimum threshold of 0.7. This indicates that the items in each construct have high internal consistency. Furthermore, the Composite Reliability (CR) values for all constructs are above 0.8, precisely between 0.915 and 0.977, which indicates that these constructs have very strong composite reliability. Finally, the Average Variance Extracted (AVE) value for each construct has also met the convergent validity standard, with values ranging from 0.782 (Behavioral Intention to Use) to 0.955 (Actually System Use), all of which are above the minimum threshold of 0.5.

#### **Discriminant Validity**

A statistical measure to demonstrate that an instrument or construct is truly different from another instrument or construct that is theoretically unrelated, by measuring different constructs that are expected to have no high correlation with each other. The following are the results of discriminant validity on the CamScanner and Simple Scanner applications, which can be seen in Tables 3 and 4 below.

**Table 5.** Results of the Fornell-Lacker Criteria for the CamScanner Application

| Variable | ASU    | ATU    | $\mathbf{BIU}$ | PEU   | PU    |
|----------|--------|--------|----------------|-------|-------|
| ASU      | 0.895  |        |                |       |       |
| ATU      | -0.435 | 0.845  |                |       |       |
| BIU      | 0.444  | -0.338 | 0.777          |       |       |
| PEU      | -0.117 | 0.412  | 0.027          | 0.858 |       |
| PU       | -0.237 | 0.652  | -0.106         | 0.715 | 0.928 |

**Table 6.** Results of the Fornell-Lacker Criteria for the Simple Scanner application

| Variable  | ASU   | ATU   | BIU   | PEU   | PU    |
|-----------|-------|-------|-------|-------|-------|
| ASU       | 0.977 |       |       |       | _     |
| ATU       | 0.884 | 0.939 |       |       |       |
| BIU       | 0.696 | 0.636 | 0.885 |       |       |
| PEU       | 0.807 | 0.909 | 0.568 | 0.949 |       |
| ${ m PU}$ | 0.931 | 0.893 | 0.683 | 0.792 | 0.929 |

Based on **Tables 5 and 6**, it can be seen that the values printed in bold on the diagonal line are the square roots of the Average Variance Extracted (AVE) values for each construct in the 2 applications. The following are the results of the values in the 2 applications, namely CamScanner and Simple Scanner, 0.895 and 0.977 for Actual System Use (ASU), 0.845 and 0.939 for Attitude Toward Using (ATU), 0.777 and 0.885 for Behavioral Intention to Use (BIU), 0.858 and 0.949 for Perceived Ease of Use (PEU), and 0.928 and 0.929 for Perceived Usefulness (PU). Because each AVE root value of the 2 applications on the diagonal is greater than the correlation value between other constructs in the same column and row, it can be concluded that the discriminant validity of the CamScanner and Simple Scanner applications has been met according to the Fornell-Larcker criteria.

#### 3.3 Structural Analysis (Inner Model)

In this work, the structural model was tested using SmartPLS. This study employed three distinct types of variables independent, mediator, and dependent—to investigate user behavior when using the Camscanner and SimpleScanner applications. "Perceived utility (PU) and perceived ease of use (PEU) are the independent variables in this study. Furthermore, Attitude Toward Using (ATU) and Behavioral Intention to Use (BIU) act as mediators, whereas Actual Use (ASU) is the dependent variable." The relationship between these factors is investigated in order to determine the extent to which user attitudes and intentions when using the Camscanner and SimpleScanner applications are influenced by perceived utility and usability.

As depicted in the research path diagram designed in **Figures 2 and 3** in SmartPLS, further analysis will utilize the Structural Equation Modeling-Partial Least Squares (SEM-PLS) method and bootstrapping techniques. The SEM-PLS calculation process aims to obtain path coefficients and outer loadings, as well as evaluate construct reliability and validity. Among the components tested in this model are Cronbach's alpha, composite reliability, and validity, including discriminant validity based on the Fornell-Larcker method, as well as analysis of potential multicollinearity using the Variance Inflation Factor (VIF) value.

PEU

PEUS

Figure 2. Diagram of SEM PLS Calculation Results for CamScanner Application

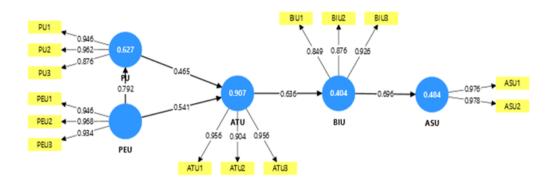



Figure 3. Diagram of SEM PLS Calculation Results for the Simple Scanner Application

The bootstrapping calculation will yield values from the original sample, the mean, standard deviation, t-statistic, and p-values. The bootstrapping results are then used to evaluate whether the proposed hypothesis is significant. The p-values will serve as a reference for determining whether the hypothesis is accepted or rejected.

# 3.4 Analysis and Results of Hypothesis Testing

Hypothesis testing was conducted to verify hypotheses based on existing research. This testing used the Smart PLS application. The results of the hypothesis testing can be seen in **Table 7** below:

**Table 7.** CamScanner Application Hypothesis Testing

|                |        |        |       | -) F         |          |        |
|----------------|--------|--------|-------|--------------|----------|--------|
| Hypothesis     | О      | Mean   | SD    | T Statistics | P Values | Inf    |
| H1:ATU -> BIU  | -0.338 | -0.368 | 0.109 | 3.097        | 0.002    | Accept |
| H2:BIU->ASU    | 0.444  | 0.457  | 0.090 | 4.958        | 0.000    | Accept |
| H3: PEU -> ATU | -0.111 | -0.107 | 0.177 | 0.624        | 0.533    | Reject |
| H4: PEU -> PU  | 0.715  | 0.717  | 0.043 | 16.682       | 0.000    | Accept |
| H5: PU -> ATU  | 0.731  | 0.730  | 0.153 | 4.777        | 0.000    | Accept |

Based on Table 7 above, which is the result of the SmartPLS test using the bootstrapping method, the following is an explanation of the relationship between variables in the model being tested:

- "H1: ATU on BIU shows a coefficient value (O) of -0.338, with a T-statistic value of 3.097 and a p-value of 0.002 (p < 0.05). This indicates that Attitude Toward Using (ATU) has a significant effect on Behavioral Intention to Use (BIU). This means that user attitudes towards the CamScanner application actually show that when users feel skeptical or not completely sure, their intention to continue using the application can increase due to practical needs.</li>
- 2. H2: BIU on ASU shows a coefficient value (O) of 0.444, with a T-statistic of 4.958 and a p-value of 0.000 (p < 0.05). This indicates that BIU has a positive and significant effect on ASU, so the hypothesis is accepted. These results indicate that the higher a person's intention to use CamScanner, the more likely they are to actually use it in real activities such as scanning documents, sending PDF files, or archiving important data.
- 3. H3: PEU on ATU shows a coefficient value (O) of -0.111, with a T-statistic of 0.624 and a p-value of 0.533 (p > 0.05). This means that PEU does not have a significant effect on ATU, so the hypothesis is rejected. This shows that CamScanner's ease of use does not have a significant effect on user attitudes towards the

- application. This means that even though the application is easy to use, such as automatic scanning, automatic cropping, and a simple interface, it is not enough to form a positive attitude because users also consider other aspects such as privacy, limitations of the free version, or advertising experience.
- 4. H4: PEU on PU shows a coefficient value (O) of 0.715, with a T-statistic of 16.682 and a p-value of 0.000 (p < 0.05). This indicates that PEU has a positive and significant effect on PU, so the hypothesis is accepted. This confirms that the easier the CamScanner application is to use, the higher the user's perception that the application is useful.
- 5. H5: PU on ATU shows a coefficient value (O) of 0.731, with a T-statistic of 4.777 and a p-value of 0.000 (p < 0.05). This means that PU has a positive and significant influence on ATU, so the hypothesis is accepted. These results strengthen that user perceptions of the benefits of CamScanner significantly shape their positive attitudes towards using the application. When users feel this application is very helpful in document digitization tasks such as for work and college purposes."

Table 8. Hypothesis Testing of the Simple Scanner Application

| Hypothesis      | 0     | Mean  | SD    | T Statistics | P Values | Inf    |
|-----------------|-------|-------|-------|--------------|----------|--------|
| H1:ATU->BIU     | 0.636 | 0.648 | 0.075 | 8.453        | 0.000    | Accept |
| H2:BIU->ASU     | 0.696 | 0.699 | 0.071 | 9.799        | 0.000    | Accept |
| H3: PEU - > ATU | 0.541 | 0.539 | 0.095 | 5.725        | 0.000    | Accept |
| H4: PEU -> PU   | 0.792 | 0.787 | 0.064 | 12.319       | 0.000    | Accept |
| H5: PU -> ATU   | 0.465 | 0.464 | 0.091 | 5.080        | 0.000    | Accept |

Based on **Table 8** above, the following is an explanation of the relationship between variables in the model being tested:

- 1. H1: Attitude Toward Using (ATU) on Behavioral Intention to Use (BIU) shows a coefficient value (O) of 0.636, with a T-statistic value of 8.453 and a p-value of 0.000 (p < 0.05). This indicates that ATU has a positive and significant effect on BIU, so the hypothesis is accepted. These results indicate that users' positive attitudes towards the SimpleScanner application significantly increase their intention to use it. This means that the more positive the user's perception or attitude towards the experience of using SimpleScanner, for example because the display is simple, the main features are effective, and the ads are not annoving.
- 2. 2. H2: Behavioral Intention to Use (BIU) on Actual System Use (ASU) shows a coefficient value (O) of 0.696, with a T-statistic of 9.799 and a p-value of 0.000 (p < 0.05). This indicates that BIU has a positive and significant effect on ASU, so the hypothesis is accepted. This finding indicates that user intention to use SimpleScanner is a strong predictor of actual usage behavior. Users who have high intentions tend to actually use this application in real activities, such as scanning receipts, saving academic documents.
- 3. H3: Perceived Ease of Use (PEU) on Attitude Toward Using (ATU) shows a coefficient value (O) of 0.541, with a T-statistic of 5.725 and a p-value of 0.000 (p < 0.05). This means that PEU has a positive and significant effect on ATU, so the hypothesis is accepted. This means that the ease of use of SimpleScanner has a positive and significant effect on user attitudes towards the application. Features such as auto-crop, automatic edge detection, and a minimalist interface contribute to forming a positive perception of SimpleScanner. When users feel that the application is not difficult, they tend to like it more.
- 4. H4: Perceived Ease of Use (PEU) on Perceived Usefulness (PU) has a coefficient (O) of 0.792, with a T-statistic of 12.319 and a p-value of 0.000 (p < 0.05). This indicates that PEU has a positive and significant effect on PU, so the hypothesis is accepted. This finding indicates that the easier SimpleScanner is to use, the higher the user's perception that this application is useful. The ease of organizing scan results, choosing file formats, and saving or sharing documents directly from the application encourages the perception that SimpleScanner is a practical tool that helps document digitization activities.
- 5. H5: Perceived Usefulness (PU) on Attitude Toward Using (ATU) shows a coefficient value (O) of 0.465, with a T-statistic of 5.080 and a p-value of 0.000 (p < 0.05). Thus, PU has a positive and significant influence on ATU, and the hypothesis is accepted. This means that the greater the perceived usefulness of SimpleScanner, the more positive the user's attitude towards this application. Users who find this application very useful in completing tasks such as digital archiving, sending official documents, or administrative storage.

**Table 9.** Comparison of CamScanner and Simple Scanner Application Hypotheses

| Hypothesis    | App            | Coefficient Value (O) | Information |
|---------------|----------------|-----------------------|-------------|
| H1:ATU->      | CamScanner     | -0.338                | Accept      |
| BIU           |                |                       |             |
|               | Simple Scanner | 0.636                 | Accept      |
| H2:BIU->      | CamScanner     | 0.444                 | Accept      |
| ASU           |                |                       |             |
|               | Simple Scanner | 0.696                 | Accept      |
| H3:PEU->      | CamScanner     | -0.111                | Reject      |
| ATU           |                |                       |             |
|               | Simple Scanner | 0.541                 | Accept      |
| H4: PEU -> PU | CamScanner     | 0.715                 | Accept      |
|               | Simple Scanner | 0.792                 | Accept      |
| H5: PU -> ATU | CamScanner     | 0.731                 | Accept      |
|               | Simple Scanner | 0.465                 | Accept      |

Based on the comparison **Table 9** above, the researcher concluded:

- 1. H1 (ATU → BIU), CamScanner shows a negative but significant relationship, while Simple Scanner has a much stronger positive relationship (T=8.453 vs. 3.097).
- H2 (BIU  $\rightarrow$  ASU), both are significantly positive, but Simple Scanner is higher (0.696) than CamScanner (0.444), indicating a stronger influence.
- 3. H3 (PEU \rightarrow ATU), CamScanner's results were not significant (Reject), while Simple Scanner was significant with a fairly high positive influence (0.541).
- 4. H4 (PEU → PU), both applications are equally significantly strong, with CamScanner's value (0.715) slightly below Simple Scanner (0.792).
- 5. H5 (PU o ATU), CamScanner is higher (0.731) than Simple Scanner (0.465), indicating that CamScanner is superior in this aspect.

Based on data from 100 respondents who actively use the CamScanner and Simple Scanner applications in Pekanbaru City. In general, Simple Scanner has more consistent positive results in all hypotheses, while CamScanner has weaknesses in H1 (negative direction) and H3 (not significant) this shows that when users feel not completely sure, their intention to continue using the application can increase due to practical needs. And also although the application is easy to use such as automatic scanning, automatic cropping, and a simple interface, it is not enough to form a positive attitude because users also consider various other aspects.

# CONCLUSION

Based on the research that has been conducted, the test of the two applications above with the composite reliability (CR) value for all constructs is above 0.8 for the CamScanner and SimpleScanner applications. And produced 5 hypothesis tests from each application tested, the perceived usefulness variable with a value above 0.8, the ease of use variable with a value above 0.8, the attitude toward using variable with a value above 0.7 and the behavioral intention use variable above 0.7 which indicates that all constructs also exceed the minimum threshold of 0.5 with a range of 0.603 to 0.861, which indicates that convergent validity has been met well.

In the CamScanner application, it was found that the Perceived Usefulness (PU) variable had a positive and significant effect on Attitude Toward Using (ATU), and PU itself was significantly influenced by Perceived Ease of Use (PEU). However, PEU did not have a significant effect on ATU, thus it can be concluded that of the 5 hypotheses proposed in the CamScanner application, four hypotheses were accepted and one was rejected, meaning 80% of this variable had an effect on user satisfaction.

Meanwhile, in the SimpleScanner application, all relationships in the model show a positive and significant influence. PEU influences PU and ATU, PU influences ATU, and ATU influences BIU, which ultimately influences ASU, this indicates that the TAM model is more stable and suitable for application in the SimpleScanner application. Thus, it can be concluded that of the 5 hypotheses proposed in the Simple Scanner application, all can be said to be accepted, meaning that 100% of these variables influence user satisfaction. In general, the results of the study confirm that perceptions of ease and usefulness of both applications play an important role in shaping attitudes, intentions, and actual behavior of users of document scanner applications. For future researchers, this study opens up opportunities to assess user behavior more broadly by adding external variables such as service satisfaction, trust, or cost perception, and involving respondents across regions or countries to make the results more general. Further research is also recommended to combine quantitative and qualitative methods to gain a deeper understanding of the factors influencing user acceptance and satisfaction of document scanning applications.

#### 5. REFERENCES

- [1] K. Iyengar, G. K. Upadhyaya, R. Vaishya, and V. Jain, "COVID-19 and applications of smartphone technology in the current pandemic," *Diabetes Metab. Syndr. Clin. Res. Rev.*, vol. 14, no. 5, pp. 733–737, 2020. https://doi.org/10.1016/j.dsx.2020.05.033
- [2] B. Hunt, A. J. Ruiz, and B. W. Pogue, "Smartphone-based imaging systems for medical applications: a critical review," J. Biomed. Opt., vol. 26, no. 4, p. 40902, 2021. https://doi.org/10.1117/1.JBO.26.4.040902
- [3] A. N. Hakim and L. Yulia, "Dampak teknologi digital terhadap pendidikan saat ini," *J. Pendidik. Sos. Dan Hum.*, vol. 3, no. 1, pp. 145–163, 2024. https://publisherqu.com/index.php/pediaqu/article/view/800
- [4] P. Tirodkar, H. Malgundkar, S. Ghadi, and A. Save, "Buddy Scanner-A Scanning Application," in 2021 2nd International Conference for Emerging Technology (INCET), IEEE, 2021, pp. 1-9. https://doi.org/10.1109/INCET51464.2021.9456316
- [5] S. Z. Lutfiah, M. A. Komara, and D. Irmayanti, "Analisis Kesuksesan Aplikasi Camscanner Dengan Pendekatan Model Delone And Mclean Studi Kasus Stt Wastukancana Purwakarta Dan Stie Wikara Purwakarta," J. Inform. Teknol. dan Sains, vol. 5, no. 4, pp. 643–648, 2023. https://doi.org/10.51401/jinteks.v5i4.3276
- [6] R. Sholihah and A. D. Indriyanti, "Analisis Kepuasan Pengguna Aplikasi Camscanner Menggunakan Metode Technology Acceptance Model (TAM) dan End-User Computing Satisfaction (EUCS)," *J. Emerg. Inf. Syst. Bus. Intell.*, vol. 3, no. 3, pp. 102–109, 2022. https://doi.org/10.26740/jeisbi.v3i3.47236
- [7] S. Aminah and J. N. Utamajaya, "Pengukuran Kepuasan Pengguna Aplikasi Camscanner Menggunakan Metode End-User Computing Satisfaction (EUCS)," KLIK Kaji. Ilm. Inform. dan Komput, vol. 3, no. 4, pp. 347–354, 2023. https://doi.org/10.26740/jeisbi.v3i3.47236
- [8] B. Y. Prayoga, "Usability Analysis Of Camscanner Applications Using The System Usability Scale (SUS) Method," *J. Perangkat Lunak*, vol. 5, no. 2, pp. 177–186, 2023. https://doi.org/10.32520/jupel.v5i2.2616
- [9] S. R. Natasia, Y. T. Wiranti, and A. Parastika, "Acceptance analysis of NUADU as e-learning platform using the Technology Acceptance Model (TAM) approach," *Procedia Comput. Sci.*, vol. 197, pp. 512–520, 2022. https://doi.org/10.1016/j.procs.2021.12.168
- [10] E. Lusiana, "Penerapan Model Pembelajaran Discovery Learning Untuk Meningkatkan Hasil Belajar Siswa Dalam Materi Menganalisis Alur, Babak, Dan Konflik Dalam Drama Di Kelas Xi Mia 1 Sma Cahaya Medan Tp 2020/2021," *Quaerite Verit. J. Pendidik.*, vol. 1, no. 2, pp. 55-63, 2022. https://doi.org/10.53842/qvj.v1i2.11
- [11] U. M. A. Harahap, I. Pohan, and S. Ramadan, "Analisis Kepuasan Pengguna Aplikasi Mobile Banking Sumut Menggunakan Metode TAM," *J. Teknol. Sist. Inf. dan Sist. Komput. TGD*, vol. 7, no. 2, pp. 257–264, 2024. https://ojs.trigunadharma.ac.id/index.php/jsk/index
- [12] A. T. To and T. H. M. Trinh, "Understanding behavioral intention to use mobile wallets in vietnam: Extending the tam model with trust and enjoyment," *Cogent Bus. Manag.*, vol. 8, no. 1, p. 1891661, 2021. https://doi.org/10.1080/23311975.2021.1891661
- [13] D. I. Prastiawan, S. Aisjah, and R. Rofiaty, "The effect of perceived usefulness, perceived ease of use, and social influence on the use of mobile banking through the mediation of attitude toward use," *APMBA (Asia Pacific Manag. Bus. Appl.*, vol. 9, no. 3, pp. 243–260, 2021. https://doi.org/10.21776/ub.apmba.2021.009.03.4
- [14] K. Keni, "How perceived usefulness and perceived ease of use affecting intent to repurchase?," *J. Manaj.*, vol. 24, no. 3, pp. 481-496, 2020. https://doi.org/10.24912/jm.v24i3.680
- [15] W. M. Al-Rahmi, N. Yahaya, M. M. Alamri, I. Y. Alyoussef, A. M. Al-Rahmi, and Y. Bin Kamin, "Integrating innovation diffusion theory with technology acceptance model: Supporting students' attitude towards using a massive open online courses (MOOCs) systems," *Interact. Learn. Environ.*, vol. 29, no. 8, pp. 1380–1392, 2021. https://doi.org/10.1080/10494820.2019.1629599
- [16] E. Unal and A. M. Uzun, "Understanding university students' behavioral intention to use Edmodo through the lens of an extended technology acceptance model," *Br. J. Educ. Technol.*, vol. 52, no. 2, pp. 619–637, 2021. https://doi.org/10.1111/bjet.13046
- [17] E. Hermawan, D. Tricahyono, and E. Witjara, "An Analysis of E-Voting Adoption Using the Technology Acceptance Model (TAM) in the Simultaneous Village Head Elections in Sleman Regency," *Blantika Multidiscip. J.*, vol. 3, no. 9, pp. 1286–1301, 2025. https://doi.org/10.57096/blantika.v3i9.406
- [18] W.-H. Cheah, N. M. Jusoh, M. M. T. Aung, A. Ab Ghani, and H. M. A. Rebuan, "Mobile technology in medicine: development and validation of an adapted system usability scale (SUS) questionnaire and modified technology acceptance model (TAM) to evaluate user experience and acceptability of a mobile application in MRI safety screening," *Indian J. Radiol. Imaging*, vol. 33, no. 01, pp. 36–45, 2023. 10.1055/s-0042-1758198
- [19] A. Triananda and N. Handayani, "Determinan Penggunaan Software Dengan Pendekatan Technology Acceptance Model (Tam): Studi Empiris Pada Mahasiswa S1 Akuntansi Stiesia," *J. Ilmu dan Ris. Akunt.*, vol. 12, no. 8, 2023. https://jurnalmahasiswa.stiesia.ac.id/index.php/jira/article/view/5463
- [20] D. Legramante, A. Azevedo, and J. M. Azevedo, "Integration of the technology acceptance model and the

- information systems success model in the analysis of Moodle's satisfaction and continuity of use," *Int. J. Inf. Learn. Technol.*, vol. 40, no. 5, pp. 467–484, 2023. https://doi.org/10.1108/IJILT-12-2022-0231
- [21] A. Henzi, M. Puke, T. Dimitriadis, and J. Ziegel, "A safe Hosmer-Lemeshow test," arXiv Prepr. arXiv2203.00426, 2022. https://doi.org/10.48550/arXiv.2203.00426
- [22] F. P. N. Koten, A. Jufriansah, and H. Hikmatiar, "Analisis penggunaan aplikasi Whatsapp sebagai media informasi dalam pembelajaran: Literature review," *J. Ilmu Pendidik. STKIP Kusuma Negara*, vol. 14, no. 1, pp. 72–84, 2022. https://doi.org/10.37640/jip.v14i1.1409
- [23] A. T. Jebb, V. Ng, and L. Tay, "A review of key Likert scale development advances: 1995–2019," Front. Psychol., vol. 12, p. 637547, 2021. https://doi.org/10.3389/fpsyg.2021.637547
- [24] I. Kurniasih and D. Pibriana, "Pengaruh Kepuasan Pengguna Aplikasi Belanja Online Berbasis Mobile Menggunakan Metode EUCS," JATISI (Jurnal Tek. Inform. Dan Sist. Informasi), vol. 8, no. 1, pp. 181-198, 2021. https://doi.org/10.35957/jatisi.v8i1.787
- [25] I. Ahmed and S. Ishtiaq, "Reliability and validity: importance in medical research," *Methods*, vol. 12, no. 1, pp. 2401–2406, 2021. https://doi.org/10.47391/jpma.06-861