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Environmental pollution and overharvesting are critical external factors that 
disrupt predator–prey balance in aquatic ecosystems. This study develops a two-
dimensional nonlinear predator–prey model incorporating both toxicity and 
harvesting. Local stability is analyzed using the Routh–Hurwitz criterion, and 
findings are validated through numerical simulations under varied initial 
conditions. The system yields four equilibria: E0, E1 and E1 are unstable 
extinction states, while the interior equilibrium E*= (0.4146, 1.0899) is locally 
stable, with Tr(J)=-1.3052 and det(J)=0.4177. Stability is preserved as long as the 
combined toxicity–harvesting parameter remains below approximately 4.1-4.2 
day-1. The novelty of this work lies in explicitly quantifying threshold effects of 
harvesting and toxicity, showing that coexistence is achievable under moderate 
external pressures. These results highlight that sustainable management requires 
keeping exploitation and pollution below critical thresholds to ensure long-term 
persistence of both prey and predator. 
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1. INTRODUCTION 

Aquatic ecosystems play a vital role in regulating nutrient cycles, supporting fisheries, and sustaining human 
livelihoods. However, the water quality of many such systems has deteriorated sharply in recent decades because 
of increasing inputs of industrial, mining, and agricultural waste. Elevated concentrations of heavy metals and 
synthetic chemicals directly impair aquatic life, particularly prey organisms whose photosynthesis, growth, and 
reproduction are sensitive to pollutant stress [1], [2]. Prolonged contamination disrupts the trophic structure of 
ecosystems and indirectly threatens predator populations as prey availability declines. Unregulated harvesting of 
prey species further amplifies this pressure and increases the risk of local extinction and ecosystem collapse [3], 
[4]. Mathematical modeling provides a framework for analyzing these coupled ecological stresses. The classical 
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Lotka–Volterra predator–prey equations describe interspecific interactions but do not capture pollutant effects 
or exploitation. Numerous extensions incorporate additional mechanisms, including toxicant-induced mortality, 
density-dependent harvesting, and nonlinear predator functional responses[5], [6], [7], [8]. 

Recent advances demonstrate the breadth of such approaches. For example, fractional-order formulations 
that include toxicity, prey refuge, and combined harvesting show that toxic stress and overharvesting can 
destabilize plankton–fish systems unless protective refuges are present [9]. Models that treat uncertain biological 
parameters with fuzzy optimization indicate that harvesting policies must be conservative under high toxicity to 
maintain both prey and predator populations [10]. Analyses of toxin-producing predator–prey systems with 
threshold-based harvesting reveal that spatial heterogeneity and inappropriate harvest thresholds can trigger 
pattern formation and local population collapse [11]. Similarly, incorporating Allee effects alongside harvesting 
effort highlights the risk of complex bifurcations and extinction when prey densities fall below critical levels [12]. 

Nevertheless, few models simultaneously integrate pollutant toxicity and prey harvesting in an aquatic 
context while explicitly identifying the parameter ranges that guarantee persistence of both species. This study 
addresses that gap by investigating the parameter ranges of toxicity and harvesting rates within which the interior 
equilibrium of a predator–prey system remains locally stable. A nonlinear system of differential equations is 
formulated, incorporating toxic stress on the prey population, the predator’s functional response, and prey 
harvesting. The Routh–Hurwitz stability criterion offers a rigorous analytical approach to examine the local 
stability of equilibrium points in predator–prey systems. By converting nonlinear biological interactions into 
mathematical conditions, it uniquely facilitates the identification of critical thresholds that govern the persistence, 
extinction, or oscillation of species populations under varying ecological and environmental parameters. The 
analysis proceeds by determining all equilibrium points and applying the Routh–Hurwitz criterion [13], [14] to 
assess local stability. Numerical simulations are then used to demonstrate how changes in toxicity and harvesting 
parameters can shift the system from stable to unstable dynamics. The central hypothesis is that critical threshold 
values exist so that the equilibrium is maintained when the toxicity and harvesting rates stay below these limits 
and becomes unstable once they are exceeded. This quantitative framework is intended to inform sustainable 
water-resource management policies that balance ecological resilience with human exploitation. 

 
2. RESEARCH METHOD 

This research is a theoretical study designed to construct, modify, and analyze a mathematical model of 
predator–prey interactions in polluted aquatic ecosystems, incorporating the effects of harvesting and toxicity. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. Research Process Stages 
 

2.1 Literature Review 
The procedure begins with an extensive literature review of classical predator–prey models, such as the 

Lotka–Volterra and Leslie–Gower frameworks, as well as subsequent studies that integrate harvesting and toxic 
influences in aquatic environments [15], [16]. The Lotka–Volterra model represents the most classical form of 
the predator–prey framework, developed independently by [17] and [18]. The model is expressed as follows: 

 
 𝑑𝑥

𝑑𝑡 = 𝛼𝑥 − 𝛽𝑥𝑦,
𝑑𝑦
𝑑𝑡 = 𝛿𝑥𝑦 − 𝛾𝑦, (1) 

where 𝑥(𝑡) denotes the prey population, 𝑦(𝑡) the predator population, α the prey growth rate, 𝛽 the predation 
rate, 𝛾 the predator mortality rate, and 𝛿 the efficiency with which prey biomass is converted into predator 
biomass. The model assumes that, in the absence of predators, the prey population grows exponentially, and that 
interactions between predators and prey drive changes in both populations. Although relatively simple, this 
framework successfully captures the periodic cycles between the two populations, even though it does not account 
for environmental carrying capacity or other ecological complexities. 

Literature Review 

Formulate Nonlinear Model 

Determine Equilibrium Points 

Perform Local Stability Analysis 

Numerical Simulation 
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Meanwhile, the Leslie–Gower model is a modification of the Lotka–Volterra framework introduced by 
[19], which incorporates the assumption that predator growth depends on the ratio of predators to prey. The 
model is expressed as follows: 

 
 𝑑𝑥

𝑑𝑡 = 𝑥 .1 −
𝑥
𝐾1 − 𝛽𝑥𝑦,

𝑑𝑦
𝑑𝑡 = 𝑦 .−𝑑 +

𝑐𝑥
𝑥 + 𝐴1, (2) 

where 𝐾 represents the carrying capacity of the prey population, and the ratio-dependent term in the predator 
equation moderates the effect of predation according to prey availability. This model is considered more realistic 
because it introduces an environmental (logistic) constraint on the prey and prevents the unbounded predator 
growth observed in the Lotka–Volterra model. Moreover, it allows for a broader range of positive equilibrium 
solutions that can remain stable. 

In population modeling, harvesting refers to the removal of individuals from a population for economic 
purposes, such as fishing, hunting, or agriculture. Harvesting is typically incorporated into predator–prey models 
through control terms such as −ℎ!𝑥 and/or −ℎ"𝑦, which represent the harvesting rates of prey and predator 
populations, respectively. An example of a model with prey harvesting is given by: 

 
 𝑑𝑥

𝑑𝑡 = 𝑥 .1 −
𝑥
𝐾1 − 𝛽𝑥𝑦 − ℎ!𝑥. (3) 

 
Harvesting can help regulate populations and provide economic benefits, but it may also destabilize the 

ecosystem if not carefully managed. Therefore, evaluating both the biological and economic aspects of 
equilibrium, known as bionomic equilibrium, is essential when assessing such systems [15], [20]. 

In addition to harvesting, toxicity and environmental pollution represent critical factors that can disrupt 
population stability in aquatic ecosystems. Pollutants such as heavy metals, pesticides, and industrial waste may 
inhibit the growth of both prey and predator populations, reduce fertility, or even cause direct mortality. Within 
mathematical models, these toxic effects are often incorporated through additional terms that represent increased 
mortality rates or reduced reproductive efficiency. For example, the toxic impact on the prey population can be 
expressed by adding an extra mortality term to the prey equation: 

 
 𝑑𝑥

𝑑𝑡 = 𝑥 .1 −
𝑥
𝐾1 − 𝛽𝑥𝑦 − 𝜃𝑥

#, (4) 

 
where 𝜃𝑥#  represents a reduction in the prey population caused by pollution that exhibits saturating or 
bioaccumulative effects. Recent studies indicate that increasing toxicity can diminish ecosystem stability and may 
lead to the extinction of predator populations at a faster rate than that of their prey [21], [22]. 

The next stage involves formulating a mathematical model that accurately reflects the biological and 
ecological context, followed by a nondimensionalization process to simplify the system and facilitate stability 
analysis. Equilibrium points are determined by solving the stationary system (𝑑𝑞/𝑑𝜏 = 0, 𝑑𝑤/𝑑𝜏 = 0), after 
which the Jacobian matrix is derived and the Routh–Hurwitz criterion is applied to assess local stability. All 
analytical steps are supported by MATLAB for both symbolic and numerical computations, and the stability 
results are further validated through numerical simulations of population dynamics under various parameter 
scenarios [23]. 

 
2.2 Mathematical Model Formulation  

The development of this mathematical model is based on a number of ecological assumptions that 
represent the actual conditions of polluted aquatic ecosystems. First, the prey population (small fish or plankton) 
experiences logistic growth in the presence of environmental carrying capacity. Second, the predators (large fish) 
feed on the prey as their main food source. Third, there is harvesting activity of the prey with an exploitation rate 
considered proportional to the population size. Fourth, the aquatic environment is polluted by toxic substances 
(for example, heavy metals or industrial waste), which have a negative impact on the growth of both prey and 
predators. Fifth, the pollution is assumed to be constant and homogeneous within the environment [22], [16]. A 
study by [24] indicates that the system’s stability is highly sensitive to the combined effects of toxicity and 
exploitation intensity, highlighting the need for resource management strategies that address these 
multidimensional interactions simultaneously. 

To capture the combined effects of harvesting and toxic contamination on aquatic predator–prey 
interactions, the model begins with a system in which a prey population 𝑄(𝑡) (e.g., plankton or small fish) coexists 
with a predator population 𝑊(𝑡) (e.g., larger fish) in a polluted aquatic environment. The prey grows logistically, 
is harvested, suffers toxic stress, and is consumed by predators. Predators depend on prey for food and are also 
affected by toxicity. Time t measures population changes in this system. Before scaling, the key parameters are 
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𝐸  : harvesting effort on prey (e.g., fishing intensity), 𝐸 ≥ 0 
𝐾!  : environmental carrying capacity of prey (same units as 𝑄) 
𝑟!, 𝑟"  : intrinsic growth rates of prey and predator, respectively (> 0). 
𝑎  : predation rate coefficient (effectiveness of predators per unit prey) 
𝑏  : catchability coefficient of prey by harvesting effort 
𝑐  : toxicity coefficient on prey, modeled as proportional to 𝑄# 
𝑘  : conversion efficiency of consumed prey into predator biomass 
𝑓  : toxicity coefficient on predators, proportional to 𝑊" 
𝜗  : efficiency with which prey biomass supports predator carrying capacity. 

 
To simplify analysis and allow use of parameter estimates, scaling the variables as: 
 

 𝑞̇ =
𝑄
𝐾!
, 𝑤̇ =

𝑊
𝜗𝑄 , 𝜏 = 𝑟!𝑡. (5) 

 
Substituting these into the prey equation of the original model and simplifying gives: 
 

 𝑑𝑞̇
𝑑𝜏 = 𝑞̇(1 − 𝑞̇) − I

𝑎𝐾!
𝑟!

J 𝜗𝑞̇"𝑤 − I
𝑏𝐸
𝑟"
J 𝑞̇ − K

𝑐𝐾!"

𝑟!
L 𝑞̇#. (6) 

 
For the predator equation, the same procedure yields: 
 

 𝑑𝑤̇
𝑑𝜏 = I

𝑟"
𝑟!
J 𝑤̇(1 − 𝑤̇) + I

𝑘𝐾!
𝑟!

J 𝑞̇𝑤̇ − I
𝑓𝐾!
𝑟!

J 𝜗𝑞̇𝑤̇". (7) 

 
This model captures the complex interactions among biological processes (growth and predation), 

economic factors (harvesting), and environmental influences (toxicity). To investigate this sensitivity in a tractable 
way, a set of new dimensionless parameters is introduced, condensing the original biological and anthropogenic 
factors into a normalized form suitable for stability analysis and comparison with prior studies. 

 
 

𝜃 =
𝑎𝐾!
𝑟!

, 𝜅 =
𝑏𝐸
𝑟!
, 𝜑 =

𝑐𝐾!"

𝑟!
, 𝜒 =

𝑟"
𝑟!
, 𝜁 =

𝑘𝐾!
𝑟!

, 𝜙 =
𝑓𝐾!
𝑟!

,  (8) 

 
the normalized predator–prey model becomes 
 

 𝑑𝑞	̇
𝑑𝜏 = 𝑞	̇ (1 − 𝑞	̇ 	) − 𝜃𝜗𝑞	̇ "𝑤̇ − 𝜅𝑞	̇ − 𝜑𝑞	̇ #,

𝑑𝑤̇
𝑑𝜏 = 𝜒𝑤̇(1 − 𝑤̇	) + 𝜁𝑞	̇ 𝑤̇ − 𝜙𝜗𝑞̇𝑤̇". (9) 

 
Each new parameter combines biological and anthropogenic effects. There are the relative predation rate 

𝜃, the dimensionless harvesting pressure 𝜅, the cubic toxicity impact on prey 𝜑, the predator–prey growth-rate 
ratio 𝜒, the predator growth contribution from prey consumption 𝜁, and the toxicity impact on predators 𝜙. 

All parameters are assumed to be positive and constant throughout the analysis. Numerical values for these 
parameters are obtained from literature studies and from conservative estimates based on fisheries 
biomathematics references [21], [24]. The first equation describes changes in the prey population influenced by 
logistic growth, predation, harvesting, and saturating toxicity. The second equation represents the dynamics of 
the predator population, which increases through predation on the prey but declines because of environmental 
toxicity during feeding. This system extends the classical predator–prey model by incorporating two key factors: 
prey harvesting and toxic effects, both of which affect the stability and persistence of populations within the 
ecosystem [25]. The model is analyzed through both analytical and numerical methods to identify conditions for 
local and global stability, and simulations are carried out to observe the system’s long-term behavior under varying 
environmental parameters. 

 
3. RESULT AND ANALYSIS 
3.1 Equilibrium Points and Stability Analysis 

An equilibrium point of a dynamical system occurs when $%
$&
= 0, meaning the system experiences no 

change in state. In many cases, the system may have one or more equilibrium points, which can be stable 
(attractors), unstable (repellors), or semi-stable. Local stability is determined by examining the sign of the real 
parts of the eigenvalues of the Jacobian matrix evaluated at the equilibrium point. If all real parts are negative, 
the point is asymptotically stable [26]. To analyze the local stability of a nonlinear system, a commonly used 
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technique is linearization, which approximates the nonlinear system by a linear one in the neighborhood of the 
equilibrium. This process involves computing the Jacobian matrix of the system, given by: 

 
 

𝐽'( =
𝜕𝑓'
𝜕𝑥(

, (10) 

evaluated at the equilibrium point. 
The linear system obtained through linearization exhibits local behavior that closely approximates the 

original nonlinear system near that point. Consequently, the stability properties can be determined from the 
eigenvalues of the Jacobian matrix. Although linearization does not guarantee global stability, this approach is 
highly effective and widely applied in population dynamics studies [25], [27]. 

Stability analysis is carried out by linearizing the nonlinear system around the equilibrium point and applying 
the Routh–Hurwitz criterion to determine whether the system will return to its original state after a small 
disturbance. This section discusses the derivation of the equilibrium points, the construction of the Jacobian 
matrix, and the application of the local stability criterion. 
 
Determination of Equilibrium Points 

The equilibrium points of the system are obtained by substituting the stationary conditions into the model, 
that is, by setting the time derivatives of each variable equal to zero. Based on the nondimensional model: 

 
 𝑞	̇ (1 − 𝑞	̇ 	) − 𝜃𝜗𝑞	̇ "𝑤̇ − 𝜅𝑞	̇ − 𝜑𝑞	̇ # = 0, 

𝜒𝑤̇(1 − 𝑤̇	) + 𝜁𝑞	̇ 𝑤̇ − 𝜙𝜗𝑞̇𝑤̇" = 0. (11) 

 
Four candidate equilibrium points are obtained, namely both prey and predator populations are extinct 

𝐸) = (0,0),	 only the prey population persists without predators 𝐸! = (𝑞!̇, 0), only the predator population 
persists 𝐸" = (0,𝑤!̇),  and the interior point where both prey and predator populations coexist positively 𝐸∗ =
(𝑞∗̇, 𝑤∗̇ 	). 

The points 𝐸), 𝐸! and 𝐸"  can be obtained directly, whereas the interior point 𝐸∗ is computed numerically 
because the resulting equations are nonlinear. As an illustration, the following parameter values are used: 

Table 1. Parameter Values 
𝜽 𝜿 𝝋 𝜻 𝝓 𝝑 𝝌 

𝟎. 𝟏𝟓 0.5 0.3 0.25 0.2 0.5 0.65 
    
Linearization and Jacobian Matrix 

To analyze local stability around an equilibrium point, the nonlinear system is linearized by means of the 
Jacobian matrix. For the two-variable system (𝑞̇, 𝑤̇) the Jacobian is defined as: 

 

𝐽(𝑞̇, 𝑤̇) =

⎝

⎜
⎛
𝜕𝑓!
𝜕𝑞̇

𝜕𝑓!
𝜕𝑤̇

𝜕𝑓"
𝜕𝑞̇

𝜕𝑓"
𝜕𝑤̇⎠

⎟
⎞
. (12) 

where: 𝑓!(𝑞̇, 𝑤̇) = 𝑞̇(1 − 𝑞̇) − 𝜃𝜗𝑞̇"𝑤̇ − 𝜅𝑞̇ − 𝜑𝑞̇#, 
𝑓"(𝑞̇, 𝑤̇) = 	𝜒𝑤̇(1 − 𝑤̇) + 𝜁𝑞̇𝑤̇ − 𝜙𝜗𝑞̇𝑤̇". (13) 

 
From these expressions, the Jacobian matrix becomes 
 

 
𝐽(𝑞̇, 𝑤̇) = K(1 − 2𝑞̇) − 2𝜃𝜗𝑞̇𝑤̇ − 𝜅 − 3𝜑𝑞̇

"̇ −𝜃𝜗𝑞̇"

𝜁𝑤̇ − 𝜙𝜗𝑤̇" 	𝜒(1 − 2𝑤̇) + 𝜁𝑞̇ − 2𝜙𝜗𝑞̇𝑤̇
L. (14) 

 
This matrix is then evaluated at each equilibrium point and used with the Routh–Hurwitz criterion to 

determine local stability. 
 

Routh–Hurwitz Stability Analysis 
For a two-dimensional system, local stability can be determined from the characteristic equation of the 

Jacobian matrix using the Routh–Hurwitz criterion. This criterion is an algebraic method employed to assess the 
local stability of a linear dynamical system without explicitly calculating the roots of the characteristic polynomial. 
It is particularly useful for two- or three-dimensional systems, as it provides stability conditions based solely on 
the signs of the coefficients of the characteristic polynomial. Suppose a linear system has the following 
characteristic equation: 

 𝜆+ + 𝑎!𝜆+,! + 𝑎"𝜆+," +⋯+ 𝑎+ = 0. (15) 



     r                                                                                              E-ISSN : 2580-5754; P-ISSN : 2580-569X 

Zero: Jurnal Sains, Matematika dan Terapan 

580 

A system is considered stable if and only if all roots of the characteristic polynomial have negative real parts, 
or equivalently, if all the coefficients satisfy the Routh–Hurwitz conditions (being positive and not producing any 
sign changes). For a second-order system: 

 𝜆" + 𝑎!𝜆 + 𝑎) = 0, (16) 
 
the Routh–Hurwitz criterion states that the system is stable if and only if 𝑎! > 0 and 𝑎) > 0. This criterion 

can be extended to higher-order systems by constructing the Routh–Hurwitz table, which is organized using 
combinations of the polynomial coefficients. The advantage of this method lies in its efficiency, as it provides 
information on system stability without the need to explicitly solve the characteristic equation [23], [28]. 

Stability analysis is carried out by examining the trace and determinant of the Jacobian matrix evaluated at 
the equilibrium points obtained numerically. According to the Routh–Hurwitz criterion for a two-dimensional 
system, the interior equilibrium point 𝐸∗ is locally stable for the characteristic equation of the Jacobian matrix: 

 
 𝜆" − 𝑇𝑟(𝐽)𝜆 + 𝑑𝑒𝑡	(𝐽) = 0, (17) 

 
if the following two conditions are satisfied: (i) the trace of the Jacobian matrix is negative (𝑇𝑟(𝐽) < 0), and 

(ii) the determinant is positive (𝑑𝑒𝑡(𝐽) > 0). A negative trace indicates that the average rate of change in the 
system tends to decrease, representing damping in the dynamics toward the equilibrium point. A positive 
determinant ensures that no divergent direction exists, so the equilibrium point is not a saddle point. Conversely, 
if	𝑑𝑒𝑡(𝐽) < 0, the equilibrium becomes a saddle point and is unstable, even if the trace is negative [29]. Satisfying 
these conditions ensures that all eigenvalues of the system have negative real parts, meaning the system tends to 
return to equilibrium after small perturbations. 

Before substituting numerical values, the explicit forms of the Jacobian’s trace and determinant are derived 
to facilitate the analytical stability assessment. For the two-dimensional system, the trace is given by 

 

𝑇𝑟(𝐽) = .(1 − 2𝑞̇) − 2𝜃𝜗𝑞̇𝑤̇ − 𝜅 − 3𝜑𝑞̇"̇ 1 + (	𝜒(1 − 2𝑤̇) + 𝜁𝑞̇ − 2𝜙𝜗𝑞̇𝑤̇), 
 
and the determinant is expressed as 
 

det(𝐽) = .(1 − 2𝑞̇) − 2𝜃𝜗𝑞̇𝑤̇ − 𝜅 − 3𝜑𝑞̇"̇ 1 (𝜒(1 − 2𝑤̇) + 𝜁𝑞̇ − 2𝜙𝜗𝑞̇𝑤̇) + 𝜃𝜗𝑞̇"(𝜁𝑤̇ − 𝜙𝜗𝑤̇"). 
 
These symbolic expressions are then evaluated at each equilibrium point (𝑞∗̇, 𝑤∗̇ 	) to obtain 𝑇𝑟(𝐽) and 

det(𝐽), which are subsequently used in the Routh–Hurwitz conditions (𝑇𝑟(𝐽) < 0, det(𝐽) > 0) to determine the 
local stability of the system. 

The Routh–Hurwitz criterion is widely employed in biomathematics and engineering to evaluate the stability 
of mathematical models, including predator–prey systems, population control, and epidemiological models [22]. 
Its systematic and algebraic nature provides a robust framework for understanding how parameter variations 
influence the stability and behaviour of nonlinear dynamical systems. 
 
3.2 Numerical Simulations 

Numerical simulations are conducted to visualize the dynamics of the predator–prey system in a polluted 
aquatic ecosystem, as well as to confirm the analytical results obtained through the Routh–Hurwitz approach. 
Specifically, these simulations aim to: 1) show the evolution of prey and predator populations over time, 2) analyse 
the local stability of the interior equilibrium point, 3) examine the effects of variations in the toxicity index (𝜑) 
and prey harvesting rate (𝜅) on population dynamics, 4) assess the sustainability of prey and predator populations 
under conditions of environmental pollution and exploitation. 

In this study, the parameters 𝜅 (harvesting intensity), 𝜑 (toxicity level), and 𝜗	(predator conversion 
efficiency) are each restricted to the interval [0, 1] to represent moderate ecological pressures. This range 
prevents either harvesting or pollution from dominating the system dynamics in an unrealistic way. Within these 
bounds, 𝜅 is fixed at 0.5, reflecting a harvesting rate well below the upper limit and consistent with sustainable 
exploitation levels recommended by [31]. Likewise, 𝜑 is set at 0.3 to capture measurable but non-catastrophic 
toxic effects, avoiding the extreme assumptions (such as 𝜅	 ≥ 	1) found in some earlier studies. These choices 
help ensure that population decline in the model is not driven solely by excessive anthropogenic stress. 

The parameter 𝜗, representing the efficiency with which prey biomass contributes to predator carrying 
capacity, is likewise taken as 0.5, indicating that predators can convert roughly half of the available prey biomass 
into their own population support. This value balances biological realism, where energy transfer between trophic 
levels is rarely 100%, with the need to model a functioning predator–prey interaction. Overall, the chosen values 
𝜑 = 0.3, 𝜅 = 0.5, and 𝜗 = 0.5 lie comfortably within the designated moderate range, aligning with the 
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conservative management principles of [31] and supported by findings such as [32], which show that excessive 
toxicity disrupts ecosystem equilibrium. 

 
Table 2. Simulation Parameters 

Parameters Values Descriptions Sources 
θ 0.15 Rate of predator–prey interaction [30] 
κ 0.5 Exploitation rate of prey due to harvesting Assumption 
φ 0.3 Toxicity coefficient for the prey Assumption 
χ 0.65 Ratio of the natural growth rate of predators to the natural growth rate 

of prey 
[30] 

ζ 0.25 Predator growth efficiency [30] 
ϕ 0.2 Predator sensitivity to toxicity [30] 
ϑ 0.5 Conversion efficiency coefficient of prey into predator carrying 

capacity 
Assumption  

 
After defining the main parameters that constitute the model system, numerical simulations are carried out 

using the parameter values presented in Table 2. These parameters reflect the influence of biological interactions 
between prey and predator, as well as external pressures in the form of environmental toxicity and prey harvesting. 

 
Simulation of Equilibrium Point Stability 

Numerical simulations are performed by solving the system of nonlinear differential equations using the 
fourth-order Runge–Kutta method implemented in MATLAB R2023b’s ode45 function. The solver employed 
a relative tolerance of 1	 × 	10⁻⁶ and an absolute tolerance of 1	 × 	10⁻⁸, and runs were performed for various 
initial population conditions. The initial conditions tested include 𝑛! 	= 	 (1.5,1),	𝑛" = (1.5,0.6), and 𝑛# =
(1.5,2) in order to observe population dynamics under different initialization scenarios. 

 
Figure 2. Population Dynamics for 𝑛" = (1.5,1) 

 

 
Figure 3. Population Dynamics for 𝑛# = (1.5,2) 

Figure 2 illustrates the temporal dynamics of the prey population 𝑞̇(𝜏) and the predator population 𝑤̇(𝜏) 
over the nondimensional time interval 𝜏 ∈ [0,50]. It is observed that the prey population (blue line) experiences 
a sharp decline at the beginning and then stabilizes at a low value. In contrast, the predator population (red line) 
shows a slight initial increase before reaching a steady state close to its initial value. The drastic decline in prey is 
likely due to the combined pressures of pollution and harvesting, which inhibit the prey’s reproduction rate. 
Nevertheless, the predator population remains stable at a relatively high level, possibly due to efficient prey-to-
predator conversion or adaptive capacity under toxic conditions. This pattern is consistent with the local stability 
analysis, which indicates that the system approaches a stable equilibrium point following the initial fluctuations. 

The blue curve (𝑞̇(𝜏)) in Figure 3 shows that the prey population rapidly declines from a low initial value 
and then stabilizes around 0.5. Meanwhile, the red curve (𝑤̇(𝜏)) indicates that the predator population starts at 
a high value (around 2) and gradually decreases until it reaches a steady-state near 1. This behaviour reflects a 
predator–prey system in which an initially abundant predator population exerts strong pressure on the prey, 
causing an immediate sharp decline in prey numbers. As the prey population decreases, the predator population 
also diminishes due to limited food resources. After some time, both populations reach a steady state, with the 
prey persisting at a low stable level and the predator maintaining a moderate population. Compared to the 



     r                                                                                              E-ISSN : 2580-5754; P-ISSN : 2580-569X 

Zero: Jurnal Sains, Matematika dan Terapan 

582 

previous simulation, the different initial conditions produce distinct dynamics. While in the first simulation the 
predator population increased due to abundant prey, in this case the predator population decreases initially 
because it is excessively large relative to the available prey. Nevertheless, both systems demonstrate convergence 
toward the equilibrium point. 

 

 
Figure 4. Population Dynamics for 𝑛" = (1.5,0.6) 

 
Figure 4 illustrates the classical predator–prey interaction mechanism. In the initial phase, the abundant 

prey population causes a significant increase in the predator population. However, the rising number of predators 
exerts high pressure on the prey population, leading to a drastic decline in prey abundance. Following this decline, 
the growth rate of the predator population slows until a steady-state condition is reached. This phenomenon 
indicates the existence of an ecological equilibrium point, where both populations can persist at stable numbers 
without causing the extinction of either species. The model aligns with theoretical predictions, which suggest that 
predator–prey systems tend to achieve dynamic equilibrium after initial fluctuations. 

To obtain the interior equilibrium point of the modelled predator–prey system, a numerical method for 
solving nonlinear systems was employed using the Newton–Raphson approach, implemented via the solve 
function in MATLAB. The search for the equilibrium point was conducted using various initial guesses: 
(0.2,0.2),	(0.5,0.5), (0.2,0.8) and (0.3,0.8). These pairs were selected to represent different possible initial 
positions of the prey and predator populations in the phase space, encompassing both low and high population 
conditions. The numerical procedure was executed with a convergence tolerance of 1 × 10,-  and a maximum 
iteration limit of 100. The tolerance value was chosen to ensure precision up to eight decimal places, while the 
iteration limit was set to prevent unbounded computations in the event of solution divergence.  

In initial guess (0.2,0.2), the simulation produced an equilibrium point at (𝑞̇∗, 𝑤̇∗) = (0,0), indicating total 
extinction of both prey and predator populations. The trace and determinant of the Jacobian matrix at this point 
are: 𝑇𝑟(𝐽) = 1.1500, and 𝑑𝑒𝑡	(𝐽) = 0.3250. Since the trace is positive, this point does not satisfy the local 
stability conditions and is therefore unstable. This implies that the system will not remain at total extinction and 
will tend to move away from this point if perturbed. In initial guess (0.5,0.5), the simulation yielded an 
equilibrium point at (𝑞̇∗, 𝑤̇∗) = (0.4415, 0), indicating that only the prey population persists while the predator 
goes extinct. The Jacobian analysis gives: 𝑇𝑟(𝐽) = 0.2019, and 𝑑𝑒𝑡(𝐽) = −0.4247. Although the trace is 
positive, the negative determinant indicates conflicting growth and decay directions, making this point a saddle 
point and therefore unstable. In initial guess (0.2,0.8), the simulation produced an equilibrium point at 
(𝑞̇∗, 𝑤̇∗) = (0,1). The Jacobian evaluated at this point yields: 𝑇𝑟(𝐽) = −0.1500, and 𝑑𝑒𝑡(𝐽) = −0.3250. The 
negative determinant indicates that this equilibrium is a saddle point. Despite the negative trace, the negative 
determinant ensures the presence of divergent directions, so the system cannot persist at this point. This point 
represents a situation where the prey is extinct but the predator survives, which is ecologically unrealistic because 
predators cannot sustain themselves without prey as a food source. The stability analysis supports this 
interpretation, as the saddle-point nature indicates that the system will move away from this point toward a more 
balanced condition, such as the interior equilibrium where both populations can coexist. Finally, in initial guess 
(0.3,0.8), the simulation produced an interior equilibrium point at (𝑞̇∗, 𝑤̇∗) = (0.4146, 1.0899), where both 
prey and predator populations coexist. The Jacobian analysis yields: 𝑇𝑟(𝐽) = −1.3052, and 𝑑𝑒𝑡(𝐽) = 0.4177. 
These values satisfy the Routh–Hurwitz stability criteria (𝑇𝑟(𝐽) < 0 and 𝑑𝑒𝑡(𝐽) > 0), indicating that this 
equilibrium point is locally stable. This suggests that the system will return to this point after small perturbations, 
allowing both prey and predator populations to persist together over the long term. The above explanation is 
presented in the following table. 

Table 3. Stability Analysis of Equilibrium Points. 
No. Equilibrium Points Coordinates 𝑻𝒓(𝑱) 𝒅𝒆𝒕(𝑱) Stability Verdict 
1. 𝐸) (total extinction) (0,0) 1.1500 0.3250 Unstable (𝑇𝑟 > 0) 
2. 𝐸!	(prey only) (0.4415,0) 0.2019 -0.4247 Unstable-saddle (𝑑𝑒𝑡 < 0) 
3. 𝐸"	(predator only) (0,1) -0.1500 -0.3250 Unstable-saddle (𝑑𝑒𝑡 < 0) 

4. 𝐸∗	(interior coexistence) (0.4146,1.0899) -1.3052 0.4177 Locally asymptotically stable 
(𝑇𝑟 < 0, 𝑑𝑒𝑡 > 0) 
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The boundary equilibria 𝐸), 𝐸!, and 𝐸" are all unstable and carry distinct ecological interpretations. The 
total extinction state 𝐸), while mathematically feasible, behaves as a source such that small perturbations drive 
the system away from extinction; ecologically, this suggests that complete collapse is not a stable long-term 
outcome under the modeled conditions. The prey-only equilibrium 𝐸! manifests as a saddle point, representing 
a fragile state in which prey can persist without predators, but this balance is easily disrupted. Any reintroduction 
of predators or environmental variation can destabilize the system, pushing it toward coexistence or collapse. 
Finally, the predator-only equilibrium 𝐸" is both unstable and biologically unrealistic, since predators cannot 
persist indefinitely in the absence of prey. The instability of this saddle point highlights that predator-only survival 
is transient and dependent on external forcing or alternative food sources. 

Only solutions that meet the specified tolerance criteria and yield positive population values (𝑞̇∗ > 0, 𝑤̇∗ >
0) are accepted as valid equilibrium points. The results indicate that only the interior equilibrium, where both 
populations coexist, is stable, whereas equilibrium points corresponding to total extinction, predator extinction, 
or prey extinction are unstable. These findings emphasize the importance of maintaining environmental 
conditions and system parameters within ranges that support the simultaneous existence of both populations, 
ensuring the sustainability of polluted aquatic ecosystems.  

 

 
Figure 5. Phase portrait with vector field and trajectories 

 
For the phase portrait below, five representative initial conditions were selected to visualize the system’s 

trajectories: �𝑞̇(0), 𝑤̇(0)� = (0.1, 0.1), (0.5, 0.5), (1, 1), (1.2, 0.3), and (0.3, 1.3). These initial points 
demonstrate how different starting populations of prey and predator evolve over time toward the interior 
equilibrium.  

Figure 5 presents the phase map of the predator–prey system in a polluted aquatic ecosystem, visualized in 
the phase space (𝑞̇, 𝑤̇ ̇), where 𝑞̇	represents the prey population and 𝑤̇	represents the predator population. The 
vector field (shown as black arrows) illustrates the rate of change of the populations at each point in the state 
space, while the blue lines depict the system trajectories from various initial conditions toward the equilibrium 
point. The red point on the graph represents the interior equilibrium obtained at (𝑞,̇ 𝑤̇) = (0.4146, 1.0899). 
Based on the linear analysis using the trace and determinant of the Jacobian matrix (𝑇𝑟(𝐽) = −1.3052, and 
𝑑𝑒𝑡(𝐽) = 0.4177), this point is locally asymptotically stable. This is evident from the trajectories, all of which 
consistently move toward and converge at this equilibrium, regardless of their initial positions. 

Ecologically, the stability of this equilibrium point indicates that, under moderate levels of pollution and 
harvesting, the ecosystem can continue to sustain both populations. Although prey and predator numbers may 
fluctuate initially, they eventually converge to a balanced state. Using representative parameter values similar to 
those reported in [24], a Routh–Hurwitz analysis shows that the interior equilibrium remains locally stable as long 
as the combined toxicity and harvesting parameter 𝜗 stays below approximately 4.1– 4.2	𝑑𝑎𝑦⁻¹. Once this 
threshold is exceeded, the determinant of the Jacobian becomes negative, signalling a loss of local stability and 
the onset of large oscillations or possible extinction of one or both species. These results reinforce the analytical 
predictions of the Routh–Hurwitz criteria and align with previous studies indicating that predator–prey systems 
exposed to external pressures such as pollution and exploitation activities can remain stable provided key 
parameters remain within defined limits [24]. 

 
3.3 Discussion 

Analytical evaluation using the Routh–Hurwitz criteria shows that the stability of the predator–prey system 
is highly sensitive to the toxicity parameter (𝜗) and the prey harvesting rate (𝜅). These parameters define clear 
thresholds separating stable coexistence from ecological collapse. Numerical simulations support the analytical 
predictions, revealing four equilibrium points: (0,0), (0.4415,0), (0,1), and (0.4146,1.0899). Among these, 
only the interior point (0.4146,1.0899) satisfies 𝑇𝑟(𝐽) < 0 and 𝑑𝑒𝑡(𝐽) > 0, confirming local stability. The other 
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equilibria display either a positive trace or a negative determinant, indicating instability and representing 
ecological scenarios in which prey depletion prevents predator persistence. 

The close agreement between analytical and numerical results strengthens confidence in the model’s 
predictive capability. Ecologically, the findings demonstrate that balanced coexistence of predator and prey is 
possible when pollution and harvesting pressures remain within moderate limits. Exceeding these limits drives 
the system toward oscillations or extinction, underscoring the prey population’s critical role in maintaining 
ecosystem resilience. 

From a management perspective, the model provides quantitative guidance for sustainable policy. It 
identifies approximate critical values of combined toxicity and harvesting beyond which stability is lost. These 
thresholds can be translated into practical actions such as setting maximum pollutant loads, defining industrial 
discharge limits, and establishing harvest quotas to help maintain water quality and prevent overexploitation of 
prey species. Incorporating these scientific limits into fisheries regulations and pollution-control programs ensures 
that human activities remain within the ecosystem’s capacity for self-renewal. 

Overall, the consistency between analytical and numerical approaches, together with the clear ecological 
interpretation of each equilibrium state, highlights the model’s value as a decision-support tool. By linking 
mathematical stability analysis with practical management targets, the study offers a robust framework for 
protecting aquatic ecosystems from the combined pressures of toxicity and exploitation. 

 
4. CONCLUSION 

This study examined the population dynamics of predator–prey interactions in a polluted aquatic 
ecosystem, incorporating the combined effects of toxicity and prey harvesting. The model was formulated as a 
two-dimensional nonlinear differential equation system and analysed using local stability methods based on the 
Routh–Hurwitz criteria, supported by numerical simulations. Both analytical and numerical results indicate that 
the interior equilibrium becomes unstable when toxicity and harvesting pressures exceed moderate levels. This 
condition occurs when the Jacobian matrix shows a negative determinant, and simulations reveal a sharp decline 
in the prey population followed by a predator collapse.  No limit cycles or closed orbits were observed in either 
the time-series plots or the phase plane, implying that long-term coexistence cannot be maintained under 
uncontrolled pollution and harvesting. From a computational modelling perspective, the clear threshold 
behaviours identified highlights the value of such models as early-warning tools. Specifically, this framework can 
be integrated into decision-support systems (DSS) for fisheries or environmental management, where real-time 
or scenario-based simulations could alert policymakers when intervention thresholds are approached. 

Despite these insights, several limitations should be acknowledged. The model uses fixed parameter values 
and assumes spatial homogeneity, constant environmental conditions, and no seasonal variability, which may 
oversimplify real aquatic ecosystems. It also omits factors such as prey refuges, adaptive predator behaviours, and 
biological resistance to toxins. Furthermore, the absence of empirical calibration means that the parameter ranges 
are illustrative rather than site-specific. 

Future research can address these limitations in several concrete ways. First, incorporating spatial 
heterogeneity and diffusion terms would allow exploration of pollutant transport and habitat fragmentation. 
Second, adding time-dependent control parameters or optimal harvesting strategies could capture seasonal 
management interventions. Third, integrating prey refuge mechanisms, toxin degradation processes, or predator 
adaptation would provide a more realistic ecological response to pollution. Finally, calibrating the model with 
field data from specific aquatic environments would enable quantitative predictions and strengthen its utility for 
management and policy applications. 
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