
 
Zero : Jurnal Sains, Matematika, dan Terapan 
E-ISSN : 2580-5754; P-ISSN : 2580-569X 
Volume 9, Number 2, 2025 
DOI: 10.30829/zero.v9i2.26043 
Page: 466-476                         r   466 
  

Journal homepage: http://jurnal.uinsu.ac.id/index.php/zero/index 

 

 

Predicting Malaria Incidence Using LSTM and Environmental Variables 
 
1 Wellie Sulistijanti  
Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang 
2 Laelatul Khikmah  
Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang 
3 Erisa Adyati Rahmasari  
Universitas Dian Nuswantoro Semarang 
4 Cikal Arbitan Putra Sangnandha  
Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang 
5 Idan Maulana Yusuf  
Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang 
6 Dzahari Alikharimah Azizah  
Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang 
 

Article Info  ABSTRACT   

Article history: 

Accepted, 20 October 2025 

 

 Climate change is exacerbating malaria risk in Indonesia, especially in Papua. 
This study proposes a Bidirectional Long Short-Term Memory (LSTM) model 
to forecast malaria incidence using climate variables. The dataset comprises 
monthly malaria and climate records (rainfall, temperature, humidity) from four 
high-endemic provinces between 2014 and 2024. Key methodologies included 
data augmentation to address data imbalances and a grouped time-series cross-
validation for robust model evaluation. An ARIMA model was implemented as 
a validation baseline to benchmark the proposed approach. The Bi-LSTM 
model delivered superior performance, achieving an average test R² of 0.7210 
and SMAPE of 11.02%. the model demonstrated excellent generalization with 
no evidence of overfitting, significantly outperforming the ARIMA baseline. 
The findings validate the use of deep learning models as effective tools for public 
health surveillance, providing reliable early warnings to support timely 
interventions. Future work will apply SHAP interpretability techniques and 
expanding the model's geographic scope. 
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1. INTRODUCTION 

Global climate change drives an increase in the population and expansion of the distribution of insect vectors 
of human diseases, particularly in tropical regions. Specific climatic factors, such as rising temperatures, accelerate 
the development cycle of the Plasmodium parasite within the Anopheles mosquito, while fluctuations in rainfall 
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and humidity directly influence the availability of breeding sites and vector survival rates [1]. As a result, mosquito-
borne diseases have emerged as a serious threat to global public health. Current efforts are focused on controlling 
and ultimately eliminating vector-borne infectious diseases, such as malaria [2]. Malaria remains a significant public 
health challenge both globally and nationally. In 2023, the World Health Organization (WHO) reported 
approximately 263 million malaria cases across 83 countries, resulting in an estimated 597,000 deaths worldwide 
[3]. While most malaria deaths occur in sub-Saharan Africa, the disease remains a persistent threat in other 
endemic regions, including Southeast Asia [4]. In 2023, Indonesia contributed 27% of Southeast Asia’s malaria 
burden and accounted for more than half of the region’s malaria-related deaths [5] 

Recent national data reflects a concerning trend. According to the Indonesian Ministry of Health reported a 
72% increase in confirmed malaria cases, rising from 304,607 in 2021 to 543,965 in 2024, along with a nearly 
threefold increase in annual fatalities (from 48 to 132) [6]. Several eastern provinces, including Papua, East Nusa 
Tenggara, and West Kalimantan, continue to report high endemicity. Among these, Papua holds a unique position, 
contributing more than 90% of Indonesia’s malaria cases despite representing only 2% of the national population. 
Unlike most regions in Indonesia, where malaria peaks seasonally during the rainy season (December–June), 
Papua experiences year-round transmission due to continuous rainfall. Recognizing these challenges, The WHO 
Global Technical Strategy for Malaria 2016–2030 and the Indonesia National Action Plan for Acceleration of 
Malaria Elimination 2020-2026  highlight the urgent need to strengthen malaria surveillance as a core strategy for 
accelerating elimination In line with this, computational modelling has emerged as a promising tool to enhance 
malaria surveillance through better prediction accuracy, early warning capabilities, and targeted response strategies 
[7] 

In recent years, various studies have utilized computational approaches to support malaria prediction. Menda 
et al. (2021) proposed a hybrid model that combined Machine Learning (ML) techniques with Autoregressive 
Integrated Moving Average (ARIMA) models to forecast forecasting malaria cases [8]. Similarly, Javaid et al. [9] 
employed an integrative approach by combining Web-based Geographic Information Systems (WebGIS) with 
various ML algorithms, including Random Forest (RF), Support Vector Machine (SVM), Decision Tree (DT), and 
Multilayer Perceptron (MLP), to conduct spatial-temporal analysis of malaria distribution in Pakistan. 

More recently, Naroum et al., (2025) demonstrated that Long Short-Term Memory (LSTM) networks 
outperformed other ML models, such as SVM, RF, Ridge, Lasso, and ElasticNet, in predicting malaria cases based 
on climate variables like rainfall and temperature in Cameroon [10]. Their results showed that LSTM achieved 
the lowest Root Mean Squared Error (RMSE) among all tested models, aligning with findings from [11]who also 
reported superior accuracy of LSTM over traditional models such as ARIMA and RF. While LSTM has shown 
strong performance in modeling time-series data for climate-sensitive diseases, its application in the Indonesian 
context, especially in high-transmission regions like Papua, remains limited. This reveals a significant gap in the 
current surveillance system, which still relies heavily on retrospective data analysis. In contrast, computational 
models like LSTM offer a paradigm shift towards proactive forecasting, enabling the generation of timely early 
warnings. This capability is particularly critical in Papua, which bears over 90% of Indonesia's malaria burden. The 
region's high transmission rates and logistical challenges mean that data-driven, predictive interventions are essential 
for pre-positioning resources and preventing localized cases from escalating into large-scale outbreaks. 

However, few studies have applied LSTM models to malaria forecasting in Indonesia’s high-transmission 
regions. Therefore, this study aims to address this gap by proposing an integrated LSTM-based model for 
predicting malaria cases in Indonesia using climate and environmental data. Both malaria incidence data and 
climate-related variables—including rainfall, humidity, and temperature—were entirely obtained from the Statistics 
Indonesia (Badan Pusat Statistik, BPS) publications at the provincial level. The study focuses on four endemic 
provinces: Papua, West Papua, East Kalimantan, and East Nusa Tenggara, which have consistently reported high 
malaria incidence between 2014 and 2024. Climate change influences the transmission of malaria, primarily 
through temperature and rainfall factors. Dry conditions reduce the population of mosquito vectors, while high 
rainfall increases water pooling in rice fields and springs, thereby raising the density of Anopheles sp. and 
contributing to fluctuations in malaria incidence [12] 

 
2. RESEARCH METHOD 
 We propose a Long Short-Term Memory (LSTM) model to predict malaria transmission across endemic 
regions in Indonesia by integrating climatic and environmental variables. Long Short-Term Memory (LSTM) is 
specifically designed to effectively handle and process time-series data, which is particularly relevant for predicting 
phenomena with temporal dependencies, such as malaria transmission influenced by seasonal and climatic factors 
[13].   The  illustration of the research flow can be seen in Figure 1. 
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Figure 1. Research Methodology 

 
2.1 Data Preparation 

The dataset for this study consists of monthly time-series data from 2014–2024, entirely obtained from 
Statistics Indonesia (Badan Pusat Statistik, BPS). It includes monthly malaria case records along with corresponding 
climate variables—rainfall, temperature, and humidity—compiled at the provincial level for model development and 
analysis. The full list of indicators and data sources used in this study is summarized in Table 1. 

 
Tabel 1. Indicator and Malaria Data Transmission 

No  Indicator  Variabel References 
1 Malaria Transmission  Number of malaria cases per region  [14] 

Historical monthly malaria case data [15], [16], [17], [18] 
2 Environment Factor Average temperature (°C) [19], [20], [21], [22] 

Precipitation (mm) [19], [20], [22], [23] 
Relative humidity (%) [19], [20], [21] 

 
In order to ensure the suitability of the dataset for model training and prediction, a comprehensive data 

preprocessing stage was conducted. The intial step involved a thorough examination of the dataset for completeness 
and the presence of outliers. Following the integrity check, outliers were addressed using the Interquartile Range 
(IQR) capping method. Since certain variables such as malaria cases and rainfall exhibited right-skewed 
distributions, a logarithmic transformation was first applied to reduce skewness and lessen the impact of extreme 
outliers. 

Given that input features such as temperature, rainfall, and humidity vary in scale, Min-Max normalization 
was applied to rescale all variables to a common range between 0 and 1 [10] as shown in Eq. (4): 

 

    𝑥! =	 "#$%&"
$'((*)#$%&	(*)

                    (4) 

 
where x refers to the original data value, X the set of all values used for normalization, and 𝑥!	represents the 

resulting normalized value. 
To address class imbalance across provinces, data augmentation techniques were introduced prior to 

sequence segmentation. Data augmentation aims to increase the amount and variety of this data, thereby allowing 
the model to better generalize the data and recognize features in the data that it has never seen before, as well as 
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preventing overfitting. Two approaches were employed: (i) oversampling of minority provinces using interpolation-
based synthetic generation, and (ii) conservative augmentation, which included the injection of small gaussian noise 
and magnitude warping [24]. Gaussian noise operates by adding random values drawn from a normal distribution 
to each point in the signal, expressed as Eq. (5): 

 
    𝑦- =	𝑥- + 	𝜖, 𝜖~𝑁(0, 𝜎.)                    (5) 
 
Meanwhile, magnitude warping modifies the temporal series by applying smoothly varying scaling factors, 

formulated in Eq. (6): 
 
    𝑥-! =	𝑥- ∙ 	𝛼- , 𝛼- = 	𝑁(1, 𝜎.)                   (6) 
 
where 𝑥-! denotes the original signal at time 𝑡, 𝜖 represents Gaussian noise, and 𝛼- is a smooth warping curve 

interpolated from Gaussian-distributed nodes [25]Gaussian noise thereby perturbs individual points in a controlled 
manner, while magnitude warping randomly scales certain segments of the series, both aiming to enrich the training 
set while preserving statistical properties and temporal dynamics. 

Following that, the time-series data were segmented using a sliding window with a sequence length of 3 
months. This duration was selected to reflect the seasonal nature of malaria transmission, which is closely linked 
to variations in rainfall, temperature, and humidity. A 3-month window allows the model to capture relevant short-
term trends and identify recurring seasonal patterns. Reserch from [26]demonstrated that malaria incidence often 
follows quarterly climatic cycles, with spikes typically occurring during or shortly after the rainy season. Thus, this 
approach enhances the model’s ability to anticipate periods of increased transmission. 

   
2.2 Deep Learning Modelling using LSTM  

The LSTM unit comprises three gates that regulate the flow of information through the memory cell: the 
forget gate, input gate, and output gate [13]These gates are mathematically formulated as follows:  

a. Forget Gate: Determines which information from the previous cell state should be discarded using Eq. 
(7). 
 

                                           ft=σ(Wf·[ht-1,xt]+bf)                    (7) 
 

where W/ , bf	 is weight matrix and bias of the forget gate, h0#1 is previous hidden state at time t-1, x0 is 
input at time t  and σ  is sigmoid activation function. 

b. Input Gate: Updates the cell state with new candidate information using sigmoid function (Eq. 8) and tanh 
activation (Eq. 9). 
 

  i0 = σ(W% ∙ [h0#1, x0] + b%)      (8) 
  C<0 = tanh	(W2 ∙ [h0#1, x0] + b2)     (9) 
 

where W% , b%	is weight matrix and bias of the input gate and W3	, b3	is weight matrix and bias of the 
candidate cell state 

c. Output Gate: Determines the final output by applying a sigmoid function (Eq. 10) which is then multiplied 
with the tanh-transformed cell state to generate the new hidden state (Eq. 11). 
 

       o0 = σ(W4 ∙ [h0#1, x0] + b4)                               (10) 
	h0 = o0 × tanh	(C0)                                             (11) 
 

with W4, b4 is weight and bias of the output gate. 
 
 The architecture of the LSTM model used in this study follows a sequential structure. It consists of a single 

bidirectional LSTM layer with 12 hidden units, followed by a dropout layer (rate 0.4), a L2 regularization layer, 
and a dense output layer with linear activation. This configuration was chosen to balance complexity and 
generalizability in modeling disease-related time-series data [13], [14]. The model was trained using the Adam 
optimizer with a learning rate of 0.0005, over 150 epochs with a batch size of 8. Additionally, an earlystopping 
callback was used in this training to control the training. Such architecture ensures the model is robust enough to 
capture seasonal fluctuations in malaria cases, while remaining replicable for future studies (Naroum et al., 2025). 
After constructing the structure of LSTM model as illustrated in Figure 1, the pre-processed dataset is 
chronologically split using grouped time series cross validation method with 4 folds. This cross-validation approach 
allows the model to be evaluated on unseen data and helps mitigate overlearning [10].  The training phase produces 
initial prediction of malaria cases that can support decision-making process. These findings facilitate the 
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identification of temporal distributions that influence malaria transmission. Furthermore, to validate its 
effectiveness, the performance of the proposed LSTM model is benchmarked against ARIMA (Autoregressive 
Integrated Moving Average), a classical statistical model widely used for time-series forecasting. 

 

 
Figure 2. LSTM Model for Malaria Prediction 

 
Rainfall, humidity, and temperature are the main factors in this malaria prediction model because all three 

directly affect the life of the Anopheles mosquito [27]. Rainfall creates puddles, which are breeding grounds for 
mosquitoes. High humidity helps mosquitoes survive longer, increasing the chances of transmission [28]. 
Meanwhile, the optimal temperature accelerates the development of malaria parasites in the mosquito's body. The 
LSTM model uses these data to analyze the complex relationship between environmental conditions and the 
number of malaria cases. 

 
2.3 Baseline Model using ARIMA 

To validate the performance of the proposed Bi-LSTM model, an ARIMA (Autoregressive Integrated 
Moving Average) model was implemented as a classical statistical baseline. ARIMA is a widely-used statistical 
method for time-series forecasting that models a variable's future values based on its own past values, specifically 
its lags (Autoregressive) and lagged forecast errors (Moving Average) [1]. It was selected to serve as a strong linear, 
sequential benchmark, providing a contrast to the non-linear capabilities of the LSTM. Unlike the multivariate 
LSTM, a univariate ARIMA model was fitted individually to the time series of malaria cases for each province.  

 
2.4 Experimental Setup 

All models were implemented in the Python programming language (version 3.12), utilizing the TensorFlow 
(version 2.19) and Statsmodels libraries. The key hyperparameters for the Bi-LSTM model were selected based 
on common practices for time-series forecasting and preliminary experiments to balance performance and model 
complexity. The final architecture consisted of a Bi-LSTM layer with 12 units, an embedding dimension of 4 for 
provincial data, a dropout rate of 0.4, and L2 regularization of 0.005. The model was trained using an Adam 
optimizer with a learning rate of 0.0005. 

 
2.5 Evaluation Metrics 

The model's predictive performance was evaluated using the test set, based on three standard metrics: Root 
Mean Squared Error (RMSE), Symmetric Mean Absolute Percentage Error (SMAPE), and the coefficient of 
determination (R²) [29]. Here, n represents the total number of malaria cases, yi denotes the actual value of malaria, 
and yAi denotes the predicted malaria value.  

 
RMSE 

RMSE reflects the average magnitude of prediction errors by computing the square root of the mean squared 
differences between predicted and actual values. This metric assigns greater weight to larger prediction errors, 
making it particularly effective in detecting substantial deviations between predicted and actual values. The RMSE 
is computed using the formulation presented in Eq. (12). 

𝑥! = 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 

𝑥" = 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦	 

𝑥#
= 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒		 
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RMSE = 	B1

n
∑ Dyi-yAiE

2n
i=1                     (12) 

 
sMAPE 

sMAPE is utilized to measure the predictive accuracy of the forecasting model. As a modification of MAPE, 
sMAPE provides a symmetric evaluation by normalizing the absolute difference against the mean of the predicted 
and actual values. This characteristic makes it particularly robust for datasets containing zero or near-zero values, 
such as the malaria incidence data in this study, thus preventing the generation of misleadingly large percentage 
errors. The sMAPE value is computed using the formulation presented in Eq. (13). 

 

              𝑠𝑀𝐴𝑃𝐸 = 155%
7
∑ |9!#:!|

(|:!|;|9!|)/.
7
-=1                               (13) 

 
R² 

R² is employed to assess how closely the model’s predictions approximate the actual value [30] The R² value 
is computed using the formulation provided in Eq. (14). 

                                                     𝑅. = 1 −	∑ (?"#?@")#
$
"%&
∑ (?"#?A)#$
"%&

                  (14) 

 
Predicted malaria case 

The LSTM model was used to predict malaria cases. After prediction, denormalization was performed to 
convert the results back to their original scale. The output from the LSTM model will be used to generate malaria 
risk distribution maps and identify high-risk endemic areas in Indonesia 

 
3. RESULT AND ANALYSIS 

Before evaluating the model performance, we provide an overview of the input variables across the four 
endemic provinces (2014–2024). Table 2 summarizes the mean, minimum, maximum, and standard deviation for 
each variable. 

Table 2. Data of Malaria Cases 
Variable Mean Min Max Std.Dev 
Malaria Cases 70001.35 0 78528 12248.86 
Rainfall (mm) 201.27 0 7929 375.39 
Temperature (°C) 27.04 18.06 38.30 1.79 
Humidity (%) 81.53 57.00 97.19 5.29 

 
Based on table 2 presented, malaria cases have a very high daily average, namely 70,001.35 cases, with a 

maximum value of 78,528, indicating a significant spike in cases. This variation is supported by a large standard 
deviation, which is 12,248.86, indicating drastic fluctuations. Rainfall, with an average of 201.27 mm and a 
maximum value of up to 7,929 mm, also showed similar variations, characterized by a high standard deviation of 
375,39. On the other hand, temperature and humidity showed relatively more stable values, with an average 
temperature of 27.04°C (std. dev. 1.79) and an average humidity of 81.53% (std. dev. 5.29), indicating 
environmental conditions that were consistent enough to support the life of malaria-spreading mosquitoes. 

Figure 3 show the comparison of malaria cases from 2014 to 2024 in four provinces (East Kalimantan, NTT, 
Papua, and West Papua), significant difference in the number of malaria cases between provinces. Papua province 
consistently recorded the highest number of malaria cases throughout the period, with the number of cases far 
exceeding the other three provinces, as seen from the green line at the very top level. Meanwhile, East Kalimantan 
showed the lowest number of cases, with a stable blue line at the very bottom of the graph. West Papua and East 
Nusa Tenggara (NTT) are in the middle, with West Papua generally having a higher number of cases than NTT, 
although there have been periods where NTT's cases have increased sharply (for example, in early 2017) or West 
Papua has seen a drastic decline (around 2022) 
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Figure 3. Plot of the monthly incidence of Malaria Cases in Indonesia from 2014 to 2024 

 
Based on graphs related to rainfall data and malaria cases in the four provinces from 2014 to 2024, it can be 

seen that there is a relationship between the two variables. In East Nusa Tenggara Province, the graph shows a 
strong correlation. Papua and West Papua are quite significant. Meanwhile, in East Kalimantan, the increase in 
rainfall in several years was also followed by an increase in malaria cases. 

 

 
Figure 4. Plot of the Rainfall and Malaria Case Data in each Provinces from 2014 to 2024 
 

3.1 ARIMA Benchmark Results 
To validate the superiority of the proposed Bi-LSTM model, we implemented ARIMA as a baseline statistical 

approach for time-series forecasting. Table 3 presents the performance of ARIMA across the four endemic 
provinces, evaluated using Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Symmetric Mean 
Absolute Percentage Error (sMAPE). 

 
Table 3. ARIMA Performance across Provinces 

Province ARIMA Model MSE RMSE sMAPE 
Papua ARIMA (1,1,1) 471.2020 21.71 25.21% 
West Papua ARIMA (2,0,0) 0.5491 0.74 45.66% 
East Nusa Tenggara ARIMA (1,2,0) 1.5431 1.24 72.34% 
East Kalimantan ARIMA (1,1,1) 11.5050 3.39 75.19% 

 
The performance of the ARIMA model demonstrates a fundamental limitation of this approach to estimating 

malaria incidence, namely its univariate nature. As a univariate model, ARIMA forecasts future malaria cases based 
solely on their own past values (lags and historical errors), making it inherently blind to the influence of external, 
exogenous variables like climatic factors.  

East Nusa Tenggara (NTT) has high data variability, with the ARIMA model producing a relatively small 
MSE (1.5431) but a high sMAPE (72.34%). This indicates that although ARIMA captures some patterns, it 
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struggles to handle large fluctuations in the data, resulting in relatively high prediction errors. These peaks and 
troughs are likely driven by climatic events, which the ARIMA model cannot account for. Conversely, in Papua, 
the model produces a large MSE (471.2020) due to the high volume of cases, but its lower sMAPE (25.21%) 
suggests it can capture the general baseline incidence. However, it still struggles to model the variability around this 
mean, as this variability is also heavily influenced by climate. 

Ultimately, ARIMA's inability to incorporate multivariate inputs like rainfall and temperature means it cannot 
capture the complex, non-linear relationships that drive malaria transmission. This underscores the necessity for 
more advanced models capable of integrating these crucial external drivers. 

 
3.2 Bi-LSTM Model Performance 

The evaluation results demonstrated consistent performance across all validation splits. Across the validation 
splits, the model's average performance on unseen data yielded a test R² of 0.7210±0.110, which was superior to 
its performance on the training data (train R² of 0.6702±0.051). This pattern was reinforced by the error metrics, 
where the average test RMSE of 1.0439 was lower than the train RMSE of 1.2384. Superior performance on the 
test set strongly indicates that the model successfully learned generalizable patterns rather than memorizing the 
training data. These results suggest that the LSTM model successfully captured the underlying temporal dynamics 
of malaria cases while maintaining robustness across different folds. 

 
Table 4. The Performance of LSTM Model 

Fold Test R² Train R² Test RMSE Train RMSE Test sMAPE Train sMAPE 
Split 1 0.7036 0.5902 1.0525 1.4417 10.68% 17.20% 
Split 2 0.5516 0.6727 1.4301 1.2110 15.20% 13.26% 
Split 3 0.7867 0.6856 0.9595 1.1949 9.35% 12.92% 
Split 4 0.8421 0.7322 0.7335 1.1059 8.85% 11.55% 
Average 0.7210 0.6702 1.0439 1.2384 11.02% 13.73% 

 
Further evidence of the model's robust generalization is provided by the training and validation loss curves, 

as depicted in Figure 5. Across the training epochs, both the training loss and the validation loss consistently 
decreased and converged towards similarly low values. Crucially, the validation loss did not exhibit a significant 
upward trend, which would typically indicate overfitting. This convergence pattern visually confirms that the 
regularization techniques employed (dropout and L2 regularization) were effective in preventing the model from 
merely memorizing the training data, further supporting its ability to learn generalizable temporal patterns. 

 

 
Figure 5. Comparison of Actual Data vs. LSTM Predictions of Malaria Cases in the Last Fold 
 
Following the individual analysis of each model, a direct comparative evaluation confirms the superiority of 

the Bidirectional LSTM architecture for this forecasting task, with aggregated results presented in Table 4. As 
established above, the ARIMA model demonstrated limitations in consistently handling the high variability and 
non-linear patterns inherent in the malaria data. In contrast, the Bi-LSTM model achieved significantly better 
overall performance, yielding a lower prediction error, with a Test RMSE of 1.0439 (vs. 6.77) and Test sMAPE of 
11.02%. Furthermore, a paired t-test comparing the models' prediction errors confirmed this performance gap is 
statistically significant (p = 0.0023). This performance gap underscores the Bi-LSTM's advanced ability to capture 
the complex, non-linear temporal dependencies between climatic factors and malaria incidence, a critical feature 
that traditional linear models like ARIMA cannot fully address. 

To further explore the performance of the LSTM model, a visual comparison of its prediction results with 
the actual data from the final fold is presented in Figure 6. 
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Figure 6. Comparison of Actual Data vs. LSTM Predictions of Malaria Cases in the Last Fold 
 
Furthermore, visual comparisons between actual and predicted values in the final fold provided additional 

insights into model performance. Four representative plots for East Kalimantan, East Nusa Tenggara, Papua, and 
West Papua from 2023 to 2024 revealed that the model effectively reproduced the overall trends of malaria cases. 
Although certain deviations were observed, the predicted series closely followed the actual data patterns, 
highlighting the model’s robustness in capturing temporal and regional variations. Unlike prior Indonesian studies 
that primarily relied on conventional regression or static spatial analysis, this approach integrates time-series 
learning with regional differentiation, offering a more adaptive and scalable framework for forecasting malaria 
incidence across diverse provinces. 

 
4. CONCLUSION 

This study applied Long Short-Term Memory (LSTM) networks to forecast malaria cases in four Indonesian 
provinces using climatic and environmental variables. The results revealed substantial variability in malaria 
incidence, with Papua consistently recording the highest number of cases, while East Kalimantan showed the 
lowest. Through comparative analysis, it was found The Bi-LSTM reduced prediction error by 60% compared to 
ARIMA, demonstrating the feasibility of deep learning for malaria surveillance. The proposed model achieved 
strong average performance across all cross-validations with an average Test R² of 0.7210 and a Test sMAPE of 
11.02%. The model results demonstrate excellent generalization ability with no evidence of overfitting. 

While previous Indonesian studies predominantly employed conventional ARIMA or standard LSTM 
models for malaria forecasting, this study introduces a more advanced Bidirectional LSTM framework that 
integrates data augmentation and grouped time-series cross-validation. These additions enhance the model’s ability 
to handle data imbalance and capture complex, non-linear temporal dependencies between climate variables and 
malaria incidence. By combining forward and backward temporal learning, the proposed Bi-LSTM effectively 
models lagged climatic effects that traditional approaches fail to represent, marking a methodological improvement 
in malaria prediction within Indonesia’s climatic context. 

The model effectively captures the time lag between climatic events, such as rainfall, and the subsequent rise 
in malaria cases several weeks later, enabling actionable early warnings in high-risk regions like Papua. This LSTM-
based forecasting framework serves as a valuable decision-support tool for public health authorities. Integrating it 
into routine malaria surveillance could generate early alerts weeks in advance, allowing timely vector control, 
optimized resource allocation, and strengthened community-level prevention. Ultimately, this approach supports 
Indonesia’s malaria elimination goals through data-driven and proactive interventions. 
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