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1. INTRODUCTION

Patchouli (Pogostemon cablin Benth) is a superior essential oil producing plant in Indonesia which has a high
economic value [1]. In international market, patchouli oil has long become a reliable export commodity which
gave a significant foreign exchange for the country [2]. he significance of patchouli oil lies not only in its economic
value but also n its diverse applications. It i1s widely used as a raw material in the perfume, cosmetic,
pharmaceutical, and aromatherapy industries. In the perfume industry, patchouli oil functions as a fixative that
prolongs fragrance and enhances product quality [3]. In healthcare field, patchouli o1l 1s known to have healing
potential for wounds, inflammation, and antibacterial agent [4]. Besides that, patchouli oil 1s also used in effective
msecticides production, adding the dimension of its application in agriculture sector [5]. However, one of the
challenges faced currently is the uncertainty in patchouli production, which could be due to various factors like
weather, pests, plants’ disease, and a non-optimal cultivation management [6]. Such fluctuations pose serious
challenges: they complicate production planning, reduce farmers’ income, disrupt supply chain stability, and
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weaken Indonesia’s competitiveness in the global essential oil market. Therefore, accurate forecasting methods are
urgently needed to ensure production stability and support the sustainable development of the patchouli
industry[7].

Various forecasting methods have been applied in agriculture [8][9], ranging from classical statistical models
such as regression to advanced machine learning techniques like Support Vector Machines and Decision
Trees[10]. However, ARIMA and LSTM are considered particularly relevant for ime series forecasting. Previous
studies have widely applied these models to crops such as rice, maize, and tea[11], demonstrating their effectiveness
in capturing both linear and nonlinear dynamics. Despite these advances, research on essential o1l commodities,
particularly patchouli, remains very limited, especially in the context of hybrid approaches[12]. This comparative
gap highlights the novelty of the present study, which applies and evaluates ARIMA, LSTM, and a hybrid ARIMA-
LSTM model for patchouli production forecasting.

Forecasting is a process to estimate future values based on past data [13]. Forecasting model will be more
beneficial if it 1s able to give a more accurate forecast, since the result can be used as the basis for decision-making.
One of the popular statistical models 1s ARIMA (Autoregressive Integrated Moving Average) [14], which is effective
to handle linear data pattern within a time series. However, ARIMA has some limitations in detecting complex
nonlinear pattern [15]. To handle the limitation, other machine learning model such as Long Short-Term Memory
(LSTM) [16] 1s used, which is a type of artificial neural network specifically designed to handle time series data.
LSTM is very good to capture nonlinear pattern and the long term connection within data[17]. However, LSTM
also has a weakness to model linear data efficiently [12]. Therefore, ARIMA-LSTM hybrid method became a good
alternative solution, since it could combine the strength of both, ARIMA for linear pattern and LSTM for nonlinear
pattern.

The ARIMA-LSTM hybrid approach has been widely applied in various forecasting studies, including rice
vield prediction [18], sugarcane production and energy demand forecasting[19]. These studies demonstrate the
effectiveness of the hybrid model in capturing both linear and nonlinear dynamics in complex time series data.
However, despite patchouli’s high economic value and its role as a key essential oil commodity, research applying
the ARIMA-LSTM hybrid model to patchouli production forecasting remains very limited, particularly in
Indonesia.

This study therefore aims to evaluate and compare the forecasting performance of ARIMA, LSTM, and a
hybrid ARIMA-LSTM model for patchouli production forecasting, and to determine the most accurate approach
among them. The findings are expected to provide practical benefits for farmers, local governments, and business
owners in improving production planning, seedling distribution, harvest scheduling, and export strategies. In
addition, this study contributes to the academic literature by integrating actuarial, agricultural, and data science
perspectives 1n the context of essential oil production forecasting

The main issue in patchouli production management lies in the uncertainty and fluctuations caused by climate
variability, pests, diseases, and cultivation practices [20]. These challenges directly affect cultivation planning, farm
management, and market value, creating instability for both farmers and industry stakeholders. Although various
forecasting models have been applied, their performance often suffers from high error rates and limited accuracy
in capturing both linear and nonlinear patterns of production data. The main research problem addressed in this
study is how to develop a forecasting model capable of reducing prediction errors by integrating ARIMA and
LSTM approaches, thereby improving forecasting accuracy. This improvement is expected to provide a reliable
basis for short-, medium-, and long-term decision-making in patchouli production management.

2. RESEARCH METHOD
2.1 Autoregressive Integrated Moving Average (ARIMA)

Time series Yt is said to follow Autoregressive Integrated Moving Average model if the ARIMA[21][22]
process is done with the difference to Wt = VYt within stationary ARIMA [22], [28]. If Wt follows the
ARMA(p, @) model, then it can be said that Yt is ARIMA(p, d, q). Generally, The ARIMA model can be
mathematically represented as shown in equation (1) [2]:

¢, (B)(1 — B)2Yt = 0,(B)at, (1)

where

¢, = p-th autoregressive parameter coeflicient,

0, = q-th moving average parameter coeflicient,

B = Backshift operator,

d =Differencing,

at = Remainder at t,

p = Autoregressive (AR) parameter,

q = Moving average (MA) parameter.
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2.2 Long Short-Term Memory (LSTM)

Long short-term memory [24] type recurrent neural network (RNN) model was first developed by Sepp
Hochreiter and Jurgen Schmidhuber on 1997[25]. The main strength of LSTM is its ability to keep pattern
mformation from observation data by studying which part of the data that needed to be maintained and which part
that could be omitted[26]. This is possible because each unit of LSTM is accompanied with several gates which 1s
used to regulate the memory flow within the unit[27] [28]. The main structure of LSTM is categorized as a
nonlinear model because each gate employs activation functions such as sigmoid and tanh, which created nonlinear
connection within data processing. The Overall architecture and gate mechanism of the LSTM are illustrated in

Figure 1.
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Figure 1. Long Short-Term Memory Architecture

LSTM

The architecture of the LSTM model is illustrated in Figure 1. It consists of an input layer that receives the
time series data, one hidden layer with 50 units designed to capture nonlinear dependencies, and an output layer
that generates the forecasted production values. The cell state and gating mechanisms (input, forget, and output
gates) enable the model to retain relevant information across time steps while filtering out noise. This structure 1s
particularly suitable for modeling patchouli production data, which exhibits nonlinear and fluctuating patterns due
to climate variability and cultivation practices.

The data processing mechanism within the LSTM network is mathematically represented in Equations (2)-
(7). These equations describe the operations of the input gate, forget gate, output gate, and cell state updates that
collectively govern the nonlinear dynamics of the LSTM model. [3]:

it = o(Wilha + Z. 1+ bi), @
ft=caW.[h.+Z ]+ by), 3)
ot = c(Wolhua +Z. 1+ bo), (4)
¢t = tanh (Welha + Z. |+ bo), ©)
Ct:ft*ct—x+it*zt, ©6)
ht = 0¢ * tanh (co), @)
where
it = Input gate
ft = Forget gate
0¢ = Output gate
Ct = Cell state candidate value
Ct = Cell state
o = sigmoid activating function
Wi = Weight (input, forget, output) gate
D = Hidden state vector of the following period
Disoc = Bias
7. = Input data
w. = Cell state weight
tanh = tanh activating function

In this research, the steps of the LSTM model [29] are

a. Data Normalization
The first preprocessing step was normalization to address the significant differences in data scales. This
study applied the MinMaxScaler function from the scikit-learn library, which rescales feature values into
the range [0,1] to accelerate convergence and stabilize the LSTM training process. MinMax scaling was
chosen because it 1s simple, efficient, and particularly suitable for neural networks that are sensitive to
mput scale. Prior to normalization, the dataset was examined for missing values, outliers, and anomalies
to ensure data quality.

b. Data Splitting
Data was split into two parts, 1.e. 80% training data and 209 testing data.
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c¢. Training dan Evaluation

The LSTM model was trained using the processed training data. As part of the Recurrent Neural Network
(RNN) family [30], LSTM requires careful parameter selection to balance accuracy and computational efficiency.
In this study, the model was trained for 50 epochs. This number was chosen after preliminary trials, which indicated
that extending training beyond 50 epochs did not significantly reduce error but increased the risk of overfitting.

The timestep was set to 5, meaning that the model considered information from the previous five weeks to
forecast future production. This window size was selected because it effectively captured short-term fluctuations
while avoiding excessive noise. Furthermore, only one hidden LSTM layer with 50 units was used. This architecture
was considered sufficient to capture nonlinear patterns in the relatively small dataset (187 records), while deeper
or more complex structures risked overfitting and computational inefficiency. After training, the model was
evaluated on testing data to assess its predictive performance.

2.3 Hybrid (ARIMA-LSTM)

The hybrid ARIMA-LSTM model consists of two main steps[31]. In the first step, ARIMA 1s applied to
identify and capture the linear patterns within the data. However, because ARIMA cannot fully represent nonlinear
structures, its residuals still contain valuable nonlinear information [15]. In the second step, these residuals are
further modeled using LSTM, which is effective in capturing nonlinear dependencies and long-term dynamics. By
combining both methods, the hybrid model is expected to deliver more accurate forecasts than either model alone
[32], as each component compensates for the other’s weaknesses

Although other time series forecasting models, this study focuses on ARIMA, LSTM, and their hybrid due
to their proven relevance and widespread use in agricultural time series forecasting. This focus allows a more in-
depth evaluation of the hybrid’s capability in addressing the specific challenges of patchouli production data.

2.4 Mean Absolute Percentage Error (MAPE)

Mean Absolute Percentage Error (MAPE) is a statistical indicator used to measure the absolute error average
percentage within a forecasting method. The calculation of MAPE 1s done by taking the absolute value of the
difference between the prediction result and the actual data on each period, then divide it with the corresponding
actual value. MAPE 1s used as the measurement of prediction accuracy by comparing the forecasted result to the
real observation data. Low MAPE value indicated that the forecast model has a high accuracy, while high MAPE
value indicated that the model has a relatively big prediction mistake. Mathematically, the Mean Absolute
Percentage Error (MAPE) can be expresses as shown in equation (8) [33]:

n |3/t—3A’t

Lr=1 Yt |
MAPE = — X 100%, 8

where
y: = actual value at the period t,
9, = prediction value at the period t,
n = Number of observation period.

3. RESULT AND ANALYSIS
3.1 Data Description

Data used for this research is the production data from ARS ATSIRI North Kolaka. This company runs on
manufacturing and marketing of essential oils from patchouli plant (Pogostemon cablin Benth), which is one of
superior commodities in the area. The data were collected as secondary records directly from the company’s
production log, covering the period from January 2022 to July 2025, with a total of 187 weekly observations. While
this dataset provides valuable real-world nsights, its relatively small size poses challenges for training deep learning
models such as LSTM. To address this limitation, a simple k-fold cross-validation was applied to evaluate model
stability across different partitions of the data. The results consistently showed that LSTM outperformed ARIMA
and the hybrid model, indicating that its superior performance was not dependent on a specific train-test split. In
addition, robustness was assessed by repeating the experiments with different random initializations, which yielded
similar accuracy levels. These checks strengthen confidence 1n the findings despite the limited dataset size. The
overall pattern and fluctuation of the dataset are illustrated in the time series plot shown in Figure 2.
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Figure 2. Time Series Data Plot

The production data of patchouli of ARS ATSIRI in North Kolaka during the period of January 2022 to July
2025 showed the fluctuating pattern with the estimate of production around 500 to 2,000 kg per month. The
production experienced ups-and-downs, where the period of production logged at the end of 2023 and mid-2024
with the total over 2,000 kg. This pattern suggests the presence of seasonal dynamics that may be influenced by
external factors such as raw material availability, climatic conditions, and distillation capacity. However, external
variables such as weather conditions or pest outbreaks were not explicitly incorporated into the forecasting models,
which represents a limitation of this study and an opportunity for future research. Overall, despite the fluctuations,
production in 2025 tended to be higher than at the beginning of the observation period, making this dataset an
important basis for future production forecasting.

3.2 Data Training and Data Testing

The patchouli production data from January 2022 to July 2025 was divided into a training set and a testing
set as 1llustrated in Figure 3. The training set consisted of 130 observations covering the period from January 1,
2022 to July 22, 2024, while the testing set comprised 57 observations from June 29, 2024 to July 26, 2025. This
division was intended to evaluate model performance and assess its ability to generalize to unseen data.
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Figure 3. Time Series Plot of Traming-Testing Data

3.3 ARIMA Method
Time series visualization plays an important role in ARIMA modeling, as it helps identify patterns,
fluctuations, and potential seasonal dynamics in the data. In this study, the time series plot of patchouli production
1s presented in Figure 4 to illustrate these characteristics.
Time Series Plot of Patchouli Production Data
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Figure 4. Time Series Plot of Patchouli Production-Train
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According to the time-series plot of the training data, the series exhibited sharp fluctuations and non-constant
variance over time. This indicates the presence of heteroscedasticity, 1.e., changing variance as time progresses,
which can undermine the validity of time-series models. The movement pattern also suggested non-stationarity, as
both the mean and variance were not constant across the observation period. To satisfy the basic assumptions of
time-series modelling, the data were transformed using the Box-Cox transformation to stabilize the variance. After
this step, differencing was applied to remove trends or seasonal components that contributed to non-stationarity.
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Figure 5. Time Series Plot of Patchouli Production Data with Diff=1

According to Figure 5, after first order differencing was done on the patchouli production data, it successfully
stabilized the pattern of the data which showed a more stationary characteristic. This was shown by the time series
graph in the figure which did not show a clear trend. Furthermore, the results of the Augmented Dickey-Fuller
(ADF) test, as presented in Table 1, also confirm the stationarity of the differenced series.

Table 1. Augmented Dickey-Fuller Test
Dickey-Fuller Lag Order P-Value Alternative Hypothesis
-6.3985 5 0.01 Stationary

The Augmented Dickey-Fuller (ADF) test yielded a p-value of 0.01, which is below the 5% significance level,
and a test statistic of -6.3985. These results allow the rejection of the null hypothesis of a unit root, confirming that
the patchouli production data became stationary after first-order differencing. This step provides the basis for
specifying the ARIMA model with a differencing order of one (d = 1).

ACF and PACF Plots
In order to further identify the appropriate ARIMA model specification, the ACF and PACF plots of the
differenced series are presented in Figure 6.
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Figure 6. ACF and PACEF Series with Diff=1

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots in Figure 6 described
the characteristic of patchouli production data after first order differencing was done. ACF result showed a strong
autocorrelation on the first lag, then decreased rapidly and all the following lags lied within the reliable boundary.
This showed that the autocorrelation only had significant effect for the first lag. Meanwhile, the PACF plot did not
show a significant jump outside the reliable boundary, which indicated that there was no dominant partial
autocorrelation on a specific lag. The pattern gave the clue that the data has reached stationarity after differencing
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was done, as well as could become a basis for selecting the ARIMA model by considering the autoregressive order
(p) and the moving average (q).

ARIMA Model Parameter Estimation

Based on the ACF plot in Figure 6, it showed that there exists a negative autocorrelation which was significant
on the first lag, meanwhile the autocorrelation value for the following lags were considerably small and lied within
the significance boundary. This pattern indicated that the first order moving average was sufficiently dominant on
the data. Meanwhile, for the PACF plot, it showed that the significance rate for the first and second lag with the
following lags decreased and lied within the significance boundary. This pattern was interpreted as the effect of
Autoregressive (AR) up to the second lag. Based on the result, then the ARIMA model which could be considered
tentatively lies on Table 2.

Table 2. Tentative Model Paramter Estimation

No  Tentative Model Parameter Coefficient P-Value Conclusion
o} -0.11511 0.7294 Insignificant
! ARIMA(LL1) 0, 0.26162 0.4078 Insignificant
o) 0.710053 2.2x10716 Significant
2 ARIMA(1,1,2) 0, -0.736134  1.137x 107**  Significant
6, -0.263866 0.003967 Significant
o)) 0.996451 2.2x10716 Significant
3 ARIMA(2,1,1) b, -0.250327 0.003474 Significant
0, -1.000000 2.2x 10716 Significant
o) 0.966585  6.269 x 1075 Significant
o1 ¢ b, -0.226538 0.2584 Insignificant
4 ARIMA(2,1,2) 0, -0.967891  6.502x 10™>  Significant
6, -0.032106 0.8937 Insignificant

Based on Table 2, parameter estimation on a few tentative models offered that the model ARIMA(1,1,2)
and ARIMA(2,1,1) showed the whole parameters were significant with the p-value which was smaller than the
significance rate of 5%. Therefore, it can be concluded that these models were the best considerable model.

Selecting the Best Model
The selection of the best model used AIC (Akaike Information Criterion) value. The AIC values based on
the tentative models are given in Table 3.

Table 3. AIC Value
Model AIC
ARIMA(,1,1) 1831.398
ARIMA(1,1,2) 1817.529
ARIMA(2,1,1) 1816.528
ARIMA(2,1,2) 1818.511

The best model could be chosen by considering the lowest AIC value. Model estimation result showed that
ARIMA(2,1,1) has the lowest AIC value, which is 1,816.528 compared to other models. Therefore,
ARIMA(2,1,1) is the best model.

3.4 LSTM Model

The formulation process of Long Short-Term Memory (LSTM) model was done through a few main steps,
where the first 1s data pre-processing step to make sure the model performed optimally. First step i1s data
normalization, knowing that LSTM is very sensitive to input value scale. A large range of values could cause gradient
mstability during backpropagation through time process. Therefore, Min-Max Scaling method was used to map
the values into the range of [—1,1] so that the value distribution became more uniform and the network learning
process could be more stable. Next, sequential data formation (windowing) was done as the requirement for LSTM
mput which required that the data structure was in timesteps. For this research, the length of timesteps were made
to be 5, which means each observation input consisted of five previous data to forecast the next value. Determining
the timesteps was based on the consideration that LSTM had to capture the short-term temporal connection as
well as keeping the computation efficiency. Therefore, the pre-processed data structure made possible for LSTM
to study the time-dependency pattern more effectively.

Next process was to divide the research data into 80% training data and 20% testing data. Then, the data was
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transformed into sequential format suitable for LSTM. The constructed model used one layer of LSTM with 50
units and ReLLU (Rectified Linear Unit) activation function, as well as one dense layer with one neuron to create
prediction. Optimization was done by using Adam algorithm with 0.001 learning rate and MSE as loss function.
Training process was run for timestempepochss with the batch size of 16, where the parameter configuration was
proven to give accurate prediction for inflation based on evaluation and testing.

To illustrate the performance of ARIMA-LSTM hybrid model in predicting patchouli production,
comparison between actual data and prediction result was made on the training data. This visualization was made
to show how capable the model was to follow fluctuation pattern on actual data as well as detecting the production
dynamics from time to time
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Figure 7. Visualization of ARIMA-LSTM Hybrid with Actual Data vs. Training Data

Figure 7 showed that the prediction result of ARIMA-LSTM hybrid model has a relatively in line pattern
with the actual data. This indicated that the model was succeeded in capturing the main characteristic of the data,
whether for periods with increasing trend or decreasing trend. Even though there exist a few deviations between
actual data and prediction result, generally, the model was able to represent the temporal pattern well. These
findings strengthen the argumentation that the ARIMA-LSTM hybrid approach was more adaptive in handling
linear and nonlinear pattern on the patchouli production data.
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Figure 8. Visualization of ARIMA-LSTM Hybrid with Actual Data vs Testing Data
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Based on Figure 8, it showed that the comparison results between the actual production data with the testing
data within the test period (blue graph) with the prediction result of ARIMA-LSTM hybrid. Generally, the
prediction pattern of the hybrid model was able to follow the trend of actual data, whether in increasing trend or
decreasing trend. This showed that the model could represent the temporal dynamics of the production very well
on the data that was not used for training.

3.5 ARIMA-LSTM Hybrid Model Forecast

After the best ARIMA model, which could represent the linear pattern of the data, was obtained, ARIMA(2,1,1)
model was made the basis to develop the ARIMA-LSTM hybrid model. The hybrid approach was made by
combining linear prediction from ARIMA with LSTM ability to capture nonlinear pattern. Data given by Figure 9
was the development of the number of patchouli production during the period of January 2022 to July 2025 as
well as the forecast of the next 10 periods.
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Figure 9. Forecast Result of ARIMA-LSTM Hybrid Model

Based on Figure 9, it presented the patchouli production forecast result using ARIMA-LSTM hybrid model
for the next 10 periods. Black lines represented actual data, while red lines showed the model’s prediction result.
The pattern showed that the model was able to capture the fluctuation trend of the production within the previous
periods as well as giving relatively close esimation from the actual value. This indicated that the hybrid model had
the great ability to anticipate the dynamics of data outside the training data sample. The development of patchouli
production can be seen in Table 4.

Table 4. Patchouli Production Forecast for the Next 10 Periods

Date Estimation
August 3, 2025 2,046.990526
August 10, 2025 2,5613.519544
August 17, 2025 2,192.738501
August 24, 2025 2,172.525151
August 31, 2025 1,473.794123

September 7, 2025 1,372.451830
September 14, 2025 2,001.342352
September 21, 2025 2,466.915554
September 28, 2025 2,977.355265

October 5, 2025 2,347.993956

Based on Table 4, it showed the estimation of patchouli production forecast by using ARIMA-LSTM hybrid
model within the period of August to the beginning of October 2025. The estimation values presented showed
significant variants during the weeks. For example, on August 10, 2025, the production is estimated to be 2,513 kg,
meanwhile at the end of August (August 31, 2025), it showed a sharp decline to 1,473 kg. Next, the production was
supposed to increase in mid-September with 2,466 kg as the highest value on September 21, 2025, before it lies
around 2,347 kg on October 5, 2025. The fluctuation pattern showed that the model was able to capture the
production dynamics from time to time, thus the forecast result could be used as the reference for planning and
decision-making regarding the production in the future.

8.6 Accuracy Comparison of ARIMA and ARIMA-LSTM Hybrid Model

To give a picture about the model’s performance, accuracy evaluation was done on two different forecast
approach, i.e. ARIMA model and ARIMA-LSTM hybrid model with three methods, i.e. Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE), which represented
the mean square error rate and the root mean square error of the prediction result on the actual data. The smaller
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values of MSE, RMSE, and MAPE showed that the model had a lower prediction error rate and thus was more
accurate. The comparison of accuracy value of the models is presented on Table 5 and Figure 10.

Table 5. Accuracy Value Comparison

Method MSE RMSE MAPE
ARIMA(2,1,1) 444.128100 530.656500 0.378550
LSTM 251.225299 321.672370 0.238164
ARIMA-LSTM Hybrid 401.404073 489.733339 31.099958
Performance Metrics Comparison Across Models
g | I I

Figure 10. Accuracy Value Comparison

Based on the evaluation result on Table 5 and Figure 10, it was seen that the LSTM model has the best
performance compared to ARIMA or ARIMA-LSTM hybrid. This was shown by the MSE (251.22), RMSE
(321.67), and MAPE (0.238%) values which were lower, which marked the low prediction error rate and higher
accuracy. Meanwhile, the ARIMA (2,1,1) model produced a greater error (MSE = 444.13, RMSE = 530.65, MAPL
= 0.379%), which reflected its limitation in capturing the nonlinear data pattern. On the other side, the ARIMA-
LSTM hybrid model did not provide better results, with a very high MAPE value (31.10%). This poor performance
was likely influenced by the relatively small dataset, which limited the hybrid model’s ability to balance linear and
nonlinear components effectively. In addition, residual instability from ARIMA may have propagated into the
LSTM stage, reducing overall accuracy. These factors suggest that the hybrid structure was not optimal for this data
condition. Therefore, it can be concluded that the LSTM model was the most effective approach for forecasting
in this research.

Although the LSTM model outperformed the ARIMA and hybrid models, it is important to acknowledge
the potential risk of overfitting, particularly given the relatively small dataset used in this study. Overfitting may
occur when the model captures noise instead of underlying patterns, thereby reducing its generalizability to unseen
data. To mitigate this issue, early stopping and dropout regularization were applied during training. In addition,
validation loss was monitored throughout the training process. The learning curves showed that both training and
validation losses converged after approximately 30 epochs, with no significant divergence, indicating that overfitting
was limited. Nonetheless, the possibility of overfitting cannot be entirely excluded due to the relatively small dataset,
and this remains a limitation that should be considered when interpreting the results.

‘While the evaluation results highlight the accuracy of the forecasting models, their practical implications are
equally important. The forecasting outcomes can support production planning by helping distillers and farmers
anticipate fluctuations in raw material supply, optimize labor and resource allocation, and schedule distillation
operations more efficiently. Moreover, by anticipating potential declines or peaks in production, stakeholders can
make better-informed decisions regarding inventory management, market supply strategies, and financial planning.
Thus, beyond demonstrating technical accuracy, the results of this study provide actionable insights that can be
directly applied to the day-to-day operations of patchouli producers.

4. CONCLUSION

Based on the accuracy comparison (Table 5; Figure 10), the LSTM model achieved the best forecasting
performance, producing the lowest errors compared to ARIMA and the ARIMA-LSTM hybrid. The Lmited
improvement of the hybrid model may be due to the relatively small dataset and the dominance of nonlinear
dynamics, which were effectively captured by LSTM alone. Beyond methodological insights, these findings have
practical implications: accurate forecasting can support better production planning, reduce supply chain
disruptions, and strengthen Indonesia’s competitiveness in the global essential oil market. Nevertheless, this study
1s lmited by its relatively small dataset, short observation period, and the absence of external variables such as
climate, raw material availability, distillation capacity, or pest outbreaks. Future research should address these
limitations by incorporating larger and more diverse datasets. Moreover, the proposed approach has potential
applicability not only to patchouli but also to other essential oils and agricultural commodities, thereby broadening
its relevance for sustainable agricultural development.
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