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 Cox proportional hazards models are widely used for breast cancer 

survival analysis, but their validity is often limited by violations of the 

proportional hazard assumption. Machine learning techniques offer 

potential ways to improve model robustness, yet their combined use 

remains underexplored. This study aims to compare the proportional 

hazard assumptions fulfilment and the discriminatory ability of the 

models before and after age-based clustering. K-medoids was selected 

for its robustness to outliers. The results demonstrate that clustering 

significantly improved adherence to the proportional hazards 

assumption and increased the concordance index, indicating better 

predictive performance. Number of variables satisfying the assumption 

increased from 3 in the global model to 5–6 across clusters. Tumor size 

and positive lymph nodes consistently had a significant effect on all 

clusters for both survival time and relapse-free time. These findings 

suggest that age-based clustering can enhance the robustness and 

predictive performance of Cox models. 
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1. INTRODUCTION 
Cancer is a deadly non-communicable disease that can increases mortality risk. According to a report by 

the International Agency for Research (IARC), breast cancer is the second most common cancer worldwide after 

lung cancer, with a total incidence of 2,296,840 cases in 2022. When looking only at female gender, breast cancer 

is the most common cancer affecting women, accounting for 23.8% of all cancer cases worldwide. In 2022, breast 

cancer accounted for 666,103 deaths, making it the fourth leading cause of cancer mortality globally [1]. Given 

its high incidence and mortality, identifying prognostic factors for breast cancer survival remains an important 

research focus. This study aims to analyze significant risk factors for breast cancer patients based on differences 

in patient age by carefully paying attention to the fulfilment of survival analysis. 

Health datasets especially time-to-event data are often difficult to acquire and frequently suffer from high 

number of missing values. Rather than applying listwise deletion (removing incomplete observations), missing 

data imputation is a preferable approach as it preserves information from another variable at same sample hence 

could reduce the potential for biased results. But simple imputation methods such as mean or median imputation 

can introduce bias as they only replace all missing data points with a single summary statistic, thereby fail to 
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account for inter-variable relationships. In contrast, machine learning method predicts each missing value by 

leveraging other variables as predictors. 

The superior performance of the Random Forest (RF) machine learning model over other classifiers has 

been documented in multiple health studies. A study by Adiga U et al. for example, employed various 

classification models on a breast cancer dataset. Their findings identified random forest as the optimal model, 

yielding the highest accuracy and Area Under Curve (AUC) [2]. Yongxin Li analyzed the prognosis of young 

breast cancer patients by evaluating samples with an age at diagnosis of 40 years or younger [3]. But, this 40-year 

threshold for defining young patients was established arbitrarily [3], therefore, this study will utilize cluster analysis 

for age grouping and adopt the maximum value from the lowest age cluster as the definitive threshold.  

In medical research, k-medoids is considered more representative because it selects actual patient data 

points as cluster representatives (medoids), unlike k-means which uses intra-cluster means that creating artificial 

cluster centers. A comparative study on clustering tuberculosis indicator data found that k-medoids achieved —

on both training and testing data— higher accuracy than k-means clustering and hierarchical clustering methods 

[4]. Specifically for breast cancer data, a previous study found that k-medoids clustering had a relatively smaller 

Davies-Bouldin Index (DB-Index) and a relatively larger average silhouette score than k-means clustering for the 

same number of clusters [5]. 

Survival analyses, such as the Kaplan-Meier curve and Cox proportional hazards model, are widely used to 

show the influence of an observed variable on survival time. They are often used because the target variable does 

not need to meet the distributional assumptions required by methods like the Accelerated Failure Time (AFT) 

model. Kaplan-Meier is essentially a non-parametric and more flexible method, but the cox proportional hazard 

model still has the Proportional Hazards (PH) assumption that must be met before interpreting the resulting 

Hazard Ratio (HR). In a previous study on the risk profiles of breast cancer patients [6], Yuan Gu focused only 

on observing the survival analysis result of each resulting cluster, but in the current study also clustered the data 

to constructing a model that satisfied the proportional hazards assumption. Their study [6], however, treated 

relapse-free time as a predictor variable of survival time, but in this paper relapse-free time expected to be 

dependent variable like survival time to also consider the risk of patient to be hospitalized or receive treatment. 

This study only used patient data that could be known from the initial diagnosis, so that the results obtained could 

be used as a prognosis at the patient's first diagnosis without having to wait for a decision about what therapy the 

patient would undergo.  

Based on the review of previous research, the researchers propose this study, titled " Implications of Age-

Based Clustering for Survival and Relapse-Free Analysis in METABRIC Breast Cancer," to complement the 

statistical findings related to breast cancer in the Molecular Taxonomy of Breast Cancer International 

Consortium (METABRIC) dataset. This paper contributes by integrating age-based K-medoids clustering with 

Random Forest imputation to improve the robustness and discriminatory performance of Cox proportional 

hazards models for both overall survival and relapse-free survival. This study is expected to enrich the information 

regarding medical risk factors for breast cancer patients. In addition to medical information, patient risk factors 

for survival time and relapse-free time can also be used by health insurance underwriters to determine the 

probability of claims occurrence and for calculating claim reserves[7], [8], [9]. However, this study is limited to 

the interpretation of statistical results and is separate from clinical analysis by oncology experts. In the future, it 

is hoped that these statistical results can be further explored clinically by researchers in the medical field, 

especially in cancer treatment studies. 

 

2. RESEARCH METHOD 
2.1 Random Forest 

Leo Breiman introduced the modern Random Forest in 2001 [10] and defined it as a combination of 

classifier trees {ℎ(𝑥, 𝑘), 𝑘 =  1, . . . } where 𝑘 is a vector of independent and identically distributed random 

vectors, and each tree casts a single vote for the most popular class for a given input 𝒙. 

2.1.1 Margin Function 

For an ensemble of classifiers ℎ1(𝒙), ℎ2(𝒙), … , ℎ𝐾(𝒙) where each classifier predicts a class for the same 

input $x$, and the training set is drawn from the random vector distribution (X,Y), the margin function is defined 

as: 

𝑚𝑔(𝑿, 𝒀) = 𝑎𝑣𝑘  𝐼(ℎ𝑘(𝑿) = 𝑌) −  max
𝑗≠𝑌

𝑎𝑣𝑘𝐼(ℎ𝑘(𝑿) = 𝑗) (1) 

  

where 𝐼(. ) is the indicator function that has a value of 1 if true but 0 if false, and 𝑎𝑣𝑘 is the average over all 

trees 𝑘. The margin function calculates the difference between the tree that correctly predicts Y with tree that 

incorrectly predicts the Y class. The larger the margin, the more confident the model's collective decision that 𝒀 

is correct. If the margin is negative or zero, it means another class received an equal or greater number of votes 

than the correct class, indicating a potential misclassification. Mathematically, the margin formula can be detailed 

as follows: 
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𝑚𝑔(𝑿, 𝒀) =
1

𝐾
∑  𝐼(ℎ𝑘(𝑿) = 𝑌)

𝐾

𝑘=1
−  max

𝑗≠𝑌

1

𝐾
∑  𝐼(ℎ𝑘(𝑿) = 𝑗)

𝐾

𝑘=1
 (2) 

  

The Random Forest algorithm seeks to minimize the generalization error, defined as: 

 

𝑃𝐸∗ = 𝑃𝑋,𝑌(𝑚𝑔(𝑿, 𝒀) < 0)  
(3) 

  

The theorem presented by Breiman [10] states that as the number of trees increases, it is almost certain that 

all sequences 𝜣𝟏, … , 𝑷𝑬∗ will converge to:  

 

𝑃𝑋,𝑌(𝑃𝜣(ℎ(𝑿, 𝛩) = 𝑌) − max
𝑗≠𝑌

𝑃𝛩(ℎ(𝑿, 𝛩) = 𝑗) < 0) (4) 

  

2.1.2 Strength dan Correlation 

Generalization error has an upper bound calculated through strength and correlation. Strength is described 

as the average power of each tree in estimating the target variable, formulated as: 

 

𝑠 = 𝐸𝑋,𝑌[𝑚𝑔(𝑿, 𝒀)] (5) 

  

Meanwhile, the correlation between trees must be minimized so that the ensemble learning function is 

robust and not just focused on the error of a single or very similar trees. Thus, the average correlation between 

trees is defined as:  

 

𝜌̅ =
𝐸𝛩,𝛩′[𝜌(𝛩, 𝛩′)𝜎𝛩𝜎𝛩′]

𝐸𝛩,𝛩′[𝜎𝛩𝜎𝛩′]
 (6) 

  

Therefore, the upper bound for the generalization error is expressed by the inequality: 

 

𝑃𝐸∗ ≤
𝜌̅(1 − 𝑠2)

𝑠2
 (7) 

  

2.1.3 Missing Value Imputation 

Random Forest as an imputation method is performed by training a model on the observed (complete) data 

and then applying the model to observations with missing values. For a variable 𝑿𝒔 with missing values at entries 

𝒊𝑚𝑖𝑠
(𝑠)

⊆ {1,2,3, … 𝑛} , the dataset 𝑿 = (𝑿𝟏, 𝑿𝟐, 𝑿𝟑, … , 𝑿𝒑) is first divided into four parts [11]: 

a. 𝑦𝑜𝑏𝑠
(𝑠)

 : Observed (non-missing) values in variable 𝑿𝒔 

b. 𝑦𝑚𝑖𝑠
(𝑠)

 : Missing values in variable 𝑿𝒔 

c. 𝑥𝑜𝑏𝑠
(𝑠)

 : Values of variables other than 𝑿𝒔 at the same entries as 𝑦𝑜𝑏𝑠
(𝑠)

   

d. 𝑥𝑚𝑖𝑠
(𝑠)

 : Values of variables other than 𝑿𝒔 at the same entries as 𝑦𝑚𝑖𝑠
(𝑠)

 

It should be noted that 𝑥𝑚𝑖𝑠
(𝑠)

 does not contain missing values; rather, it represents the values of other 

variables that will be used to predict 𝑦𝑚𝑖𝑠
(𝑠)

 . Before applying the model to 𝑦𝑚𝑖𝑠
(𝑠)

, a Random Forest model is first 

trained using 𝑦𝑜𝑏𝑠
(𝑠)

 as the response variable, and 𝑥𝑜𝑏𝑠
(𝑠)

 as the predictor. Imputation is performed iteratively, with 

the initial matrix denoted as 𝑿𝑜𝑙𝑑
𝑖𝑚𝑝

 and the imputation result saved as the matrix 𝑿𝑛𝑒𝑤
𝑖𝑚𝑝

. The iteration stops when 

a stopping criterion 𝛾 is met, specifically when the difference between the new and previous matrices increases 

for the first time. The difference for numerical data is defined as [11]: 

 

𝛥𝑁 =
∑ (𝑿𝑛𝑒𝑤

𝑖𝑚𝑝
− 𝑿𝑜𝑙𝑑

𝑖𝑚𝑝
)

2

𝑗∈𝑵

∑ (𝑿𝑛𝑒𝑤
𝑖𝑚𝑝

)
2

𝑗∈𝑵

 (8) 

  

whereas for categorical data, it is defined as: 

 

𝛥𝐹 =
∑ ∑ 𝑰

𝑿𝑛𝑒𝑤
𝑖𝑚𝑝

≠𝑿𝑜𝑙𝑑
𝑖𝑚𝑝

𝑛
𝑖=1𝑗∈𝑭

#𝑀𝑖𝑠𝑠𝑖𝑛𝑔 𝑉𝑎𝑙𝑢𝑒
 (9) 
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2.2 Partitioning Around Medoids 

Partitioning Around Medoids (PAM) clustering or also known as k-medoids clustering is a data grouping 

method based on dissimilarity with all other objects in the cluster that considers the original data as a 

representation of the cluster instead of using the intra-cluster average. [12], [13], [14]. The k-medoids method 

selects 𝑘 initial medoids randomly and then iteratively updates the clusters by assigning the cluster member with 

the smallest total dissimilarity as the new medoids. The algorithm iterates until the minimum total deviation is 

achieved, defined as the sum of dissimilarities between each observation 𝑥𝑐 and the medoid 𝑚𝑖 of its assigned 

cluster 𝐶𝑖[12]. In this study, clustering is performed on a one-dimensional variable (age), and the dissimilarity 

measure is defined using the one-dimensional Euclidean distance: 

 

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  ∑ ∑ |𝑥𝑐 − 𝑚𝑖|

 

𝑥𝑐=𝐶𝑖

𝑘

𝑖=1

 (10) 

  

where 𝑥𝑐 denotes the age of the 𝑐-th patient and 𝑚𝑖 represent the medoid age of cluster 𝐶𝑖.  

 

2.3 Elbow Method 

The elbow method plot is often used to evaluate and select the optimal number of clusters for k-medoids 

clustering, as seen in several recent studies [15], [16], [17], [18]. The optimal 𝑘-cluster is chosen at the point 

where the Within Sum of Square (WSS) value shows a significant decrease in the plot. The WSS value for each 

𝑘 can be calculated with the formula [17]:   

 

WSS =  ∑ ∑‖𝑥𝑖 − 𝐶𝑘‖2

 

∀xi

k

k=1

 (11) 

  

2.4 Kaplan-Meier Estimator 

The Kaplan-Meier Curve can display the differences in patient death probabilities between two or more 

groups over time. According to Elisa & John [19], non-parametric analysis is best performed first, before building 

a parametric survival model, to gain an overview of the observed survival time data. This is particularly relevant 

as this study performs clustering, making it important to compare probability estimates between clusters non-

parametrically. The Kaplan-Meier estimate is calculated using [20]: 

 

𝑆̂(𝑡) = ∏ (1 −
𝑑𝑖

𝑌𝑖

)

𝑡𝑖≤𝑡

 (12) 

  

2.5 Log-rank Test 

To ensure that the Kaplan-Meier curves are genuinely different between groups, the log-rank test is 

conducted to support the evidence that clustering is significant in the data. The log-rank test compares the 

observed and expected number of events at each failure time using equal weights [21]. The log-rank test tests 

𝐻0: 𝑆1(𝑡) = 𝑆2(𝑡) = 𝑆3(𝑡) against H1: there is at least one difference, that if H1 is accepted, it means the 

clusters explain different survival probabilities over time. It uses the following test statistic: 

 

𝜒2 = ∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝐺

𝑖=1
 

𝑂𝑖 − 𝐸𝑖 = ∑ (𝑚𝑖𝑗 − 𝑒𝑖𝑗)
𝑛

𝑗=1
 

𝑒𝑖𝑗 =
𝑛𝑖𝑗

∑ 𝑛𝑘𝑗
𝐺
𝑘=1

(∑ 𝑚𝑖𝑗

𝐺

𝑘=1
) 

(13) 

(14) 

(15) 

  

where 𝐺 is the number of groups, 𝑂𝑖  is the observed value for group 𝑖, 𝐸𝑖 is the expected value for group 𝑖, 
𝑚𝑖𝑗 is the number of patients who experienced an event in group 𝑖 at time 𝑡(𝑗), 𝑛𝑖𝑗 is number at risk of 𝑖 group 

at time 𝑡(𝑗), and 𝑒𝑖𝑗 is expected value of 𝑖-group at time 𝑡(𝑗).  

 

2.6 Cox Proportional Hazard 

The Cox Proportional Hazards model can measure the fold-risk (Hazard Ratio) of an individual's survival 

time shortening for each one-unit increase in a predictor. This method seeks to predict the value 𝑒𝛽𝑘 (which is 

hazard ratio) by the following formula: 
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ℎ(𝑡|𝒙) = ℎ0(𝑡)𝑒(𝜷⊤𝒙) (16) 

  

where ℎ(𝑡) is the hazard function at time 𝑡, ℎ0(𝑡) is the baseline hazard (the hazard when all covariates are 

zero). However, Cox proportional hazard has important assumption that is proportional hazard assumption, 

which assumes that the hazard value of target variable and predictor needs to be constant over time, which means 

there is no significant change over time in the hazard of all the objects being compared. The survival time of each 

individual is also assumed to be independent (event that happen in one individual does not affect the other 

individual’s event). 

 

2.7 Concordance Index 

The Concordance Index (C-Index) is used to evaluate the features used in predicting survival outcomes 

from a model. The C-Index measures the ability of a model to correctly rank survival times based on predictor 

values [22], [23]. For example, in the case of predictors and response variables that are directly proportional, 

then after the response variables are sorted from smallest to largest, the match of the predictor order from smallest 

to largest is calculated as the C-Index. The C-Index in survival analysis calculated as [24]: 

 

𝐶̂ =
∑ 𝛥𝑖 ∑ 𝐼(𝑇𝑖

𝑜𝑏𝑠 < 𝑇𝑗
𝑜𝑏𝑠)𝐼(𝑀𝑖 > 𝑀𝑗)𝑁

𝑗=𝑖+1
𝑁
𝑖=1

∑ 𝛥𝑖 ∑ 𝐼(𝑇𝑖
𝑜𝑏𝑠 < 𝑇𝑗

𝑜𝑏𝑠)𝑁
𝑗=𝑖+1

𝑁
𝑖=1

 (17) 

  

where 𝑇𝑖
𝑜𝑏𝑠 is the time to event or censoring, and 𝛥𝑖 is the event indicator (1 if event, 0 if censored). If 𝛥𝑖 =

1 then 𝑇𝑖
𝑜𝑏𝑠 = 𝑇𝑖, in opposite, if 𝛥𝑖 = 0 then  𝑇𝑖 > 𝑇𝑖

𝑜𝑏𝑠 because the event must have occurred after the recording 

time in the dataset whose exact value is unknown. Moreover 𝑀𝑖 is the predicted risk score from the model for 𝑖 
subject. Likewise in random forest formula, 𝐼(. ) is the indicator function. A pair of values is said to be discordant 

if 𝑀𝑖 > 𝑀𝑗 and 𝑇𝑖
𝑜𝑏𝑠 < 𝑇𝑗

𝑜𝑏𝑠 or vice versa. The more discordant pairs, the closer the C-Index is to 0.5 (random 

chance), while 1.0 is perfect order prediction. 

 

2.8 Likelihood Ratio Test 

The likelihood ratio (LRT) tests whether all predictors simultaneously have a significant effect on the model 

(i.e., compares a full model to a reduced/null model) [25]. The LRT testing 𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝 = 0 over 

𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛽𝐽 ≠ 0 , using the following statistic [20]: 

 

𝐿𝑅 =  −2 𝑙𝑛 𝐿𝑅 − (−2 𝑙𝑛 𝐿𝐹) ~ 𝜒𝛼,𝑝
2   (18) 

  

 where 𝑝 is the number of independent variables, 𝐿𝑅 is the likelihood for the reduced model (no variables), 

and 𝐿𝐹 is the likelihood for the full model. The LRT can be used as an alternative strategy to evaluate the overall 

significance of the model [26]. By adding likelihood ratio test can improve the interpretability of the analysis 

result and increase clinician’s confidence in the diagnosis [27]. 

 

2.9 Wald Test 

The Wald test assesses whether individual predictors are significant in the model. It tests 𝐻0: 𝑹𝜷̂ = 𝟎 

against 𝐻1: 𝑹𝜷̂ ≠ 𝟎, using the following statistic [28]: 

 

𝑊 = (𝑹𝜷̂ − 𝟎) [𝑹 var(𝜷̂)̂ 𝑹]
−1

(𝑹𝜷̂ − 𝟎) (19) 

  

where 𝜷̂ is 𝑝 × 1 estimation parameter vector of cox regression model, 𝑹 is hypothesis matrix 𝑝 × 𝑞 size 

that state the linear combination from parameter tested. 

 

2.10 Data and Method 

This study uses a quantitative method with time-to-event secondary data obtained from the cBioPortal 

repository page [29] which combines research published by Curtis C. et al. in Nature 2012 [30] and Pereira et al. 

in Nature Communications 2016 [31]. The METABRIC dataset contains samples from the UK and Canada but 

represents humans in general as biological beings. Both datasets are incomplete (having missing values), so 

random forest imputation was performed to prevent information loss. The term Survival Time in this research 

always means how many months takes from patient initial diagnosis to their death. 

The analysis uses the semi-parametric Cox Proportional Hazards model to observe whether a variable 

increases or decreases the risk of death or relapse for breast cancer patients. The response variables used are 

Survival Time (time from initial diagnosis to patient’s death) and Relapse-Free Time (time from initial diagnosis 
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to patient’s first relapse), which are analyzed separately. This addresses the research gap from article [6] which 

used relapse-free time as a predictor instead of response variable. The Concordance Index is an evaluation metric 

for predictors in a survival model that determines whether the predictor significantly influences the response 

variable or just not more than a random event. 

The calculation and algorithm execution were assisted using R Studio software with relevant libraries. The 

research procedure is as follows:  

a. Retrieving time-to-event data and patient characteristics from the cBioPortal repository; 

b. Performing data pre-processing (row deletion and Random Forest imputation); 

c. Determining the survival time and relapse-free time variables as response variables and other variables 

that can be known at the time of initial diagnosis as predictor variables; 

d. Testing the proportional hazards (PH) assumption for all predictors against both response variables 

separately using the Schoenfeld test; 

e. Clustering the data using the K-Medoids method; 

f. Comparing the PH assumption test results before and after clustering; 

g. Creating Kaplan-Meier Curves for the clustered data and performing the log-rank test; 

h. Building Cox proportional hazards models for each response variable; 

i. Identifying significant predictors based on the Cox regression results; 

j. Analyzing the hazard ratio of each significant predictor; 

k. Evaluating the models using the Concordance Index, Likelihood Ratio test, and Wald test. 

When the proportion of missing values in certain variable exceeded 10%, listwise deletion was applied to 

ensure consistency in model estimation. While this approach avoids additional assumptions regarding missing 

data mechanisms, it may introduce selection bias if the excluded observations differ systematically from those 

retained. Consequently, the analytical sample may not fully represent the underlying patient population, 

potentially limiting the generalizability of the findings. Tumor Stage was also excluded due to substantial 

missingness, which could compromise model stability if retained, despite its clinical relevance as a prognostic 

factor.  

Regarding the missing data mechanism, no formal statistical assessment was conducted to distinguish 

between MCAR, MAR, or MNAR. The handling of missing values relied on the default behavior of the 

randomForest-based imputation procedure, which implicitly assumes that missingness is at least missing at 

random (MAR) given the observed covariates. If the missingness mechanism deviates from this assumption, 

particularly under an MNAR process, bias cannot be ruled out, and the generalizability of the results should 

therefore be interpreted with caution. 

 

3. RESULT AND ANALYSIS 
3.1 Pre-processing Data Result 

METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) dataset have samples that 

lack survival time and relapse-free time values. There are 529 of 2,509 samples (21.08%) on those two variables 

are missing values therefore they were removed and leaving 1980 samples. Furthermore, missing values were 

found in other variables as shown in table 1 which are expressed as percentages of missing values in each variable. 

The tumor stage variable was excluded from this study because it contains 36.27% missing values. Missing data 

in other variables were imputed using random forest with n-tree=1000. The final total of rows in the dataset are 

1980 samples without missing value after being imputed with Random Forest Imputation. The Random Forest 

classifier achieved an OOB error of 0.186, indicating good generalization performance. 

 

Table 1. Proportion of Missing Values for Each Variable 

Variable 
Missing 

Value (%) 
Variable 

Missing 

Value (%) 

Age at Diagnosis 0 Overall Survival (Months) 0 

Cellularity 3.34 Overall Survival Status 0 

ER Status 0 PR Status 0.05 

Neoplasm Histologic Grade 4.65 Relapse Free Status (Months) 0 

HER2 Status 0.05 Relapse Free Status 0 

Primary Tumor Laterality 5.94 Tumor Size 1.33 

Lymph nodes examined positive 3.99 Tumor Stage 36.27 
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3.2 Survival Time as Dependent 

3.2.1 PH Assumption Before Clustered 

Directly conducting the Schoenfeld test on imputed data resulted almost all variables not meeting the 

proportional hazards assumption, as shown in Table 2. The only variables that met the assumption were 

Cellularity, Primary Tumor Laterality, and Tumor Size. The global model also did not meet the assumption, so 

the overall features could not be modeled using cox regression. 

 

Table 2. Schoenfeld Test Result 

Variable P-value 

Age at Diagnosis < 2e-16 

Cellularity 0.16956 

ER Status < 2e-16 

Neoplasm Histologic Grade 2.4e-11 

HER2 Status 0.00014 

Primary Tumor Laterality 0.76737 

Lymph nodes examined positive 0.01735 

PR Status 7.4e-13 

Tumor Size 0.24729 

Global < 2e-16 

 

Even after removed variables that does not met proportional hazard assumption, there still variable not 

meet the assumption i.e. Tumor Size as shown in table 3. P-value for the global test is very small, where the value 

exactly at the critical point of significance 0.05. Concordance index of 0.614 demonstrated discriminative ability 

on model. 

 

Table 3. Schoenfeld Test Results After Removing Non-Significant Variables 

Variable P-value 

Cellularity 0.061 

Primary Tumor Laterality 0.752 

Tumor Size 0.047 

Global 0.050 

 

3.2.2 K-Medoids Clustering 

Unsupervised machine learning was conducted as a way to meet the proportional hazards assumption by 

clustering the Age at Diagnosis variable and performing survival analysis for each cluster created. The elbow 

method considered the optimal number of clusters is 3 as in figure 2, which were labelled as Low-Age Cluster, 

Middle-Age Cluster, and High-Age Cluster. Number of observations in each cluster, respectively, from low to 

high cluster is 586, 706, and 688. Figure 1 shows that the middle-age cluster had longer maximum survival times 

(in months) than the low-age and high-age cluster. Notably, the clustering algorithm was only run on the Age at 

Diagnosis variable as one-dimensional clustering and y-axis at figure 1 is shown just for comparing survival time 

between cluster.  

 

  
Figure 1. K-Medoids Clustering for Age at Diagnosis  Figure 2. Elbow Method for Optimal Cluster 

 

Table 4 provides information on class boundaries and average survival times for each cluster. The low age 

limit of 53.69 years was not chosen arbitrarily as in previous studies [3] but rather is the result of a more objective 

from euclidean distance calculation using the k-medoid clustering algorithm. The average survival time increases 

from the low-age cluster to the high-age cluster. 
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Table 4. Descriptive Statistics for Age at Diagnosis Clusters by Survival Time 

Cluster Medoid Min. Age Max Age Average Age 
Max Survival 

Time (in months) 

Average Survival 

Time (in month) 

Low Age 46.44 21.93 53.69 45.17 337.03 135.71 

Middle Age 60.96 53.72 67.48 60.91 355.20 132.62 

High Age 74.07 67.54 96.29 74.83 281.37 108.57 

From a modeling perspective, violations of the proportional hazard assumption may arise when the effect 

of covariates varies implicitly with age. In a global Cox model, this induces time-varying or age-dependent 

regression effects, even when covariates are treated as time-invariant. By clustering patients using age as a one-

dimensional variable, the population is partitioned into more homogeneous subgroups in which covariate effects 

are approximately constant over time. Within each age-based cluster, the Cox model can therefore be interpreted 

as a local approximation, where proportional hazards hold more closely than in the aggregated population. 

Conceptually, age-based clustering serves a similar purpose to stratified Cox models or time-dependent 

covariates. Stratified Cox regression allows baseline hazards to vary across strata but does not estimate covariate 

effects within each stratum, while time-dependent Cox models explicitly relax the proportional hazards 

assumption at the cost of increased model complexity and reduced interpretability. In contrast, age-based 

clustering offers a compromise by maintaining standard Cox model interpretation while mitigating non-

proportionality through population segmentation. 

3.2.3 Kaplan-Meier Curve 

Figure 3 shows Kaplan-Meier curve for each cluster created with death as the event. Those three clusters 

have significant differences in estimate the probability particularly after 50 months of survival time. Log-rank test 

conducted and gives p-value < 0.0001 means that all cluster significantly different in estimate the probability of 

breast cancer patient’s survival time. Thus, clustering this data indeed important because patients with different 

age groups are estimated significantly different probability than another. At 300 months of survival time, high-age 

have not patient at risk anymore while low-age still have 6 and middle-age were 7. 

 
Figure 3. Kaplan-Meier Curves for Survival Analysis of Clustered Data 

3.2.4 PH Assumption on Clustered Data 

After data being clustered, Schoenfeld test re-conducted as detailed on Table 5 to compare the result after 

clustered with the result before clustered. Before data was clustered, only two variables (Cellularity and Primary 

Tumor Laterality) met the proportional hazard assumption, meanwhile after the clustering, the number of 

variables meeting the assumption increased to five for low-age and six for middle-age and high-age. Cellularity, 

HER2 Status, and Lymph nodes examined positive met the assumption in all three cluster. Age at Diagnosis only 

violates the assumption in the low-age cluster while Primary Tumor Laterality fails in high-age cluster and Tumor 

Size fails in middle-age cluster. Neoplasm Histologic Grade only satisfies the assumption in middle-age cluster 

and PR Status only satisfies it in high-age cluster. 

Table 5. Schoenfeld Test Result for Clustered Data by Age 

Variable 
P-value   

Low-Age Middle-Age High-Age 

Age at Diagnosis 0.00016 0.46354 0.4407 

Cellularity 0.10919 0.58376 0.9902 

ER Status 4.5e-10 0.00079 6.5e-05 

Neoplasm Histologic Grade 1.3e-09 0.06890 0.0185 

HER2 Status 0.06369 0.37967 0.7421 

Primary Tumor Laterality 0.74281 0.38904 0.0393 

Lymph nodes examined positive 0.15569 0.45290 0.8749 

PR Status 9.3e-09 0.00712 0.0508 

Tumor Size 0.46802 0.00144 0.9310 

Global 2.0e-09 0.00774 0.0087 

Global (exclude non-significant predictor) 0.157 0.373 0.72 
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This means that clustering data can increase the number of variables meeting the proportional hazard 

assumption but still interpretable since grouping patient ages is a common practice both academically and 

practically. After removing the non-significant variables and conducting the assumption test again, the real global 

p-value for the model was obtained for each three cluster, which each value far greater than the value of 

assumption test before the data was clustered.  

3.2.5  Cox Regression for Low-Age Cluster 

Based on cox regression modeling for Survival Time (time from initial diagnosis to death) as dependent 

variable, HER2 positive status, number of Lymph nodes that examined positive, and Tumor Size significantly 

affect how long breast cancer patients take from initial diagnosis to their death. Patients with positive HER2 Status 

had 1.8 times higher risk if compared to HER2 negative status. Number of Lymph nodes examined positive 

(HR>1) also positively associated with Survival Time hazard function. Similarly, higher Tumor Size (HR>1) 

corresponded to lower Survival Time. The full result of cox regression provided in table 6. The model 

demonstrated an acceptable discriminative ability with a concordance index of 0.691 (SE=0.017) which increased 

as compared to before data was clustered. Moreover, the likelihood ratio was 75.31 (df = 6, p < 0.001) and overall 

Wald test was 107.8 (df = 6, p < 0.001). 

 

Table 6. Low-Age Cluster Hazard Ratio 

Variable Hazard Ratio  95% CI P-value 

Cellularity.L 1.165378 0.862-1.575 0.319814 

Cellularity.Q 0.976131 0.762-1.250 0.848244 

HER2 Status (Positive) 1.801023 1.311-2.474 0.000281 

Primary Tumor Laterality (Right) 1.070994 0.827-1.388 0.603684 

Lymph nodes examined positive 1.092547 1.064-1.121 2.86e-11 

Tumor Size 1.009012 1.003-1.015 0.003209 

 

3.2.6 Cox Regression for Middle-Age Cluster 

For breast cancer patient with age from 53.72 to 67.48 years old when the initial diagnosis, HER2 positive 

status and number of Lymph nodes that examined positive significantly affect how long breast cancer’s patients 

take from initial diagnosis to their death. Unlike low-age cluster, Tumor Size was not tested in this cluster because 

Tumor Size variable does not meet the proportional hazard assumption. Patients with positive HER2 Status had 

1.45 times higher risk if compared to HER2 negative status. Number of Lymph nodes examined positive (HR>1) 

also positively associated with survival time hazard function. The full result of this cluster provided in table 7. 

The model demonstrated an acceptable discriminative ability with a concordance index of 0.629 (SE=0.016) 

which increase as compared to before data was clustered. Moreover, the likelihood ratio was 58.81 (df = 8, 

p<0.001) and overall Wald test was 79.87 (df = 8, p < 0.001). 

 

Table 7. Middle-Age Cluster Hazard Ratio 

Variable Hazard Ratio  95% CI P-value 

Age at Diagnosis 1.0236 0.996-1.052 0.0924 

Cellularity.L 0.8535 0.664-1.098 0.2174 

Cellularity.Q 1.0377 0.856-1.257 0.7056 

Neoplasm Histologic Grade.L 1.2711 0.950-1.702 0.1069 

Neoplasm Histologic Grade.Q 1.1141 0.900-1.379 0.3208 

HER2 Status (Positive) 1.4494 1.090-1.926 0.0106 

Primary Tumor Laterality (Right) 1.0310 0.840-1.265 0.7705 

Lymph nodes examined positive 1.0528 1.037-1.068 2.39e-12 

 

3.2.7 Cox Regression for High-Age Cluster 

For patient above 67.54 years old when the initial diagnosis, Age at Diagnosis, number of Lymph nodes 

that examined positive, and Tumor Size significantly affect how long breast cancer patients take from initial 

diagnosis to their death. Only at the high-age cluster HER2 positive status does not significantly increase the risk 

of survival time. Patients with higher age when diagnosis had 1.07 times higher risk to have shorter survival time. 

Number of Lymph nodes examined positive (HR>1) also positively associated with survival time hazard function 

in high-age cluster. Likewise, higher tumor size when diagnosis corresponded with higher mortality time of 

patient. The full result of this cluster provided in table 8. The model demonstrated an acceptable discriminative 

ability with a concordance index of 0.649 (SE=0.013) which increase as compared to before data was clustered. 

Moreover, the likelihood ratio was 136.4 (df = 7, p < 0.001) and overall Wald test was 159.2 (df = 7, p < 0.001). 

  

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&


Zero: Jurnal Sains, Matematika dan Terapan   

                                                                   Implications of Age-Based Clustering for Survival and Relapse-Free Analysis in METABRIC Breast Cancer (Alif Azhari)  

775 

Table 8. High-Age Cluster Hazard Ratio 

Variable Hazard Ratio  95% CI P-value 

Age at Diagnosis 1.0723 1.0548-1.090 < 2e-16 

Cellularity.L 0.9439 0.7647-1.165 0.5907 

Cellularity.Q 1.1489 0.9722-1.358 0.1032 

HER2 Status (Positive) 1.3012 0.9341-1.813 0.1196 

Lymph nodes examined positive 1.0749 1.0507-1.100 4.91e-10 

PR Status (Positive) 0.8468 0.7065-1.015 0.0718 

Tumor Size 1.0091 1.0046-1.014 6.03e-05 

 

3.3 Relapse-Free Time as Dependent 

3.3.1 PH Assumption Before Clustered 

Changing the dependent variable with Relapse-free Time (time from initial diagnosis to first relapse) and 

directly conducting the Schoenfeld test on imputed data resulted 4 variables fulfil the PH assumption as shown 

in Table 9. The only variables that met the assumption were Cellularity, Primary Tumor Laterality, Lymph nodes 

examined positive, and Tumor Size. But the global model if relapse-free set as dependent met the assumption 

far from critical point unlike in survival time. Concordance index of 0.642 demonstrated discriminative ability 

on model. 

 

Table 9. Schoenfeld Test Results for Relapse-Free Time 

Variable P-value 

Age at Diagnosis 0.00013 

Cellularity 0.38987 

ER Status < 2e-16 

Neoplasm Histologic Grade 4.4e-08 

HER2 Status 0.02218 

Primary Tumor Laterality 0.80671 

Lymph nodes examined positive 0.56219 

PR Status 8.8e-13 

Tumor Size 0.15649 

Global < 2e-16 

Global (exclude non-significant predictor) 0.46 

 

3.3.2 K-Medoids Clustering 

Clustering performed at Age at Diagnosis variable, so there’s no change in member of each cluster. Figure 

1 shows comparably the Relapse-free Time each cluster, that the middle-age cluster had longer maximum relapse-

free time (in months) than the low-age and high-age cluster.  

 

 
Figure 4. K-Medoids Clustering for Relapse-Free Time 

 

Table 10 provides no different information with table 4 unless the Average Relapse-free Time (in month) 

column. Unlike the Average Survival Time that decreases as age cluster increases, Average Relapse-free Time 

here even have the highest value in the middle-age cluster with the second higher is low-age cluster. Max relapse-

free time just likely max survival time that have highest value at middle-age cluster. 
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Table 10. Descriptive Statistics for Age at Diagnosis Clusters by Relapse-Free Time 

Cluster Medoid Min. Age Max Age 
Average 

Age 

Max Relapse-free 

Time (in months) 

Average Relapse-free 

Time (in month) 

Low Age 46.44 21.93 53.69 45,17 330.37 116.14 

Middle Age 60.96 53.72 67.48 60,91 351.00 118.72 

High Age 74.07 67.54 96.29 74,83 281.36 100.05 

 

3.3.3 Kaplan-Meier Curve 

Figure 5 shows Kaplan-Meier curve for relapse as event. Unlike in Survival Time section, the three clusters 

created did not show significant differences in estimated relapse probability. Log-rank test conducted and gives 

p-value 0,21, means these 3 clusters do not necessarily benefit from clustering because have relatively same 

estimated probability. This concludes that age group significantly different between cluster at death risk, but not 

in relapse risk of patient. However, a cluster-specific analysis still be conducted to assess for differences in the 

adherence to the proportional hazards (PH) assumption when the data are clustered. This stratification also 

facilitates intra-cluster comparison between the hazards associated with Survival Time and Relapse-Free Survival 

of each cluster. 

 

 
Figure 5. Kaplan-Meier Curves for Relapse-Free Time in Clustered Data 

 

3.3.4 PH Assumption on Clustered Data 

After data being clustered, Schoenfeld test re-conducted as detailed on Table 11 to compare the result after 

clustered with the result before clustered. Before data was clustered, only four variables met the proportional 

hazard assumption, meanwhile after the clustering, the number of variables meeting the assumption increased to 

5 for middle-age, 6 for high-age, but remain 4 in low-age cluster. HER2 Status and Primary Tumor Laterality met 

the assumption in all three cluster. Age at Diagnosis and Cellularity only violates the assumption in the low-age 

cluster, while Lymph nodes examined positive fails in high-age cluster, and Tumor Size fails in middle-age cluster. 

Neoplasm Histologic Grade only satisfies the assumption in high-age cluster. In comparison with Survival Time 

section, Cellularity does not meet the assumption in low-age cluster at relapse-free time as dependent. Then in 

Neoplasm Histologic Grade, it changes from middle-age (Survival Time) to high-age (Relapse-free Time). PR 

Status does not meet even one cluster in Survival Time, but met at high-age at Relapse-free Time as dependent. 

 

Table 11. Schoenfeld Test Results for Clustering Data by Age for Relapse-Free Time 

Variable 
P-value   

Low-Age Middle-Age High-Age 

Age at Diagnosis 0.026 0.12955 0.4756 

Cellularity 0.026 0.89512 0.4927 

ER Status 2.4e-09 2.7e-06 0.0002 

Neoplasm Histologic Grade 1.0e-06 0.00091 0.9474 

HER2 Status 0.116 0.24051 0.8311 

Primary Tumor Laterality 0.462 0.29331 0.4253 

Lymph nodes examined positive 0.401 0.98500 0.0167 

PR Status 1.2e-07 0.00012 0.0318 

Tumor Size 0.179 0.00852 0.0755 

Global 5.2e-08 3.7e-05 0.0142 

Global (exclude non-significant predictor) 0.14 0.72 0.95 
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In Relapse-free Time as dependent also show that clustering data can increase the number of variables 

meeting the proportional hazard assumption. Even though low-age cluster remain at 4 variables met the 

assumption, but middle-age and high-age cluster increased to 5 and 6 respectively. After removing the non-

significant variables and conducting the assumption test again, the real global p-value for the model was obtained 

for each three cluster, and be found that middle-age and high-age are increased in p-value meanwhile low-age 

decreased but still met the proportional hazard assumption. 

3.3.5  Cox Regression for Low-Age Cluster 

Based on cox regression modeling for Relapse-free Time as dependent variable, number of Lymph nodes 

that examined positive and Tumor Size significantly affect how long breast cancer patients take from initial 

diagnosis to relapse event (Relapse-Free Time variable). Number of Lymph nodes examined positive (HR>1) 

positively associated with Relapse-free Time hazard function. Similarly, higher Tumor Size (HR>1) 

corresponded to lower Relapse-free Time. The full result of hazard ratio and its p-value provided in table 12. 

The model demonstrated an acceptable discriminative ability with a concordance index of 0.649 (SE=0.017) 

which slightly increased as compared to before data was clustered. Moreover, the likelihood ratio was 48.29 (df 

= 4, p < 0.001) and overall Wald test was 68.86 (df = 4, p < 0.001). 

 

Table 12. Low-Age Cluster Hazard Ratio 

Variable Hazard Ratio  95% CI P-value 

HER2 Status (Positive) 1.363076 0.9970-1.864 0.0522 

Primary Tumor Laterality (Right) 1.124557 0.8812-1.435 0.3455 

Lymph nodes examined positive 1.075211 1.0492-1.102 6.21e-09 

Tumor Size 1.007174 1.0014-1.013 0.0154 

 

3.3.6 Cox Regression for Middle-Age Cluster 

For patient with age from 53.72 to 67.48 years old when initial diagnosis, HER2 positive status and number 

of Lymph nodes that examined positive significantly affect how long breast cancer’s patients take from initial 

diagnosis to their relapse. Unlike low-age cluster, Tumor Size was not tested in this cluster because it did not 

meet the proportional hazard assumption. Patients with positive HER2 Status had 1.554 times higher risk if 

compared to HER2 negative status, higher than when Survival Time as dependent variable. Number of Lymph 

nodes examined positive also positively associated (HR>1) with Relapse-free Time hazard function. Only at the 

middle-age cluster HER2 positive status significantly increased the risk of relapse occurred. The full result of this 

cluster’s hazard ratio and its p-value provided in table 13. The model demonstrated an acceptable discriminative 

ability with a concordance index of 0.61 (SE=0.017). Moreover, the likelihood ratio was 50.47 (df = 6, p < 0.001) 

and overall Wald test was 73.16 (df = 6, p < 0.001). 

 

Table 13. Middle-Age Cluster Hazard Ratio 

Variable Hazard Ratio  95% CI P-value 

Age at Diagnosis 1.023951 0.9968-1.052 0.08476 

Cellularity.L 0.883506 0.6887-1.133 0.32965 

Cellularity.Q 1.035405 0.8549-1.254 0.72185 

HER2 Status (Positive) 1.554553 1.1742-2.058 0.00206 

Primary Tumor Laterality (Right) 1.022453 0.8332-1.255 0.83158 

Lymph nodes examined positive 1.056256 1.0414-1.071 3.26e-14 

 

3.3.7 Cox Regression for High-Age Cluster 

For patient above 67.54 years old when initial diagnosis, Neoplasm Histologic Grade and Tumor Size 

significantly affect how long breast cancer patients take from initial diagnosis to their relapse. Patients with higher 

Neoplasm Histologic Grade had 2.019 times higher risk to have shorter Relapse-free Time. Likewise, higher 

tumor size when diagnosis corresponded with lower relapse-free time of patient (HR > 1). The full result of this 

cluster provided in table 14. The model demonstrated an acceptable discriminative ability with a concordance 

index of 0.626 (SE=0.019). Moreover, the likelihood ratio was 49.63 (df = 8, p < 0.001) and overall Wald test 

was 56.61 (df = 8, p < 0.001). 
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Table 14. High-Age Cluster Hazard Ratio 

Variable Hazard Ratio  95% CI P-value 

Age at Diagnosis 1.021985 0.9982-1046 0.0700 

Cellularity.L 1.248094 0.8808-1769 0.2127 

Cellularity.Q 0.916719 0.7080-1187 0.5095 

`Neoplasm Histologic Grade`.L 2.019313 12737-3202 0.0028 

`Neoplasm Histologic Grade`.Q 0.749665 0.5548-1013 0.0606 

HER2 Status (Positive) 1.506188 0.9948-2281 0.0530 

Primary Tumor Laterality (Right) 0.806894 0.6300-1033 0.0892 

Tumor Size 1.016897 10111-1023 1.14e-08 

 

3.4 Discussion and Limitation 

This study identified that age-based clustering significantly improves model performance for survival time 

but shows less distinct differentiation for relapse-free time, particularly in older clusters. A potential statistical 

explanation for this discrepancy is the presence of competing risks. In the High-Age cluster, the mortality rate is 

naturally higher; patients may die from other causes or from the cancer itself before a relapse event can occur or 

be observed. In standard Cox proportional hazards models, death without relapse is typically treated as censored 

data, which may bias the risk estimation for relapse in populations with high mortality. Future studies could 

employ Competing Risk Regression (e.g., Fine-Gray models) to better isolate the specific risk of relapse by 

accounting for death as a competing event. 

Furthermore, this study has several limitations. First, the exclusion of samples with missing survival times 

(listwise deletion) and the removal of the Tumor Stage variable due to high missingness (36%) may reduce the 

clinical generalizability of the findings. Second, the imputation of other predictors was performed assuming data 

were Missing At Random (MAR); deviations from this assumption could influence parameter estimates. Finally, 

the benefits of age clustering appeared most pronounced in the younger cohort (Low-Age), suggesting that 

biological heterogeneity in older patients might require more complex modeling than age stratification alone. 

 

4. CONCLUSION 
Clustering the METABRIC breast cancer patient dataset by Age at Diagnosis can improve the validity of 

Cox proportional hazards models by enhancing adherence to the proportional hazard assumption for both the 

Survival Time and Relapse-Free Time dependent variables. The discriminatory performance improved in all 

clusters for the Survival Time as dependent variable, but only in the low-age cluster for the Relapse-Free Time 

as dependent variable. This approach highlights heterogeneity in mortality risk across age groups, while relapse 

risk appears less sensitive to age-based partitioning. Overall, the findings demonstrate that age-based clustering 

offers a simple and interpretable strategy to regularize Cox models under proportional hazards violations, serving 

as a practical alternative to more complex modeling approaches such as stratified or time-dependent Cox 

regression. 

Differences between survival time and relapse-free time suggest that these outcomes may be governed by 

distinct underlying risk structures. In particular, the benefits of age-based clustering were most pronounced in 

younger patients, while improvements were limited in middle-aged and older groups. This asymmetry indicates 

that the effectiveness of age clustering may not generalize uniformly across all populations and should be 

interpreted with caution. This study is limited by its reliance on a single dataset and by methodological constraints 

discussed earlier. Future research may extend this framework by comparing clustering-based approaches with 

alternative Cox model extensions and by exploring additional statistical structures, such as competing risks, to 

better capture the dynamics of relapse outcomes across age groups. 
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