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1. INTRODUCTION

Cancer is a deadly non-communicable disease that can increases mortality risk. According to a report by
the International Agency for Research (IARC), breast cancer is the second most common cancer worldwide after
lung cancer, with a total incidence of 2,296,840 cases in 2022. When looking only at female gender, breast cancer
1s the most common cancer affecting women, accounting for 23.8% of all cancer cases worldwide. In 2022, breast
cancer accounted for 666,103 deaths, making it the fourth leading cause of cancer mortality globally [1]. Given
its high incidence and mortality, identifying prognostic factors for breast cancer survival remains an important
research focus. This study aims to analyze significant risk factors for breast cancer patients based on differences
n patient age by carefully paying attention to the fulfilment of survival analysis.

Health datasets especially time-to-event data are often difficult to acquire and frequently suffer from high
number of missing values. Rather than applying listwise deletion (removing incomplete observations), missing
data imputation is a preferable approach as it preserves information from another variable at same sample hence
could reduce the potential for biased results. But simple imputation methods such as mean or median imputation
can introduce bias as they only replace all missing data points with a single summary statistic, thereby fail to
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account for inter-variable relationships. In contrast, machine learning method predicts each missing value by
leveraging other variables as predictors.

The superior performance of the Random Forest (RF) machine learning model over other classifiers has
been documented in multiple health studies. A study by Adiga U et al. for example, employed various
classification models on a breast cancer dataset. Their findings identified random forest as the optimal model,
yielding the highest accuracy and Area Under Curve (AUC) [2]. Yongxin Li analyzed the prognosis of young
breast cancer patients by evaluating samples with an age at diagnosis of 40 years or younger [3]. But, this 40-year
threshold for defining young patients was established arbitrarily [3], therefore, this study will utilize cluster analysis
for age grouping and adopt the maximum value from the lowest age cluster as the definitive threshold.

In medical research, k-medoids 1s considered more representative because it selects actual patient data
points as cluster representatives (medoids), unlike k-means which uses intra-cluster means that creating artificial
cluster centers. A comparative study on clustering tuberculosis indicator data found that k-medoids achieved —
on both training and testing data— higher accuracy than k-means clustering and hierarchical clustering methods
[4]. Specifically for breast cancer data, a previous study found that k-medoids clustering had a relatively smaller
Davies-Bouldin Index (DB-Index) and a relatively larger average silhouette score than k-means clustering for the
same number of clusters [5].

Survival analyses, such as the Kaplan-Meier curve and Cox proportional hazards model, are widely used to
show the influence of an observed variable on survival time. They are often used because the target variable does
not need to meet the distributional assumptions required by methods like the Accelerated Failure Time (AFT)
model. Kaplan-Meier 1s essentially a non-parametric and more flexible method, but the cox proportional hazard
model still has the Proportional Hazards (PH) assumption that must be met before interpreting the resulting
Hazard Ratio (HR). In a previous study on the risk profiles of breast cancer patients [6], Yuan Gu focused only
on observing the survival analysis result of each resulting cluster, but in the current study also clustered the data
to constructing a model that satisfied the proportional hazards assumption. Their study [6], however, treated
relapse-free time as a predictor variable of survival time, but in this paper relapse-free time expected to be
dependent variable like survival time to also consider the risk of patient to be hospitalized or receive treatment.
This study only used patient data that could be known from the initial diagnosis, so that the results obtained could
be used as a prognosis at the patient's first diagnosis without having to wait for a decision about what therapy the
patient would undergo.

Based on the review of previous research, the researchers propose this study, titled " Implications of Age-
Based Clustering for Survival and Relapse-Free Analysis in METABRIC Breast Cancer," to complement the
statistical findings related to breast cancer in the Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) dataset. This paper contributes by integrating age-based K-medoids clustering with
Random Forest imputation to improve the robustness and discriminatory performance of Cox proportional
hazards models for both overall survival and relapse-free survival. This study is expected to enrich the information
regarding medical risk factors for breast cancer patients. In addition to medical information, patient risk factors
for survival time and relapse-free time can also be used by health insurance underwriters to determine the
probability of claims occurrence and for calculating claim reserves[7], [8], [9]. However, this study is limited to
the interpretation of statistical results and 1s separate from clinical analysis by oncology experts. In the future, it
1s hoped that these statistical results can be further explored clinically by researchers in the medical field,
especially in cancer treatment studies.

2. RESEARCH METHOD
2.1 Random Forest

Leo Breiman introduced the modern Random Forest in 2001 [10] and defined it as a combination of
classifier trees {h(x,k),k = 1,...} where k is a vector of independent and identically distributed random
vectors, and each tree casts a single vote for the most popular class for a given input x.
2.1.1 Margin Function

For an ensemble of classifiers hq(x), h5(x), ..., hx(x) where each classifier predicts a class for the same
input $x$, and the training set is drawn from the random vector distribution (X,Y), the margin function is defined
as:

mg(X,Y) = av, I(h(X) =Y) — r}nf;(avkl(hk(X) =J) (1)

where I(.) 1s the indicator function that has a value of 1 if true but 0 if false, and avy, 1s the average over all
trees k. The margin function calculates the difference between the tree that correctly predicts Y with tree that
mcorrectly predicts the Y class. The larger the margin, the more confident the model's collective decision that Y
1s correct. If the margin is negative or zero, it means another class received an equal or greater number of votes
than the correct class, indicating a potential misclassification. Mathematically, the margin formula can be detailed
as follows:
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The Random Forest algorithm seeks to minimize the generalization error, defined as:
PE" = Pyy(mg(X,Y) < 0)

The theorem presented by Breiman [10] states that as the number of trees increases, it is almost certain that
all sequences @4, ..., PE* will converge to:

Pxy(Po(h(X,0) =Y) — max Py(h(X,0) = j) <0) )

2.1.2 Strength dan Correlation
Generalization error has an upper bound calculated through strength and correlation. Strength is described
as the average power of each tree in estimating the target variable, formulated as:

s = Exy[mg(X,Y)] )
Meanwhile, the correlation between trees must be minimized so that the ensemble learning function 1s

robust and not just focused on the error of a single or very similar trees. Thus, the average correlation between
trees 1s defined as:

_ E@‘@r[p(@, 0')0e0,'] .
p= (6)
Eoe'[0000/]
Therefore, the upper bound for the generalization error is expressed by the inequality:
(1 —s?
ppr < PA=5Y) (7)
52

2.1.3 Missing Value Imputation
Random Forest as an imputation method 1s performed by training a model on the observed (complete) data
and then applying the model to observations with missing values. For a variable X with missing values at entries

i® c {1,2,3, ...n}, the dataset X = (X1, X2, X3, ...,Xp) 1s first divided into four parts [11]:

mis
S . . . .
a. ygb)s : Observed (non-missing) values in variable X

b. y,gfi)s : Missing values in variable X
()

C. xobs

: Values of variables other than X at the same entries as yé;l

d. xr(rfi)s : Values of variables other than X at the same entries as yr(rfi)s

It should be noted that xfi?s does not contain missing values; rather, it represents the values of other

variables that will be used to predict yrsfi)s . Before applying the model to yr(nsi)s, a Random Forest model 1s first

trained using yéz)s as the response variable, and x((j,)s as the predictor. Imputation is performed iteratively, with

o . im . . . im . .
the initial matrix denoted as X, and the imputation result saved as the matrix X;,55. The iteration stops when
a stopping criterion ¥ 1s met, specifically when the difference between the new and previous matrices increases
for the first ime. The difference for numerical data 1s defined as [11]:

; ; 2
imp imp
_ ZjeN(Xnew - Xold

AN - >
im
ZJ'EN(Xne\f/

whereas for categorical data, it is defined as:

N OO S
Z}EFZL—l Xmp o yimp ©)

AF = —
#Missing Value
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2.2 Partiioning Around Medoids

Partitioning Around Medoids (PAM) clustering or also known as k-medoids clustering is a data grouping
method based on dissimilarity with all other objects in the cluster that considers the original data as a
representation of the cluster instead of using the intra-cluster average. [12], [13], [14]. The k-medoids method
selects k mitial medoids randomly and then iteratively updates the clusters by assigning the cluster member with
the smallest total dissimilarity as the new medoids. The algorithm iterates until the minimum total deviation is
achieved, defined as the sum of dissimilarities between each observation x, and the medoid m; of its assigned
cluster C;[12]. In this study, clustering is performed on a one-dimensional variable (age), and the dissimilarity
measure 1s defined using the one-dimensional Euclidean distance:

K
Total Deviation = Z Z [x. —m; (10)

i=1 xc=C;
where x. denotes the age of the c-th patient and m; represent the medoid age of cluster C;.

2.3 Elbow Method

The elbow method plot is often used to evaluate and select the optimal number of clusters for k-medoids
clustering, as seen in several recent studies [15], [16], [17], [18]. The optimal k-cluster is chosen at the point
where the Within Sum of Square (WSS) value shows a significant decrease in the plot. The WSS value for each
k can be calculated with the formula [17]:

k

WSS = ZZ”’“ — Gl (11)

k=1 vxj

2.4 Kaplan-Meier Estimator

The Kaplan-Meier Curve can display the differences in patient death probabilities between two or more
groups over time. According to Elisa & John [19], non-parametric analysis 1s best performed first, before building
a parametric survival model, to gain an overview of the observed survival time data. This is particularly relevant
as this study performs clustering, making it important to compare probability estimates between clusters non-
parametrically. The Kaplan-Meler estimate 1s calculated using [20]:

S0 = l_[(1 —%i) (12

tis<t

2.5 Logrank Test

To ensure that the Kaplan-Meiler curves are genuinely different between groups, the log-rank test is
conducted to support the evidence that clustering is significant in the data. The log-rank test compares the
observed and expected number of events at each failure time using equal weights [21]. The log-rank test tests
Hy: S (t) = S,(t) = S3(t) against Hy:there is at least one difference, that if H; is accepted, it means the
clusters explain different survival probabilities over time. It uses the following test statistic:

¢ (0; — Ep)?
2= —_— (13)
x Zi=1 E;

n
0;—E = Z},zl(mu —eij) (14)
=g (55 ) w
3] Z}({;:1 nkj =1 3] I

where G is the number of groups, 0; 1s the observed value for group i, E; is the expected value for group i,
m; is the number of patients who experienced an event in group i at time t(j), n;; is number at risk of i group
at time t(j), and e;; 1s expected value of i-group at time t(jy.

2.6 Cox Proportional Hazard

The Cox Proportional Hazards model can measure the fold-risk (Hazard Ratio) of an individual's survival
time shortening for each one-unit increase in a predictor. This method seeks to predict the value ef (which is
hazard ratio) by the following formula:
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h(t|x) = hy(t)e®™® (16)

where h(t) is the hazard function at time t, hy(t) is the baseline hazard (the hazard when all covariates are
zero). However, Cox proportional hazard has important assumption that is proportional hazard assumption,
which assumes that the hazard value of target variable and predictor needs to be constant over time, which means
there 1is no significant change over time in the hazard of all the objects being compared. The survival time of each
individual is also assumed to be independent (event that happen in one individual does not affect the other
individual’s event).

2.7 Concordance Index

The Concordance Index (C-Index) is used to evaluate the features used in predicting survival outcomes
from a model. The C-Index measures the ability of a model to correctly rank survival times based on predictor
values [22], [23]. For example, in the case of predictors and response variables that are directly proportional,
then after the response variables are sorted from smallest to largest, the match of the predictor order from smallest
to largest 1s calculated as the C-Index. The C-Index in survival analysis calculated as [24]:

o o T A i I(TE™ < TPP)I(M, > M) 7
?I:1Ai Z?I:i+1 I(Tiobs < 7}_0175)

where T?PS is the time to event or censoring, and 4; is the event indicator (1 if event, 0 if censored). If 4; =
1 then T?PS = T;, in opposite, if 4; = 0 then T; > T°PS because the event must have occurred after the recording
time 1n the dataset whose exact value is unknown. Moreover M; is the predicted risk score from the model for i
subject. Likewise in random forest formula, I(.) is the indicator function. A pair of values is said to be discordant
it M; > M; and Ti"bs < Tj"bs or vice versa. The more discordant pairs, the closer the C-Index is to 0.5 (random
chance), while 1.0 is perfect order prediction.

2.8 Likelihood Ratio Test

The likelihood ratio (LRT) tests whether all predictors simultaneously have a significant effect on the model
(i.e., compares a full model to a reduced/null model) [25]. The LRT testing Hy: f; = B = -+ = f, = 0 over
H;:at least one f; # 0, using the following statistic [20]:

LR= —2InLlg— (=2InLg) ~ xZ, (18)

where p is the number of independent variables, L is the likelihood for the reduced model (no variables),
and L 1s the likelihood for the full model. The LRT can be used as an alternative strategy to evaluate the overall
significance of the model [26]. By adding likelihood ratio test can improve the interpretability of the analysis
result and increase clinician’s confidence in the diagnosis [27].

2.9 Wald Test
The Wald test assesses whether individual predictors are significant in the model. It tests Hy: RB = 0
against Hy: Rﬁ # 0, using the following statistic [28]:

w = (RB - 0) [Rvar(B) R]_l (RB - 0) (19)

where f 1s p X 1 estimation parameter vector of cox regression model, R is hypothesis matrix p X q size
that state the linear combination from parameter tested.

2.10 Data and Method

This study uses a quantitative method with time-to-event secondary data obtained from the cBioPortal
repository page [29] which combines research published by Curtis C. et al. in Nature 2012 [30] and Pereira et al.
in Nature Communications 2016 [31]. The METABRIC dataset contains samples from the UK and Canada but
represents humans in general as biological beings. Both datasets are incomplete (having missing values), so
random forest imputation was performed to prevent information loss. The term Survival Time in this research
always means how many months takes from patient initial diagnosis to their death.

The analysis uses the semi-parametric Cox Proportional Hazards model to observe whether a variable
increases or decreases the risk of death or relapse for breast cancer patients. The response variables used are
Survival Time (time from initial diagnosis to patient’s death) and Relapse-Free Time (time from initial diagnosis
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to patient’s first relapse), which are analyzed separately. This addresses the research gap from article [6] which
used relapse-free time as a predictor instead of response variable. The Concordance Index is an evaluation metric
for predictors n a survival model that determines whether the predictor significantly influences the response
variable or just not more than a random event.

The calculation and algorithm execution were assisted using R Studio software with relevant libraries. The
research procedure is as follows:

a. Retrieving time-to-event data and patient characteristics from the cBioPortal repository;

b. Performing data pre-processing (row deletion and Random Forest imputation);

c. Determining the survival time and relapse-free time variables as response variables and other variables

that can be known at the time of initial diagnosis as predictor variables;

d. Testing the proportional hazards (PH) assumption for all predictors against both response variables

separately using the Schoenfeld test;

e. Clustering the data using the K-Medoids method;

f.  Comparing the PH assumption test results before and after clustering;

g. Creating Kaplan-Meier Curves for the clustered data and performing the log-rank test;

h. Building Cox proportional hazards models for each response variable;

1. Identifying significant predictors based on the Cox regression results;

J- Analyzing the hazard ratio of each significant predictor;

k. Evaluating the models using the Concordance Index, Likelihood Ratio test, and Wald test.

‘When the proportion of missing values in certain variable exceeded 109, listwise deletion was applied to
ensure consistency in model estimation. While this approach avoids additional assumptions regarding missing
data mechanisms, it may itroduce selection bias if the excluded observations differ systematically from those
retained. Consequently, the analytical sample may not fully represent the underlying patient population,
potentially limiting the generalizability of the findings. Tumor Stage was also excluded due to substantial
missingness, which could compromise model stability if retained, despite its clinical relevance as a prognostic
factor.

Regarding the missing data mechanism, no formal statistical assessment was conducted to distinguish
between MCAR, MAR, or MNAR. The handling of missing values relied on the default behavior of the
randomForest-based imputation procedure, which implicitly assumes that missingness is at least missing at
random (MAR) given the observed covariates. If the missingness mechanism deviates from this assumption,
particularly under an MNAR process, bias cannot be ruled out, and the generalizability of the results should
therefore be mterpreted with caution.

3. RESULT AND ANALYSIS
3.1 Pre-processing Data Result

METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) dataset have samples that
lack survival time and relapse-free time values. There are 529 of 2,509 samples (21.08%) on those two variables
are missing values therefore they were removed and leaving 1980 samples. Furthermore, missing values were
found 1in other variables as shown in table 1 which are expressed as percentages of missing values in each variable.
The tumor stage variable was excluded from this study because it contains 36.27% missing values. Missing data
in other variables were imputed using random forest with n-tree=1000. The final total of rows in the dataset are
1980 samples without missing value after being imputed with Random Forest Imputation. The Random Forest
classifier achieved an OOB error of 0.186, indicating good generalization performance.

Table 1. Proportion of Missing Values for Each Variable

Variable Vﬁszu(‘;) Variable Vﬁ‘uszu(‘;)

Age at Diagnosis 0 Opverall Survival (Months) 0
Cellularity 3.34 Opverall Survival Status 0

ER Status 0 PR Status 0.05
Neoplasm Histologic Grade 4.65 Relapse Free Status (Months) 0
HER2 Status 0.05 Relapse Free Status 0

Primary Tumor Laterality 5.94 Tumor Size 1.33

Lymph nodes examined positive 3.99 Tumor Stage 36.27

Tmplications of Age-Based Chustering for Survival and Relapse-Free Analysis in METABRIC Breast Cancer (Alif Azhari)
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3.2 Survival Time as Dependent
3.2.1 PH Assumption Before Clustered

Directly conducting the Schoenfeld test on imputed data resulted almost all variables not meeting the
proportional hazards assumption, as shown in Table 2. The only variables that met the assumption were
Cellularity, Primary Tumor Laterality, and Tumor Size. The global model also did not meet the assumption, so
the overall features could not be modeled using cox regression.

Table 2. Schoenfeld Test Result

Variable P-value

Age at Diagnosis < 2e-16
Cellularity 0.16956

ER Status < 2e-16
Neoplasm Histologic Grade 2.4e-11
HER?2 Status 0.00014
Primary Tumor Laterality 0.76737
Lymph nodes examined positive 0.01735
PR Status 7.4e-13

Tumor Size 0.24729

Global < 2e-16

Even after removed variables that does not met proportional hazard assumption, there still variable not
meet the assumption i.e. Tumor Size as shown in table 3. P-value for the global test is very small, where the value
exactly at the critical point of significance 0.05. Concordance index of 0.614 demonstrated discriminative ability
on model.

Table 3. Schoenfeld Test Results After Removing Non-Significant Variables

Variable P-value
Cellularity 0.061
Primary Tumor Laterality 0.752
Tumor Size 0.047
Global 0.050

3.2.2 K-Medoids Clustering

Unsupervised machine learning was conducted as a way to meet the proportional hazards assumption by
clustering the Age at Diagnosis variable and performing survival analysis for each cluster created. The elbow
method considered the optimal number of clusters 1s 3 as in figure 2, which were labelled as Low-Age Cluster,
Middle-Age Cluster, and High-Age Cluster. Number of observations in each cluster, respectively, from low to
high cluster 1s 586, 706, and 688. Figure 1 shows that the middle-age cluster had longer maximum survival times
(in months) than the low-age and high-age cluster. Notably, the clustering algorithm was only run on the Age at
Diagnosis variable as one-dimensional clustering and y-axis at figure 1 1s shown just for comparing survival time
between cluster.

K-Medoid Clustering

Optimal number of clusters
Elbow Method for K-Medoids

300

. 3e+05
é Cluster %
%m Low Age 5 5405
£ +  Middle Age: 5 <
= @
z:u High Age g
z &
@ 100 ; 1e+05

0 0e+00

20 40 60 80 100 1 2 3 4 5 6 7 8 9 10
Age at Diagnosis Number of clusters k
Figure 1. K-Medoids Clustering for Age at Diagnosis Figure 2. Elbow Method for Optimal Cluster

Table 4 provides information on class boundaries and average survival times for each cluster. The low age
limit of 53.69 years was not chosen arbitrarily as in previous studies [3] but rather is the result of a more objective
from euclidean distance calculation using the k-medoid clustering algorithm. The average survival time increases
from the low-age cluster to the high-age cluster.
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Table 4. Descriptive Statistics for Age at Diagnosis Clusters by Survival Time

. . Max Survival Average Survival
Cluster Medoid Min. Age MaxAge Average Age Time (in months)  Time (in month)

Low Age 46.44 21.93 53.69 45.17 337.03 135.71
Middle Age 60.96 53.72 67.48 60.91 355.20 132.62
High Age 74.07 67.54 96.29 74.83 281.37 108.57

From a modeling perspective, violations of the proportional hazard assumption may arise when the effect
of covariates varies implicitly with age. In a global Cox model, this induces time-varying or age-dependent
regression effects, even when covariates are treated as time-invariant. By clustering patients using age as a one-
dimensional variable, the population is partitioned into more homogeneous subgroups in which covariate effects
are approximately constant over time. Within each age-based cluster, the Cox model can therefore be interpreted
as a local approximation, where proportional hazards hold more closely than in the aggregated population.

Conceptually, age-based clustering serves a similar purpose to stratified Cox models or time-dependent
covariates. Stratified Cox regression allows baseline hazards to vary across strata but does not estimate covariate
effects within each stratum, while time-dependent Cox models explicitly relax the proportional hazards
assumption at the cost of increased model complexity and reduced interpretability. In contrast, age-based
clustering offers a compromise by maintaining standard Cox model interpretation while mitigating non-
proportionality through population segmentation.

3.2.3 Kaplan-Meier Curve

Figure 3 shows Kaplan-Meier curve for each cluster created with death as the event. Those three clusters
have significant differences in estimate the probability particularly after 50 months of survival time. Log-rank test
conducted and gives p-value < 0.0001 means that all cluster significantly different in estimate the probability of
breast cancer patient’s survival time. Thus, clustering this data indeed important because patients with different
age groups are estimated significantly different probability than another. At 300 months of survival time, high-age

have not patient at risk anymore while low-age still have 6 and middle-age were 7.
Kaplan-Meier Curve Clustered by Age at Diagnosis
Cluster = Low Age = Middle = High Age

Probability
3
2
7
/ J’
1

e

=) b <0.0001 S T

0.00 T

o 100 200 300 400
Survival Time (month)
Numiber gt risk.

L] 586 357 149 6 0

B e 706 433 157 7 Q

¢ bss 353 68 o 0

Figure 3. Kaplan-Meier Curves for Survival Analysis of Clustered Data

3.2.4PH Assumption on Clustered Data

After data being clustered, Schoenfeld test re-conducted as detailed on Table 5 to compare the result after
clustered with the result before clustered. Before data was clustered, only two variables (Cellularity and Primary
Tumor Laterality) met the proportional hazard assumption, meanwhile after the clustering, the number of
variables meeting the assumption increased to five for low-age and six for middle-age and high-age. Cellularity,
HER?2 Status, and Lymph nodes examined positive met the assumption in all three cluster. Age at Diagnosis only
violates the assumption in the low-age cluster while Primary Tumor Laterality fails in high-age cluster and Tumor
Size fails in middle-age cluster. Neoplasm Histologic Grade only satisfies the assumption in middle-age cluster
and PR Status only satisfies it in high-age cluster.

Table 5. Schoenfeld Test Result for Clustered Data by Age

Variable P-value
Low-Age Middle-Age High-Age
Age at Diagnosis 0.00016 0.46354 0.4407
Cellularity 0.10919 0.58376 0.9902
ER Status 4.5¢-10 0.00079 6.5¢-05
Neoplasm Histologic Grade 1.3e-09 0.06890 0.0185
HER2 Status 0.06369 0.37967 0.7421
Primary Tumor Laterality 0.74281 0.38904 0.0393
Lymph nodes examined positive 0.15569 0.45290 0.8749
PR Status 9.3e-09 0.00712 0.0508
Tumor Size 0.46802 0.00144 0.9310
Global 2.0e-09 0.00774 0.0087
Global (exclude non-significant predictor) 0.157 0.373 0.72

Tmplications of Age-Based Chustering for Survival and Relapse-Free Analysis in METABRIC Breast Cancer (Alif Azhari)
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This means that clustering data can increase the number of variables meeting the proportional hazard
assumption but still interpretable since grouping patient ages 1s a common practice both academically and
practically. After removing the non-significant variables and conducting the assumption test again, the real global
p-value for the model was obtained for each three cluster, which each value far greater than the value of
assumption test before the data was clustered.

3.2.5 Cox Regression for Low-Age Cluster

Based on cox regression modeling for Survival Time (time from initial diagnosis to death) as dependent
variable, HER2 positive status, number of Lymph nodes that examined positive, and Tumor Size significantly
affect how long breast cancer patients take from mitial diagnosis to their death. Patients with positive HER2 Status
had 1.8 times higher risk if compared to HER2 negative status. Number of Lymph nodes examined positive
(HR>1) also positively associated with Survival Time hazard function. Similarly, higher Tumor Size (HR>1)
corresponded to lower Survival Time. The full result of cox regression provided in table 6. The model
demonstrated an acceptable discriminative ability with a concordance index of 0.691 (SE=0.017) which increased
as compared to before data was clustered. Moreover, the likelihood ratio was 75.31 (df = 6, p <0.001) and overall

‘Wald test was 107.8 (df = 6, p < 0.001).

Table 6. Low-Age Cluster Hazard Ratio

Variable Hazard Ratio 95% CI P-value
Cellularity.L 1.165378 0.862-1.575 0.319814
Cellularity.Q 0.976131 0.762-1.250 0.848244

HER2 Status (Positive) 1.801023 1.311-2.474 0.000281
Primary Tumor Laterality (Right) 1.070994 0.827-1.388 0.603684
Lymph nodes examined positive 1.092547 1.064-1.121 2.86e-11

"Tumor Size 1.009012 1.003-1.015 0.003209

3.2.6 Cox Regression for Middle-Age Cluster

For breast cancer patient with age from 53.72 to 67.48 years old when the initial diagnosis, HER2 positive
status and number of Lymph nodes that examined positive significantly affect how long breast cancer’s patients
take from initial diagnosis to their death. Unlike low-age cluster, Tumor Size was not tested in this cluster because
Tumor Size variable does not meet the proportional hazard assumption. Patients with positive HER2 Status had
1.45 times higher risk if compared to HER2 negative status. Number of Lymph nodes examined positive (HR>1)
also positively associated with survival time hazard function. The full result of this cluster provided in table 7.
The model demonstrated an acceptable discriminative ability with a concordance index of 0.629 (SE=0.016)
which increase as compared to before data was clustered. Moreover, the likelihood ratio was 58.81 (df = 8,
p<0.001) and overall Wald test was 79.87 (df = 8, p <0.001).

Table 7. Middle-Age Cluster Hazard Ratio

Variable Hazard Ratio 95% CI P-value
Age at Diagnosis 1.0236 0.996-1.052 0.0924
Cellularity.L 0.8535 0.664-1.098 0.2174
Cellularity.Q 1.0377 0.856-1.257 0.7056
Neoplasm Histologic Grade.LL 1.2711 0.950-1.702 0.1069
Neoplasm Histologic Grade.Q 1.1141 0.900-1.379 0.3208
HER?2 Status (Positive) 1.4494 1.090-1.926 0.0106
Primary Tumor Laterality (Right) 1.0310 0.840-1.265 0.7705
Lymph nodes examined positive 1.0528 1.037-1.068 2.39¢-12

3.2.7 Cox Regression for High-Age Cluster

For patient above 67.54 years old when the initial diagnosis, Age at Diagnosis, number of Lymph nodes
that examined positive, and Tumor Size significantly affect how long breast cancer patients take from initial
diagnosis to their death. Only at the high-age cluster HER2 positive status does not significantly increase the risk
of survival time. Patients with higher age when diagnosis had 1.07 times higher risk to have shorter survival time.
Number of Lymph nodes examined positive (HR>1) also positively associated with survival time hazard function
i high-age cluster. Likewise, higher tumor size when diagnosis corresponded with higher mortality time of
patient. The full result of this cluster provided in table 8. The model demonstrated an acceptable discriminative
ability with a concordance index of 0.649 (SE=0.0183) which increase as compared to before data was clustered.
Moreover, the likelihood ratio was 136.4 (df = 7, p < 0.001) and overall Wald test was 159.2 (df =7, p < 0.001).
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Table 8. High-Age Cluster Hazard Ratio

Variable Hazard Ratio 95% CI P-value

Age at Diagnosis 1.0723 1.0548-1.090 < 2e-16
Cellularity.L 0.9439 0.7647-1.165 0.5907
Cellularity.Q 1.1489 0.9722-1.358 0.1032

HER?2 Status (Positive) 1.3012 0.9341-1.813 0.1196
Lymph nodes examined positive 1.0749 1.0507-1.100 4.91e-10
PR Status (Positive) 0.8468 0.7065-1.015 0.0718
Tumor Size 1.0091 1.0046-1.014 6.03e-05

3.3 Relapse-Free Time as Dependent
3.3.1 PH Assumption Before Clustered

Changing the dependent variable with Relapse-free Time (time from initial diagnosis to first relapse) and
directly conducting the Schoenfeld test on imputed data resulted 4 variables fulfil the PH assumption as shown
in Table 9. The only variables that met the assumption were Cellularity, Primary Tumor Laterality, Lymph nodes
examined positive, and Tumor Size. But the global model if relapse-free set as dependent met the assumption
far from critical point unlike in survival time. Concordance index of 0.642 demonstrated discriminative ability
on model.

Table 9. Schoenfeld Test Results for Relapse-Free Time

Variable P-value
Age at Diagnosis 0.00013
Cellularity 0.38987
ER Status < 2e-16
Neoplasm Histologic Grade 4.4e-08
HER2 Status 0.02218
Primary Tumor Laterality 0.80671
Lymph nodes examined positive 0.56219
PR Status 8.8¢-13
Tumor Size 0.15649
Global < 2e-16

Global (exclude non-significant predictor) 0.46

3.3.2 K-Medoids Clustering

Clustering performed at Age at Diagnosis variable, so there’s no change in member of each cluster. Figure
1 shows comparably the Relapse-free Time each cluster, that the middle-age cluster had longer maximum relapse-
free time (in months) than the low-age and high-age cluster.
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Figure 4. K-Medoids Clustering for Relapse-Free Time

Table 10 provides no different information with table 4 unless the Average Relapse-free Time (in month)
column. Unlike the Average Survival Time that decreases as age cluster increases, Average Relapse-free Time
here even have the highest value in the middle-age cluster with the second higher is low-age cluster. Max relapse-
free time just likely max survival time that have highest value at middle-age cluster.
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Table 10. Descriptive Statistics for Age at Diagnosis Clusters by Relapse-Free Time
Cluster Medoid Min. Age  Max Age Average  Max Relapse-free  Average Relapse-free

Age Time (in months) Time (in month)
Low Age 46.44 21.93 53.69 45,17 330.37 116.14
Middle Age 60.96 53.72 67.48 60,91 351.00 118.72
High Age 74.07 67.54 96.29 74,83 281.36 100.05

3.3.3 Kaplan-Meier Curve

Figure 5 shows Kaplan-Meier curve for relapse as event. Unlike in Survival Time section, the three clusters
created did not show significant differences in estimated relapse probability. Log-rank test conducted and gives
p-value 0,21, means these 3 clusters do not necessarily benefit from clustering because have relatively same
estimated probability. This concludes that age group significantly different between cluster at death risk, but not
in relapse risk of patient. However, a cluster-specific analysis still be conducted to assess for differences in the
adherence to the proportional hazards (PH) assumption when the data are clustered. This stratification also
facilitates intra-cluster comparison between the hazards associated with Survival Time and Relapse-Free Survival
of each cluster.

Kaplan-Meier Curve Clustered by Age at Diagnosis
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Figure 5. Kaplan-Meier Curves for Relapse-Free Time in Clustered Data

3.3.4 PH Assumption on Clustered Data

After data being clustered, Schoenfeld test re-conducted as detailed on Table 11 to compare the result after
clustered with the result before clustered. Before data was clustered, only four variables met the proportional
hazard assumption, meanwhile after the clustering, the number of variables meeting the assumption increased to
5 for middle-age, 6 for high-age, but remain 4 in low-age cluster. HER2 Status and Primary Tumor Laterality met
the assumption 1n all three cluster. Age at Diagnosis and Cellularity only violates the assumption in the low-age
cluster, while Lymph nodes examined positive fails in high-age cluster, and Tumor Size fails in middle-age cluster.
Neoplasm Histologic Grade only satisfies the assumption in high-age cluster. In comparison with Survival Time
section, Cellularity does not meet the assumption in low-age cluster at relapse-free time as dependent. Then in
Neoplasm Histologic Grade, it changes from middle-age (Survival Time) to high-age (Relapse-free Time). PR
Status does not meet even one cluster in Survival Time, but met at high-age at Relapse-free Time as dependent.

Table 11. Schoenfeld Test Results for Clustering Data by Age for Relapse-Free Time

Variable P-value
Low-Age Middle-Age High-Age
Age at Diagnosis 0.026 0.12955 0.4756
Cellularity 0.026 0.89512 0.4927
ER Status 2.4¢-09 2.7¢-06 0.0002
Neoplasm Histologic Grade 1.0e-06 0.00091 0.9474
HER?2 Status 0.116 0.24051 0.8311
Primary Tumor Laterality 0.462 0.29331 0.4253
Lymph nodes examined positive 0.401 0.98500 0.0167
PR Status 1.2¢-07 0.00012 0.0318
Tumor Size 0.179 0.00852 0.0755
Global 5.2e-08 3.7¢-05 0.0142
Global (exclude non-significant predictor) 0.14 0.72 0.95
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In Relapse-free Time as dependent also show that clustering data can increase the number of variables
meeting the proportional hazard assumption. Even though low-age cluster remain at 4 variables met the
assumption, but middle-age and high-age cluster increased to 5 and 6 respectively. After removing the non-
significant variables and conducting the assumption test again, the real global p-value for the model was obtained
for each three cluster, and be found that middle-age and high-age are increased in p-value meanwhile low-age
decreased but still met the proportional hazard assumption.

3.3.5 Cox Regression for Low-Age Cluster

Based on cox regression modeling for Relapse-free Time as dependent variable, number of Lymph nodes
that examined positive and Tumor Size significantly affect how long breast cancer patients take from initial
diagnosis to relapse event (Relapse-Free Time variable). Number of Lymph nodes examined positive (HR>1)
positively associated with Relapse-free Time hazard function. Similarly, higher Tumor Size (HR>1)
corresponded to lower Relapse-free Time. The full result of hazard ratio and its p-value provided in table 12.
The model demonstrated an acceptable discriminative ability with a concordance index of 0.649 (SE=0.017)
which slightly increased as compared to before data was clustered. Moreover, the likelihood ratio was 48.29 (df

=4, p <0.001) and overall Wald test was 68.86 (df = 4, p < 0.001).

Table 12. Low-Age Cluster Hazard Ratio

Variable Hazard Ratio 95% CI P-value
HER2 Status (Positive) 1.363076 0.9970-1.864 0.0522
Primary Tumor Laterality (Right) 1.124557 0.8812-1.435 0.3455
Lymph nodes examined positive 1.075211 1.0492-1.102 6.21e-09
"Tumor Size 1.007174 1.0014-1.013 0.0154

3.3.6 Cox Regression for Middle-Age Cluster

For patient with age from 53.72 to 67.48 years old when initial diagnosis, HER2 positive status and number
of Lymph nodes that examined positive significantly affect how long breast cancer’s patients take from iitial
diagnosis to their relapse. Unlike low-age cluster, Tumor Size was not tested in this cluster because it did not
meet the proportional hazard assumption. Patients with positive HER2 Status had 1.554 times higher nisk if
compared to HER2 negative status, higher than when Survival Time as dependent variable. Number of Lymph
nodes examined positive also positively associated (HR>1) with Relapse-free Time hazard function. Only at the
middle-age cluster HER2 positive status significantly increased the risk of relapse occurred. The full result of this
cluster’s hazard ratio and its p-value provided in table 13. The model demonstrated an acceptable discriminative
ability with a concordance index of 0.61 (SE=0.017). Moreover, the likelihood ratio was 50.47 (df = 6, p < 0.001)
and overall Wald test was 73.16 (df = 6, p < 0.001).

Table 13. Middle-Age Cluster Hazard Ratio

Variable Hazard Ratio 95% CI P-value

Age at Diagnosis 1.023951 0.9968-1.052 0.08476
Cellularity.L. 0.883506 0.6887-1.133 0.32965
Cellularity.Q 1.035405 0.8549-1.254 0.72185

HER2 Status (Positive) 1.554553 1.1742-2.058 0.00206
Primary Tumor Laterality (Right) 1.022453 0.8332-1.255 0.83158
Lymph nodes examined positive 1.056256 1.0414-1.071 3.26¢-14

3.3.7 Cox Regression for High-Age Cluster

For patient above 67.54 years old when initial diagnosis, Neoplasm Histologic Grade and Tumor Size
significantly affect how long breast cancer patients take from mitial diagnosis to their relapse. Patients with higher
Neoplasm Histologic Grade had 2.019 times higher risk to have shorter Relapse-free Time. Likewise, higher
tumor size when diagnosis corresponded with lower relapse-free time of patient (HR > 1). The full result of this
cluster provided in table 14. The model demonstrated an acceptable discriminative ability with a concordance
index of 0.626 (SE=0.019). Moreover, the likelihood ratio was 49.63 (df = 8, p < 0.001) and overall Wald test
was 56.61 (df =8, p < 0.001).
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Table 14. High-Age Cluster Hazard Ratio

Variable Hazard Ratio 95% CI P-value
Age at Diagnosis 1.021985 0.9982-1046 0.0700
Cellularity.L 1.248094 0.8808-1769 0.2127
Cellularity.Q 0.916719 0.7080-1187 0.5095
*Neoplasm Histologic Grade™ . L 2.019313 12737-3202 0.0028
*Neoplasm Histologic Grade™.Q 0.749665 0.5548-1013 0.0606
HER?2 Status (Positive) 1.506188 0.9948-2281 0.0530
Primary Tumor Laterality (Right) 0.806894 0.6300-1033 0.0892
Tumor Size 1.016897 10111-1023 1.14¢-08

3.4 Discussion and Limitation

This study 1dentified that age-based clustering significantly improves model performance for survival time
but shows less distinct differentiation for relapse-free time, particularly in older clusters. A potential statistical
explanation for this discrepancy is the presence of competing risks. In the High-Age cluster, the mortality rate is
naturally higher; patients may die from other causes or from the cancer itself before a relapse event can occur or
be observed. In standard Cox proportional hazards models, death without relapse 1s typically treated as censored
data, which may bias the risk estimation for relapse in populations with high mortality. Future studies could
employ Competing Risk Regression (e.g., Fine-Gray models) to better isolate the specific risk of relapse by
accounting for death as a competing event.

Furthermore, this study has several imitations. First, the exclusion of samples with missing survival times
(listwise deletion) and the removal of the Tumor Stage variable due to high missingness (36%) may reduce the
clinical generalizability of the findings. Second, the imputation of other predictors was performed assuming data
were Missing At Random (MAR); deviations from this assumption could influence parameter estimates. Finally,
the benefits of age clustering appeared most pronounced in the younger cohort (Low-Age), suggesting that
biological heterogeneity in older patients might require more complex modeling than age stratification alone.

4. CONCLUSION

Clustering the METABRIC breast cancer patient dataset by Age at Diagnosis can improve the validity of
Cox proportional hazards models by enhancing adherence to the proportional hazard assumption for both the
Survival Time and Relapse-Free Time dependent variables. The discriminatory performance improved in all
clusters for the Survival Time as dependent variable, but only in the low-age cluster for the Relapse-Free Time
as dependent variable. This approach highlights heterogeneity in mortality risk across age groups, while relapse
risk appears less sensitive to age-based partiioning. Overall, the findings demonstrate that age-based clustering
offers a simple and interpretable strategy to regularize Cox models under proportional hazards violations, serving
as a practical alternative to more complex modeling approaches such as stratified or time-dependent Cox
regression.

Differences between survival time and relapse-free time suggest that these outcomes may be governed by
distinct underlying risk structures. In particular, the benefits of age-based clustering were most pronounced in
younger patients, while improvements were limited in middle-aged and older groups. This asymmetry indicates
that the effectiveness of age clustering may not generalize uniformly across all populations and should be
mterpreted with caution. This study is limited by its reliance on a single dataset and by methodological constraints
discussed earlier. Future research may extend this framework by comparing clustering-based approaches with
alternative Cox model extensions and by exploring additional statistical structures, such as competing risks, to
better capture the dynamics of relapse outcomes across age groups.
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