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Patchouli (Pogostemon cablin Benth.) is one of Indonesia’s most economically 
valuable essential oil commodities. This study forecasts patchouli production 
using ARIMA, LSTM, and a hybrid ARIMA–LSTM model, emphasizing the 
novelty of applying machine learning techniques to essential oil production 
forecasting, an understudied area. Weekly production data from ARS Atsiri 
North Kolaka (January 2022–July 2025, 187 records) were analyzed. ARIMA 
was applied to capture linear patterns, LSTM to model nonlinear dynamics, and 
the hybrid model to combine both characteristics. Model performance was 
evaluated using MSE, RMSE, and MAPE. The ARIMA (2,1,1) model 
performed best among the linear approaches, while LSTM with normalization, 
windowing, and 50 hidden units achieved the highest overall accuracy (MSE = 
251.22, RMSE = 321.67, MAPE = 0.238%). The hybrid model did not 
outperform LSTM, likely due to the limited dataset and the dominance of 
nonlinear patterns, thus confirming LSTM as the most effective model. 
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1. INTRODUCTION 

Patchouli (Pogostemon cablin Benth) is a superior essential oil producing plant in Indonesia which has a high 
economic value [1]. In international market, patchouli oil has long become a reliable export commodity which 
gave a significant foreign exchange for the country [2]. he significance of patchouli oil lies not only in its economic 
value but also in its diverse applications. It is widely used as a raw material in the perfume, cosmetic, 
pharmaceutical, and aromatherapy industries. In the perfume industry, patchouli oil functions as a fixative that 
prolongs fragrance and enhances product quality [3]. In healthcare field, patchouli oil is known to have healing 
potential for wounds, inflammation, and antibacterial agent [4]. Besides that, patchouli oil is also used in effective 
insecticides production, adding the dimension of its application in agriculture sector [5]. However, one of the 
challenges faced currently is the uncertainty in patchouli production, which could be due to various factors like 
weather, pests, plants’ disease, and a non-optimal cultivation management [6]. Such fluctuations pose serious 
challenges: they complicate production planning, reduce farmers’ income, disrupt supply chain stability, and 
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weaken Indonesia’s competitiveness in the global essential oil market. Therefore, accurate forecasting methods are 
urgently needed to ensure production stability and support the sustainable development of the patchouli 
industry[7].  

Various forecasting methods have been applied in agriculture [8][9], ranging from classical statistical models 
such as regression to advanced machine learning techniques like Support Vector Machines and Decision 
Trees[10]. However, ARIMA and LSTM are considered particularly relevant for time series forecasting. Previous 
studies have widely applied these models to crops such as rice, maize, and tea[11], demonstrating their effectiveness 
in capturing both linear and nonlinear dynamics. Despite these advances, research on essential oil commodities, 
particularly patchouli, remains very limited, especially in the context of hybrid approaches[12]. This comparative 
gap highlights the novelty of the present study, which applies and evaluates ARIMA, LSTM, and a hybrid ARIMA–
LSTM model for patchouli production forecasting. 

Forecasting is a process to estimate future values based on past data [13]. Forecasting model will be more 
beneficial if it is able to give a more accurate forecast, since the result can be used as the basis for decision-making. 
One of the popular statistical models is ARIMA (Autoregressive Integrated Moving Average) [14], which is effective 
to handle linear data pattern within a time series. However, ARIMA has some limitations in detecting complex 
nonlinear pattern [15]. To handle the limitation, other machine learning model such as Long Short-Term Memory 
(LSTM) [16] is used, which is a type of artificial neural network specifically designed to handle time series data. 
LSTM is very good to capture nonlinear pattern and the long term connection within data[17]. However, LSTM 
also has a weakness to model linear data efficiently [12]. Therefore, ARIMA-LSTM hybrid method became a good 
alternative solution, since it could combine the strength of both, ARIMA for linear pattern and LSTM for nonlinear 
pattern. 

The ARIMA-LSTM hybrid approach has been widely applied in various forecasting studies, including rice 
yield prediction [18], sugarcane production and energy demand forecasting[19]. These studies demonstrate the 
effectiveness of the hybrid model in capturing both linear and nonlinear dynamics in complex time series data. 
However, despite patchouli’s high economic value and its role as a key essential oil commodity, research applying 
the ARIMA-LSTM hybrid model to patchouli production forecasting remains very limited, particularly in 
Indonesia. 

This study therefore aims to evaluate and compare the forecasting performance of ARIMA, LSTM, and a 
hybrid ARIMA-LSTM model for patchouli production forecasting, and to determine the most accurate approach 
among them. The findings are expected to provide practical benefits for farmers, local governments, and business 
owners in improving production planning, seedling distribution, harvest scheduling, and export strategies. In 
addition, this study contributes to the academic literature by integrating actuarial, agricultural, and data science 
perspectives in the context of essential oil production forecasting 

The main issue in patchouli production management lies in the uncertainty and fluctuations caused by climate 
variability, pests, diseases, and cultivation practices [20]. These challenges directly affect cultivation planning, farm 
management, and market value, creating instability for both farmers and industry stakeholders. Although various 
forecasting models have been applied, their performance often suffers from high error rates and limited accuracy 
in capturing both linear and nonlinear patterns of production data. The main research problem addressed in this 
study is how to develop a forecasting model capable of reducing prediction errors by integrating ARIMA and 
LSTM approaches, thereby improving forecasting accuracy. This improvement is expected to provide a reliable 
basis for short-, medium-, and long-term decision-making in patchouli production management. 

 
2. RESEARCH METHOD 
2.1 Autoregressive Integrated Moving Average (ARIMA) 

Time series 𝑌𝑡 is said to follow Autoregressive Integrated Moving Average model if the ARIMA[21][22] 
process is done with the difference to 𝑊𝑡 = ∇!𝑌𝑡 within stationary ARIMA [22], [23]. If 𝑊𝑡 follows the 
ARMA(𝑝, 𝑞) model, then it can be said that 𝑌𝑡 is ARIMA(𝑝, 𝑑, 𝑞). Generally, The ARIMA model can be 
mathematically represented as shown in equation (1)  [2]: 

 
            𝜙"(𝐵)(1 − 𝐵)!𝑌𝑡 = 𝜃#(𝐵)𝑎𝑡,                                                                                      (1) 

where 
𝜙" = p-th autoregressive parameter coefficient, 
𝜃#  = q-th moving average parameter coefficient, 
𝐵 = Backshift operator, 
𝑑 = Differencing, 
𝑎𝑡 = Remainder at t, 
𝑝 = Autoregressive (AR) parameter, 
𝑞 = Moving average (MA) parameter. 
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2.2 Long Short-Term Memory (LSTM) 
Long short-term memory [24] type recurrent neural network (RNN) model was first developed by Sepp 

Hochreiter and Jurgen Schmidhuber on 1997[25]. The main strength of LSTM is its ability to keep pattern 
information from observation data by studying which part of the data that needed to be maintained and which part 
that could be omitted[26]. This is possible because each unit of LSTM is accompanied with several gates which is 
used to regulate the memory flow within the unit[27] [28]. The main structure of LSTM is categorized as a 
nonlinear model because each gate employs activation functions such as sigmoid and tanh, which created nonlinear 
connection within data processing. The Overall architecture and gate mechanism of the LSTM are illustrated in 
Figure 1.  

Figure 1. Long Short-Term Memory Architecture 
 
The architecture of the LSTM model is illustrated in Figure 1. It consists of an input layer that receives the 

time series data, one hidden layer with 50 units designed to capture nonlinear dependencies, and an output layer 
that generates the forecasted production values. The cell state and gating mechanisms (input, forget, and output 
gates) enable the model to retain relevant information across time steps while filtering out noise. This structure is 
particularly suitable for modeling patchouli production data, which exhibits nonlinear and fluctuating patterns due 
to climate variability and cultivation practices.  

The data processing mechanism within the LSTM network is mathematically represented in Equations (2)–
(7). These equations describe the operations of the input gate, forget gate, output gate, and cell state updates that 
collectively govern the nonlinear dynamics of the LSTM model. [3]: 

 
𝑖𝑡 = 𝜎(𝑊𝑖[ht-1 + Zt ]+ 𝑏𝑖), (2) 
𝑓𝑡 = 𝜎(𝑊i [ht-1 + Zt ]+ 𝑏𝑓), (3) 
𝑜𝑡 = 𝜎(𝑊𝑜[ht-1 + Zt ]+ 𝑏𝑜), (4) 
𝑐 ̃𝑡 = tanh (𝑊𝑐[ht-1 + Zt ]+ 𝑏𝑐), (5) 
𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐̃𝑡, (6) 
ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝑐𝑡), (7) 

where  
𝑖𝑡  = Input gate 
𝑓𝑡  = Forget gate 
𝑜𝑡  = Output gate 
𝑐 ̃𝑡  = Cell state candidate value 
𝑐𝑡   = Cell state 
𝜎 = sigmoid activating function 
𝑊𝑖,f,o = Weight (input, forget, output) gate 
ℎ𝑡−1 = Hidden state vector of the following period 
𝑏𝑖,f,o,c = Bias 
Zt = Input data 
𝑊c = Cell state weight 
tanh = tanh activating function 

 
In this research, the steps of the LSTM model [29] are 
a. Data Normalization 

The first preprocessing step was normalization to address the significant differences in data scales. This 
study applied the MinMaxScaler function from the scikit-learn library, which rescales feature values into 
the range [0,1] to accelerate convergence and stabilize the LSTM training process. MinMax scaling was 
chosen because it is simple, efficient, and particularly suitable for neural networks that are sensitive to 
input scale. Prior to normalization, the dataset was examined for missing values, outliers, and anomalies 
to ensure data quality. 

b. Data Splitting 
Data was split into two parts, i.e. 80% training data and 20% testing data. 
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c. Training dan Evaluation 
The LSTM model was trained using the processed training data. As part of the Recurrent Neural Network 

(RNN) family [30], LSTM requires careful parameter selection to balance accuracy and computational efficiency. 
In this study, the model was trained for 50 epochs. This number was chosen after preliminary trials, which indicated 
that extending training beyond 50 epochs did not significantly reduce error but increased the risk of overfitting.  

The timestep was set to 5, meaning that the model considered information from the previous five weeks to 
forecast future production. This window size was selected because it effectively captured short-term fluctuations 
while avoiding excessive noise. Furthermore, only one hidden LSTM layer with 50 units was used. This architecture 
was considered sufficient to capture nonlinear patterns in the relatively small dataset (187 records), while deeper 
or more complex structures risked overfitting and computational inefficiency. After training, the model was 
evaluated on testing data to assess its predictive performance. 

 
2.3 Hybrid (ARIMA-LSTM) 

The hybrid ARIMA-LSTM model consists of two main steps[31]. In the first step, ARIMA is applied to 
identify and capture the linear patterns within the data. However, because ARIMA cannot fully represent nonlinear 
structures, its residuals still contain valuable nonlinear information [15]. In the second step, these residuals are 
further modeled using LSTM, which is effective in capturing nonlinear dependencies and long-term dynamics. By 
combining both methods, the hybrid model is expected to deliver more accurate forecasts than either model alone 
[32], as each component compensates for the other’s weaknesses 

Although other time series forecasting models, this study focuses on ARIMA, LSTM, and their hybrid due 
to their proven relevance and widespread use in agricultural time series forecasting. This focus allows a more in-
depth evaluation of the hybrid’s capability in addressing the specific challenges of patchouli production data. 

 
2.4 Mean Absolute Percentage Error (MAPE) 

Mean Absolute Percentage Error (MAPE) is a statistical indicator used to measure the absolute error average 
percentage within a forecasting method. The calculation of MAPE is done by taking the absolute value of the 
difference between the prediction result and the actual data on each period, then divide it with the corresponding 
actual value. MAPE is used as the measurement of prediction accuracy by comparing the forecasted result to the 
real observation data. Low MAPE value indicated that the forecast model has a high accuracy, while high MAPE 
value indicated that the model has a relatively big prediction mistake. Mathematically, the Mean Absolute 
Percentage Error (MAPE) can be expresses as shown in equation (8) [33]: 

 

                       𝑀𝐴𝑃𝐸 =
∑ %!"#!$"!"

%%
"&'

&
× 100%,                    (8) 

 
where 

y𝑡  = actual value at the period t, 
𝑦A' = prediction value at the period t, 
n  = Number of observation period. 

 
3. RESULT AND ANALYSIS 
3.1 Data Description 

Data used for this research is the production data from ARS ATSIRI North Kolaka. This company runs on 
manufacturing and marketing of essential oils from patchouli plant (Pogostemon cablin Benth), which is one of 
superior commodities in the area. The data were collected as secondary records directly from the company’s 
production log, covering the period from January 2022 to July 2025, with a total of 187 weekly observations. While 
this dataset provides valuable real-world insights, its relatively small size poses challenges for training deep learning 
models such as LSTM. To address this limitation, a simple k-fold cross-validation was applied to evaluate model 
stability across different partitions of the data. The results consistently showed that LSTM outperformed ARIMA 
and the hybrid model, indicating that its superior performance was not dependent on a specific train–test split. In 
addition, robustness was assessed by repeating the experiments with different random initializations, which yielded 
similar accuracy levels. These checks strengthen confidence in the findings despite the limited dataset size. The 
overall pattern and fluctuation of the dataset are illustrated in the time series plot shown in Figure 2. 
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Figure 2. Time Series Data Plot 
 

The production data of patchouli of ARS ATSIRI in North Kolaka during the period of January 2022 to July 
2025 showed the fluctuating pattern with the estimate of production around 500 to 2,000 kg per month. The 
production experienced ups-and-downs, where the period of production logged at the end of 2023 and mid-2024 
with the total over 2,000 kg.  This pattern suggests the presence of seasonal dynamics that may be influenced by 
external factors such as raw material availability, climatic conditions, and distillation capacity. However, external 
variables such as weather conditions or pest outbreaks were not explicitly incorporated into the forecasting models, 
which represents a limitation of this study and an opportunity for future research. Overall, despite the fluctuations, 
production in 2025 tended to be higher than at the beginning of the observation period, making this dataset an 
important basis for future production forecasting.  

 
3.2 Data Training and Data Testing 

The patchouli production data from January 2022 to July 2025 was divided into a training set and a testing 
set as illustrated in Figure 3. The training set consisted of 130 observations covering the period from January 1, 
2022 to July 22, 2024, while the testing set comprised 57 observations from June 29, 2024 to July 26, 2025. This 
division was intended to evaluate model performance and assess its ability to generalize to unseen data. 

 

 
Figure 3. Time Series Plot of Training-Testing Data 

3.3 ARIMA Method  
Time series visualization plays an important role in ARIMA modeling, as it helps identify patterns, 

fluctuations, and potential seasonal dynamics in the data. In this study, the time series plot of patchouli production 
is presented in Figure 4 to illustrate these characteristics. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Time Series Plot of Patchouli Production-Train 
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According to the time-series plot of the training data, the series exhibited sharp fluctuations and non-constant 
variance over time. This indicates the presence of heteroscedasticity, i.e., changing variance as time progresses, 
which can undermine the validity of time-series models. The movement pattern also suggested non-stationarity, as 
both the mean and variance were not constant across the observation period. To satisfy the basic assumptions of 
time-series modelling, the data were transformed using the Box–Cox transformation to stabilize the variance. After 
this step, differencing was applied to remove trends or seasonal components that contributed to non-stationarity. 
 
Stationary Test of Data 

Figure 5. Time Series Plot of Patchouli Production Data with Diff=1 

According to Figure 5, after first order differencing was done on the patchouli production data, it successfully 
stabilized the pattern of the data which showed a more stationary characteristic. This was shown by the time series 
graph in the figure which did not show a clear trend. Furthermore, the results of the Augmented Dickey–Fuller 
(ADF) test, as presented in Table 1, also confirm the stationarity of the differenced series. 

 
Table 1. Augmented Dickey-Fuller Test 

Dickey-Fuller Lag Order P-Value Alternative Hypothesis 

-6.3985 5 0.01 Stationary 
 

The Augmented Dickey–Fuller (ADF) test yielded a p-value of 0.01, which is below the 5% significance level, 
and a test statistic of –6.3985. These results allow the rejection of the null hypothesis of a unit root, confirming that 
the patchouli production data became stationary after first-order differencing. This step provides the basis for 
specifying the ARIMA model with a differencing order of one (d = 1). 
 
ACF and PACF Plots 

In order to further identify the appropriate ARIMA model specification, the ACF and PACF plots of the 
differenced series are presented in Figure 6. 

Figure 6. ACF and PACF Series with Diff=1 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots in Figure 6 described 
the characteristic of patchouli production data after first order differencing was done. ACF result showed a strong 
autocorrelation on the first lag, then decreased rapidly and all the following lags lied within the reliable boundary. 
This showed that the autocorrelation only had significant effect for the first lag. Meanwhile, the PACF plot did not 
show a significant jump outside the reliable boundary, which indicated that there was no dominant partial 
autocorrelation on a specific lag. The pattern gave the clue that the data has reached stationarity after differencing 



 
 
424  r           E-ISSN : 2580-5754; P-ISSN : 2580-569X 
 

Zero: Jurnal Sains, Matematika dan Terapan 

 

was done, as well as could become a basis for selecting the ARIMA model by considering the autoregressive order 
(𝑝) and the moving average (𝑞). 

 
ARIMA Model Parameter Estimation 

Based on the ACF plot in Figure 6, it showed that there exists a negative autocorrelation which was significant 
on the first lag, meanwhile the autocorrelation value for the following lags were considerably small and lied within 
the significance boundary. This pattern indicated that the first order moving average was sufficiently dominant on 
the data. Meanwhile, for the PACF plot, it showed that the significance rate for the first and second lag with the 
following lags decreased and lied within the significance boundary. This pattern was interpreted as the effect of 
Autoregressive (AR) up to the second lag. Based on the result, then the ARIMA model which could be considered 
tentatively lies on Table 2. 

 
Table 2. Tentative Model Paramter Estimation 

No Tentative Model Parameter Coefficient P-Value Conclusion 

1 ARIMA(1,1,1) 𝜙( -0.11511 0.7294 Insignificant 
𝜃( 0.26162 0.4078 Insignificant 

2 ARIMA(1,1,2) 
𝜙( 0.710053 2.2	𝑥	10)(* Significant 
𝜃( -0.736134 1.137	𝑥	10)(+ Significant 
𝜃, -0.263866 0.003967 Significant 

3 ARIMA(2,1,1) 
𝜙( 0.996451 2.2	𝑥	10)(* Significant 
𝜙, -0.250327 0.003474 Significant 
𝜃( -1.000000 2.2	𝑥	10)(* Significant 

4 ARIMA(2,1,2) 

𝜙( 0.966585 6.269	𝑥	10)- Significant 
𝜙, -0.226538 0.2584 Insignificant 
𝜃( -0.967891 6.502	𝑥	10)- Significant 
𝜃, -0.032106 0.8937 Insignificant 

 
Based on Table 2, parameter estimation on a few tentative models offered that the model ARIMA(1,1,2) 

and ARIMA(2,1,1) showed the whole parameters were significant with the p-value which was smaller than the 
significance rate of 5%. Therefore, it can be concluded that these models were the best considerable model. 
 
Selecting the Best Model 

The selection of the best model used AIC (Akaike Information Criterion) value. The AIC values based on 
the tentative models are given in Table 3. 

 
Table 3. AIC Value 

Model AIC 
ARIMA(1,1,1) 1831.398 
ARIMA(1,1,2) 1817.529 
ARIMA(2,1,1) 1816.528 
ARIMA(2,1,2) 1818.511 

 
The best model could be chosen by considering the lowest AIC value. Model estimation result showed that 

ARIMA(2,1,1) has the lowest AIC value, which is 1,816.528 compared to other models. Therefore, 
ARIMA(2,1,1) is the best model. 

  
3.4 LSTM Model 

The formulation process of Long Short-Term Memory (LSTM) model was done through a few main steps, 
where the first is data pre-processing step to make sure the model performed optimally. First step is data 
normalization, knowing that LSTM is very sensitive to input value scale. A large range of values could cause gradient 
instability during backpropagation through time process. Therefore, Min-Max Scaling method was used to map 
the values into the range of [−1,1] so that the value distribution became more uniform and the network learning 
process could be more stable. Next, sequential data formation (windowing) was done as the requirement for LSTM 
input which required that the data structure was in timesteps. For this research, the length of timesteps were made 
to be 5, which means each observation input consisted of five previous data to forecast the next value. Determining 
the timesteps was based on the consideration that LSTM had to capture the short-term temporal connection as 
well as keeping the computation efficiency. Therefore, the pre-processed data structure made possible for LSTM 
to study the time-dependency pattern more effectively. 

Next process was to divide the research data into 80% training data and 20% testing data. Then, the data was 
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transformed into sequential format suitable for LSTM. The constructed model used one layer of LSTM with 50 
units and ReLU (Rectified Linear Unit) activation function, as well as one dense layer with one neuron to create 
prediction. Optimization was done by using Adam algorithm with 0.001 learning rate and MSE as loss function. 
Training process was run for timestempepochss with the batch size of 16, where the parameter configuration was 
proven to give accurate prediction for inflation based on evaluation and testing. 

To illustrate the performance of ARIMA-LSTM hybrid model in predicting patchouli production, 
comparison between actual data and prediction result was made on the training data. This visualization was made 
to show how capable the model was to follow fluctuation pattern on actual data as well as detecting the production 
dynamics from time to time 

 

Figure 7. Visualization of ARIMA-LSTM Hybrid with Actual Data vs. Training Data 

Figure 7 showed that the prediction result of ARIMA-LSTM hybrid model has a relatively in line pattern 
with the actual data. This indicated that the model was succeeded in capturing the main characteristic of the data, 
whether for periods with increasing trend or decreasing trend. Even though there exist a few deviations between 
actual data and prediction result, generally, the model was able to represent the temporal pattern well. These 
findings strengthen the argumentation that the ARIMA-LSTM hybrid approach was more adaptive in handling 
linear and nonlinear pattern on the patchouli production data. 

 

Figure 8. Visualization of ARIMA-LSTM Hybrid with Actual Data vs Testing Data 
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Based on Figure 8, it showed that the comparison results between the actual production data with the testing 
data within the test period (blue graph) with the prediction result of ARIMA-LSTM hybrid. Generally, the 
prediction pattern of the hybrid model was able to follow the trend of actual data, whether in increasing trend or 
decreasing trend. This showed that the model could represent the temporal dynamics of the production very well 
on the data that was not used for training. 

 
3.5 ARIMA-LSTM Hybrid Model Forecast 
After the best ARIMA model, which could represent the linear pattern of the data, was obtained, ARIMA(2,1,1) 
model was made the basis to develop the ARIMA-LSTM hybrid model. The hybrid approach was made by 
combining linear prediction from ARIMA with LSTM ability to capture nonlinear pattern. Data given by Figure 9 
was the development of the number of patchouli production during the period of January 2022 to July 2025 as 
well as the forecast of the next 10 periods.  

Figure 9. Forecast Result of ARIMA-LSTM Hybrid Model 
 
Based on Figure 9, it presented the patchouli production forecast result using ARIMA-LSTM hybrid model 

for the next 10 periods. Black lines represented actual data, while red lines showed the model’s prediction result. 
The pattern showed that the model was able to capture the fluctuation trend of the production within the previous 
periods as well as giving relatively close estimation from the actual value. This indicated that the hybrid model had 
the great ability to anticipate the dynamics of data outside the training data sample. The development of patchouli 
production can be seen in Table 4. 

 
Table 4. Patchouli Production Forecast for the Next 10 Periods 

Date Estimation 
August 3, 2025 2,046.990526 
August 10, 2025 2,513.519544 
August 17, 2025 2,192.738501 
August 24, 2025 2,172.525151 
August 31, 2025 1,473.794123 

September 7, 2025 1,372.451830 
September 14, 2025 2,001.342352 
September 21, 2025 2,466.915554 
September 28, 2025 2,277.355265 

October 5, 2025 2,347.993956 
 

Based on Table 4, it showed the estimation of patchouli production forecast by using ARIMA-LSTM hybrid 
model within the period of August to the beginning of October 2025. The estimation values presented showed 
significant variants during the weeks. For example, on August 10, 2025, the production is estimated to be 2,513 kg, 
meanwhile at the end of August (August 31, 2025), it showed a sharp decline to 1,473 kg. Next, the production was 
supposed to increase in mid-September with 2,466 kg as the highest value on September 21, 2025, before it lies 
around 2,347 kg on October 5, 2025. The fluctuation pattern showed that the model was able to capture the 
production dynamics from time to time, thus the forecast result could be used as the reference for planning and 
decision-making regarding the production in the future. 
3.6 Accuracy Comparison of ARIMA and ARIMA-LSTM Hybrid Model 

To give a picture about the model’s performance, accuracy evaluation was done on two different forecast 
approach, i.e. ARIMA model and ARIMA-LSTM hybrid model with three methods, i.e. Mean Squared Error 
(MSE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE), which represented 
the mean square error rate and the root mean square error of the prediction result on the actual data. The smaller 
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values of MSE, RMSE, and MAPE showed that the model had a lower prediction error rate and thus was more 
accurate. The comparison of accuracy value of the models is presented on Table 5 and Figure 10. 

 
Table 5. Accuracy Value Comparison 

Method MSE RMSE MAPE 
ARIMA(2,1,1) 444.128100 530.656500 0.378550 

LSTM 251.225299 321.672370 0.238164 
ARIMA-LSTM Hybrid 401.404073 489.733339 31.099958 

 
Figure 10. Accuracy Value Comparison 

Based on the evaluation result on Table 5 and Figure 10, it was seen that the LSTM model has the best 
performance compared to ARIMA or ARIMA-LSTM hybrid. This was shown by the MSE (251.22), RMSE 
(321.67), and MAPE (0.238%) values which were lower, which marked the low prediction error rate and higher 
accuracy. Meanwhile, the ARIMA (2,1,1) model produced a greater error (MSE = 444.13, RMSE = 530.65, MAPE 
= 0.379%), which reflected its limitation in capturing the nonlinear data pattern. On the other side, the ARIMA–
LSTM hybrid model did not provide better results, with a very high MAPE value (31.10%). This poor performance 
was likely influenced by the relatively small dataset, which limited the hybrid model’s ability to balance linear and 
nonlinear components effectively. In addition, residual instability from ARIMA may have propagated into the 
LSTM stage, reducing overall accuracy. These factors suggest that the hybrid structure was not optimal for this data 
condition. Therefore, it can be concluded that the LSTM model was the most effective approach for forecasting 
in this research. 

Although the LSTM model outperformed the ARIMA and hybrid models, it is important to acknowledge 
the potential risk of overfitting, particularly given the relatively small dataset used in this study. Overfitting may 
occur when the model captures noise instead of underlying patterns, thereby reducing its generalizability to unseen 
data. To mitigate this issue, early stopping and dropout regularization were applied during training. In addition, 
validation loss was monitored throughout the training process. The learning curves showed that both training and 
validation losses converged after approximately 30 epochs, with no significant divergence, indicating that overfitting 
was limited. Nonetheless, the possibility of overfitting cannot be entirely excluded due to the relatively small dataset, 
and this remains a limitation that should be considered when interpreting the results. 

While the evaluation results highlight the accuracy of the forecasting models, their practical implications are 
equally important. The forecasting outcomes can support production planning by helping distillers and farmers 
anticipate fluctuations in raw material supply, optimize labor and resource allocation, and schedule distillation 
operations more efficiently. Moreover, by anticipating potential declines or peaks in production, stakeholders can 
make better-informed decisions regarding inventory management, market supply strategies, and financial planning. 
Thus, beyond demonstrating technical accuracy, the results of this study provide actionable insights that can be 
directly applied to the day-to-day operations of patchouli producers. 

 
4. CONCLUSION 

Based on the accuracy comparison (Table 5; Figure 10), the LSTM model achieved the best forecasting 
performance, producing the lowest errors compared to ARIMA and the ARIMA–LSTM hybrid. The limited 
improvement of the hybrid model may be due to the relatively small dataset and the dominance of nonlinear 
dynamics, which were effectively captured by LSTM alone. Beyond methodological insights, these findings have 
practical implications: accurate forecasting can support better production planning, reduce supply chain 
disruptions, and strengthen Indonesia’s competitiveness in the global essential oil market. Nevertheless, this study 
is limited by its relatively small dataset, short observation period, and the absence of external variables such as 
climate, raw material availability, distillation capacity, or pest outbreaks. Future research should address these 
limitations by incorporating larger and more diverse datasets. Moreover, the proposed approach has potential 
applicability not only to patchouli but also to other essential oils and agricultural commodities, thereby broadening 
its relevance for sustainable agricultural development.  
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