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This study, we quantify how WSN topology shapes QoS for IoT water-quality
monitoring and derive deployment rules. Five topologies (Hybrid Star-Mesh,
Cluster Tree, Full Mesh, Ring, ZigBee Star; 20 nodes) were simulated in NS-3
for 10 independent runs with random seeds. Our mathematical contribution 1s
a compact QoS model set—latency LLL, packet-loss PlossP_{\text{loss}} Ploss,
bandwidth usage UBU_BUB, and throughput TTT—used to compare
topologies and compute relative/absolute improvements. Statistics report
mean+SD with 95% confidence intervals from Student’s t-distribution; pairwise
Mann-Whitney tests with Benjamini-Hochberg FDR control (a=0.05) yield
compact-letter displays; Cliff’s § quantifies effect sizes. Results: Hybrid Star-
Mesh minimizes latency/loss while maximizing throughput; Ring 1s consistently
iferior; Cluster Tree and ZigBee Star are mid-range; Full Mesh trades
redundancy for delay and bandwidth. These models produce actionable
guidance for aquaculture (real-time dissolved-oxygen) and urban drinking-water
safety, and motivate multi-objective optimization (latency-throughput-energy)
toward Pareto-optimal designs.
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1. INTRODUCTION

Wiater 1s an essential resource that supports public health, environmental sustainability, and economic
development. Accelerated industrialization and urban growth have significantly degraded water quality, resulting in
millions of fataliies annually due to water pollution-related diseases [1]. According to WHO data, more than 2
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million deaths each year are linked to diseases caused chemical and physical pollutants as well as biological risks,
Jeopardize the potability of water and the equilibrium of ecosystems [2].

Traditional techniques for assessing water quality, which depend significantly on manual sampling and
laboratory analysis, are insufficient for delivering prompt and extensive environmental evaluations. This method 1s
time-consuming, expensive, and has limited reach, making it incapable of providing large-scale, real-ime
monitoring. This situation has prompted the emergence of alternative, more efficient and responsive technologies
[3]. To address these constraints, Wireless Sensor Networks (WSNs) coupled with Internet of Things (IoT)
frameworks have emerged as effective instruments for environmental monitoring, owing to their real-time
capabilities, scalability, and reduced dependence on human involvement [4], [5].

The integration of Wireless Sensor Networks (WSN) with an Internet of Things (IoT) framework offers a
scalable and automated solution for environmental monitoring. This technology enables continuous sensing and
wireless data transmission, allowing for real-time monitoring of critical parameters such as pH, temperature,
dissolved oxygen, and turbidity [6],[7],[8]. In the realm of water quality monitoring, Wireless Sensor Networks
(WSNs) provide the ongoing assessment of essential parameters including temperature, pH, and total dissolved
solids (TDS). These parameters are essential markers for assessing the health of aquatic ecosystems and for
identifying early signs of contamination [9],[10]. Wireless Sensor Network (WSN) nodes generally incorporate
sensors, microcontrollers, and wireless transceivers, all functioning on constrained power sources, necessitating
energy-efficient system designs [11],[12].

Prior WSN research largely optimizes routing/MAC behavior without problematizing the structural choice
of topology itself; protocol gains are then reported on top of whatever topology is assumed, which can confound
causal attributions of QoS. For example, targets energy-reliable transmission in multi-sink WSNs, but the
improvements arise from protocol-level redundancy and sink diversity under a specific connectivity pattern rather
than from an explicit control of topology [13]. As a result, does not quantify whether its reliability-energy gains
persist (or invert) across star/tree/mesh families, nor does it normalize against topology-dependent path lengths or
duty cycles [13]. Likewise, analyzes delay and reliability in NS-3 but does so without a controlled, side-by-side
comparison across canonical topologies; energy is not co-modeled, and application-level thresholds are not
enforced [14]. Together, demonstrate the importance of reliability and delay modeling, yet they stop short of
identifying when a given topology is preferable on mathematical or application grounds [13], [14].

In water-quality IoT, such omissions matter because acceptable service levels are domain-bound: aquaculture
requires prompt detection of dissolved-oxygen drops to avoid mass mortality, whereas urban utilities need
sub-second to sub-200 ms response windows for contamination alarms [15], [16]. A topology that minimizes loss
under light load (e.g., star) may violate latency constraints under bursty events, while a topology that enhances
redundancy (e.g., mesh) may inflate control overhead and energy per bit. Our study therefore isolates topology as
the experimental variable—holding radio stack, traffic, node count, and range constant—and quantifies how Hybrid
Star-Mesh, Full Mesh, Ring, Cluster Tree, and ZigBee Star reshape latency, loss, bandwidth use, and throughput
under the same conditions. By mapping these outcomes to aquaculture and urban-utility thresholds, and by later
adding energy metrics and lifeime markers, we extend the insights of and into prescriptive guidance on when each
topology 1s mathematically and operationally preferable [13], [14].

In the context of public health, network delays above 200 ms can potentially hamper early warning systems
for drinking water, preventing hazardous contamination from being promptly addressed. This compromises public
safety and reduces the reliability of IoT-based monitoring systems [15], [16]. Therefore, a quantitative
understanding of QoS performance is crucial.

This research contributes to systematic simulations using NS-3 on various WSN topologies (star, tree, mesh,
clustered) in the context of IoT-based water quality monitoring. Evaluations are conducted on key QoS metrics—
latency, packet loss, throughput, and bandwidth utilization—with varying node density and transmission range. The
results of this study provide practical guidance for selecting the appropriate topology to maintain a balance between
real-time reliability and energy efficiency [17],[18], [19],[20],[21].

Unlike previous research that focused on protocol improvements, this study's novelty lies n its topology-
based comparative analysis specifically designed for IoT-based water quality monitoring. By linking network
topology performance to QoS metrics, this study provides quantitative evidence and practical recommendations
for environmental agencies, aquaculture operators, and urban water utilities in designing more effective and
efficient WSNss [8], [13].

2. RESEARCH METHOD

This research utilizes a Wireless Sensor Network (WSN) architecture to monitor real-time water quality
metrics such as pH, total dissolved solids (TDS), and temperature. The technique comprises four fundamental
components: WSN architecture design, topology management strategy, Quality of Service (QoS) metric evaluation,
and performance assessment across various node configurations. Figure 1 depicts the system architecture of the
proposed IoT-based wireless sensor network (WSN) intended for real-ime water quality monitoring. The
architecture consists of three primary tiers: the sensor layer, the gateway layer, and the application layer [22].
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2.1 Architecture of Wireless Sensor Networks
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Figure 1. Schematic representation of the architecture

The WSN system consists of sensor nodes distributed across multiple clusters. Every node comprises a pH
sensor, TDS sensor, temperature sensor, microcontroller unit, and wireless transmitter. Data gathered from the
end nodes 1s transmitted to a local cluster coordinator, subsequently to a gateway, which ultimately conveys it to a
base station. This hierarchical architecture facilitates energy-efficient routing and allows for scalability in extensive
implementation [23],[24].

2.2 Strategy for Topology Management

A static cluster-based topology 1s employed to guarantee uninterrupted connectivity and reduce energy
consumption. Fach cluster is overseen by a coordinator node responsible for intra-cluster communication and data
aggregation. The gateway oversees inter-cluster routing. This architecture reduces transmission cost and mitigates
network segmentation, therefore improving stability [9],[11].

2.3 Quality of Service (QoS) Metrics

The network is assessed according to four key QoS parameters: latency, throughput, packet loss rate, and
capacity utilization. Latency quantifies the temporal delay between data detection and its reception at the base
station. Throughput measures the rate of successful transmissions. Packet loss signifies data reliability, while
bandwidth usage denotes the efficacy of channel utilization [4], [25],[26], [27]. These measurements are essential
for verifying real-time performance in vital environmental monitoring applications [28].

2.4 Mathematical QoS Metrics

To evaluate the system performance, four QoS indicators were modelled mathematically: latency (L), packet
loss rate (P..)_, bandwidth usage (Us ), and throughput (T).
Latency (ms):

Where,

P = Packet size (bits)

B = Bandwidth (bps)

T = Propagation delay

Q = Queuing delay

This model follows latency evaluations in time-sensitive WSN deployments [9].
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Packet Loss (%):
Ploss=1— (1 —p)H @

Where,

p = probability of packet loss per hop

H = number of hops

represents cumulative loss across hops, as observed in clustered IoT WSNs where stability varies by topology

[29].
Bandwidth Usage (%):
N Ri 3)
UB=——x100%
Rtotal
Where,
Ri = data rate on the second link-7
Ruu = total bandwidth capacity
N = number of links
used to quantify link utilization, particularly under congestion [24].
Throughput (bps):
- (1 - Ploss) YN Ri (4)
At
Where,
P... = packet loss rate
N

i=1 Ri = total data sent

At = measurement time interval

critical for real-time monitoring tasks [30]. To evaluate the system performance, four QoS indicators were
modelled mathematically: latency (L), packet loss rate (P..)_, bandwidth usage (Us ), and throughput (T).

These models were parameterized for simulation and calibrated based on realistic hardware constraints
(ZigBee/Wi-Fi hybrid at 250 kbps, 2.4 GHz, 100 m range) [10]. We configured each scenario with 20 sensor nodes
to represent a single operational cell, consisting of one sink or cluster head and approximately 15-18 sensing or
relay nodes. This configuration mirrors common water quality deployments where monitoring units are organized
mto clusters that can be tiled to achieve broader coverage. A 20-node set also exercises the light-to-moderate
contention regime of IEEE 802.15.4 at 250 kbps, where QoS inflection points such as collisions, backoff
expansions, and buffer overflows typically emerge.

Fach experiment was executed for 300 seconds following a 30-second warm-up period. This duration yields
60-300 sampling cycles per node (depending on the mnterval), sufficient to capture steady-state behaviour and
compute 95% confidence intervals across multiple seeds. Using this design, performance metrics—latency, packet
loss, throughput, and bandwidth utilization—were averaged over multiple independent runs to ensure statistical
significance. In practice, wide-area monitoring 1s achieved by composing multiple such 20-node clusters, making
the results directly extensible to real-world implementations. Longer durations or larger node populations are only
required for specialized analyses, such as tail-latency distributions or long-term energy lifetime studies, which lie
outside the QoS focus of this work.

2.5 Experimental Configuration and Performance

Evaluation this study employed Network Simulator 3 (NS-3), a prevalent tool for simulating wireless
communication networks, as its experimental framework [31], [32]. The network topology infrastructure for
wireless sensor design is illustrated in Figure 2.

Performance Comparison of WSN Topologies in IoT-Based Water Quality Monitoring Systems (Muhammad Imam Ghozali)
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Figure 2. Network Topology Framework

The simulation model included five distinct wireless sensor networks (WSNs). The topology possibilities
each comprise 20 sensor nodes distributed unevenly among various clusters. The deployment area was
conceptualized as a 10 km? virtual environment simulating a diverse landscape for water quality monitoring [29].
Node placement was randomized inside each cluster in accordance with the parameters of each topological design.
To ensure statistical robustness, each topology configuration (star, tree, mesh, clustered, and hybrid) was executed
10 independent times using different random seeds for node placement, traffic generation, and channel error
models. For every run, the simulation lasted 300 seconds after a 30-second warm-up period.

The raw QoS metrics (latency, packet loss, throughput, and bandwidth utilization) were extracted for each
run and then averaged across all repetitions. To characterize variability, we computed 95% confidence intervals
(CI) around the mean values using Student’s #distribution, since the number of replicates was finite and below 30.
In plots, the average values are presented as line curves, while the CI 1s represented by error bars or shaded bands.

This replication strategy provides statistical significance while balancing simulation runtime with coverage of
different parameter settings (node density, buffer size, and traffic interval). By averaging across multiple seeds, the
results reflect general trends in QoS behaviour, rather than artifacts from a single randomized run.

Fach sensor node was configured to broadcast environmental data (pH, temperature, and TDS readings) at
predetermined intervals, emulating real-time monitoring conditions. To realistically represent heterogeneous IoT
architectures, we employed a dual-radio model:

ZigBee (IEEE 802.15.4) for intra-cluster communication among end nodes and cluster heads, leveraging its
low-power consumption, low data rate (250 kbps), and short-range suitability (<100 m per hop). Wi-Fi (IEEE
802.11) for gateway-to-base station communication, leveraging its higher throughput and longer-range backhaul
capability. This design does not imply simultaneous dual-stack operation on each node. Instead, ZigBee modules
were active on end devices and cluster heads, while Wi-Fi modules were enabled only at gateways to transmit
aggregated traffic to base stations and subsequently to the Internet [33], [16],[34]. This hybrid configuration reflects
real-world deployments where energy-efficient sensing 1s balanced with high-capacity data forwarding. Essential
network configurations comprised a 2.4 GHz transmission {requency, a data rate of 250 kbps, and a maximum
transmission range of 100 meters per hop [35], [36].

Performance was assessed using four principal QoS metrics: latency (average end-to-end delay in
milliseconds), packet loss (percentage of lost packets during transmission), bandwidth utilization (percentage of
total available bandwidth employed), and throughput (bits per second of successfully transmitted data). The
gathered metrics were averaged across numerous simulation iterations to guarantee statistical consistency. These
findings constitute the basis for the comparative analysis detailed in the subsequent section.

2.6 Routing Configuration

Routing configuration in Wireless Sensor Networks (WSNs) significantly influences the Quality of Service
(Qo0S), especially in time-critical Internet of Things (IoT) applications such as water quality monitoring. In this
study, the NS-3 RPL (Routing Protocol for Low-Power and Lossy Networks) implementation was used as the
baseline routing protocol, since RPL is the de facto standard for constrained, multi-hop IoT deployments [2]. The
baseline protocol was extended with customized modules to incorporate queue management techniques, including
Random FEarly Detection (RED) and dynamic buffer adaptation, in order to mitigate congestion and reduce end-
to-end latency[37],[38],[39],[40]. Adaptive retransmission mechanisms were also introduced, allowing nodes to
mtelligently adjust retry thresholds based on historical success rates and current energy availability, thereby
minimizing packet loss and ensuring energy-aware delivery [9],[41],[17],[24],[42],[43]. These mechanisms are
critical for real-time data acquisition, where transmission reliability and delay sensitivity are primary concerns.
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Routing decisions were determined by a hybrid cost function that included parameters like residual energy,
hop count, link quality indicator (LLQI), and latency. The cost function included parameters such as residual energy,
hop count, link quality indicator (LLQI), and latency. The routing protocol could adapt to fluctuating network
dynamics, thereby enhancing both stability and throughput [44],[18]. A predictive fallback routing mechanism was
also implemented as a custom extension, utilizing link-quality forecasting and signal-to-noise ratio (SNR) trend
analysis to facilitate pre-emptive rerouting prior to link loss [45] ,[30],[36]. Cross-layer optimization was employed
to improve routing resilience, utilizing MAC-layer congestion signals and physical-layer interference assessments to
guide real-time routing choices [15],[46].

Furthermore, cross-layer optimization was employed to improve routing resilience, incorporating MAC-layer
congestion signals and physical-layer interference assessments to guide real-time routing choices [16]. In summary,
the routing configuration can be described as a customized RPL variant: it leverages the existing NS-3 routing stack
for fundamental forwarding operations, while introducing QoS-driven extensions and cross-layer feedback
mechanisms tailored to water quality monitoring applications. Recent studies demonstrate that such cross-layer and
QoS-driven routing strategies surpass traditional models in jitter reduction, fairness, and energy equilibrium inside
clustered WSNss [8],[19].

3. RESULT AND ANALYSIS

We evaluated five wireless sensor network (WSN) topologies under NS-3 simulation—Hybrid Star-Mesh,
Cluster Tree, Full Mesh, Ring, and ZigBee Star—using four quality-of-service (QoS) metrics: latency, packet loss,
bandwidth usage, and throughput. Each scenario reflects realistic variations in cluster count and node distribution
(20 nodes total), capturing the trade-offs between routing redundancy, gateway contention, and multi-hop efficiency.
unevenly allocated among the clusters to replicate monitoring conditions over diverse coverage areas.

Scenario 1 employed a hybrid star-mesh topology over three clusters with a node distribution of 5, 7, and 8.
This topology utilizes the benefits of mesh for routing dependability and star for energy efficiency, so attaining a
balance between stability and communication performance.

Scenario 2 employed a full mesh architecture across four clusters (4-6-5-5 nodes), facilitating direct
communication among nodes. This architecture offers extensive connectivity but also has considerable bandwidth
consumption risks.

Scenario 3 had two clusters with distributions of 12 and 8 nodes, respectively, employing a ring architecture
that depends on sequential pathways for data packet transmission. This configuration reduces the quantity of active
pathways while heightening the likelihood of cumulative delays in periods of elevated traffic.

Scenario 4 employs a cluster tree methodology featuring five diminutive clusters (3-4-5-3-5 nodes)
mterconnected through multi-hop communication. This architecture emphasizes adaptive routing efficiency and
alleviates the load on the central node, however necessitates precise synchronization among clusters.

Scenario 5 employs a ZigBee star topology featuring three clusters (6-8-6 nodes), in which each node connects
directly with the central gateway. This structure, albeit simpler and more energy-efficient, tends to imcur delays
when the data load escalates concurrently.

Table 1 displays summaries scenario-level performance as mean + SD with 95% bootstrap confidence
mtervals (CIs). The Hybrid Star-Mesh shows the lowest latency and loss with the highest throughput, whereas Ring
1s consistently worst; Cluster Tree and ZigBee Star fall in the middle, reflecting their respective balance between
load distribution and gateway simplicity. These findings suggest that hybrid designs are optimal for balancing
reliability, energy efficiency, and responsiveness, whereas tree and star topologies may be suitable for moderate-
scale deployments, and mesh or ring structures are less effective under the evaluated conditions.

Table 1. Scenario-wise QoS (mean + SD [95% CI|)

S O T T
Scenario Topology n meanirgID [95% mean+SD meantSD mean+SD [95%
] [95% CI] [95% CI] CI]

1 Hybrid Star-Mesh 20 67.56 + 2.35 2.10+0.06 60.86 +1.76 404.25 + 16.69
[66.17, 68.93] [2.07, 2.13] [59.88, 61.87] [394.98, 415.07]

2 Cluster Tree 20 78.40 +1.87 2.97 £0.10  58.72 +1.68 381.13 = 14.41
[77.28, 79.41] [2.91, 3.02] [57.73, 59.69] [373.83, 390.02]

3 Full Mesh 20 93.84 + 2.69 4.22 +0.08 75.44 +1.74 361.58 = 10.36
[92.21, 95.42] [4.17, 4.26] [74.51, 76.49] [355.10, 367.73]

4 Ring 20 106.73 + 2.27 5.88+0.16 49.85 +1.49 332.62 +11.73
[105.46, 108.07]  [5.79, 5.97]  [48.94, 50.73] [325.89, 339.13]

) ZigBee Star 20 84.46 + 2.38 3.72+0.11 54.37 +1.98 373.58 £ 11.04

[83.06, 85.81] [3.65, 3.78]  [53.26, 55.57]  [367.23, 379.77]

Performance Comparison of WSN Topologies in IoT-Based Water Quality Monitoring Systems (Muhammad Imam Ghozali)
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In Table 2, we assessed statistical significance with Mann-Whitney pairwise tests and Benjamini-Hochberg
(BH) correction (at = 0.05), reporting compact letter displays (CLD) per metric; scenarios sharing a letter are not
significantly different. Practical significance is quantified with Cliff’s § versus the worst-performing scenario.

Table 2. Per-metric comparison with significance groups and effect sizes

Metric Scenario Topology n mean+SD Improvement (i:ihf‘ss Sig. Group
[95%CIl vs Worst (%) (o, (BH0.05)
LEZ‘ESC’ ) sm}lh_?l&ih 10 [(?Zf?imf;;] 36.7 -1.000 a
L;ﬁ?)q 9 CTIL:::I 10 [;%g i7 ;TZ] 96.5 -1.000 b
LZE?)C) 3 Full Mesh 10 [;’jjf Zji’j] 12.1 -1.000 ¢
L;ﬁ?)q A Ring 10 [11005‘)476% iéfﬂ 0.0 0.000 d
Lzlls?)c} 5 Zisii?e 10 [:%Z, E?Q?] 20.9 -1.000 e
Pack(;l))lmss | Sm}lh-gjlih 10 [2210073010%]’ 64.3 -1.000 a
Pﬂck(;l))m“ 9 cer 1 é?ﬁi;)ol;]) 19.5 -1.000 b
P‘"‘Ck(;‘))m“ 8 FullMesh 10 [44212; o) 28.3 -1.000 ¢
Pack(;l))l@ss ' Ring 10 [5)87?; i;’gg(]’ 0.0 0.000 d
Pack(;l))lmss 5 Zisﬁiée 10 &ifﬂ’;& 36.8 -1.000 e
1[3;5;::1%1 1 S;‘_gﬁh 10 [2822211;% 92.1 1.000 a
s SR
1[3;;;1:1‘;%“ 5 FalMeh 10 Jril 51.3 1.000 ¢
1[3;5;::1%“ 4 Ring 10 [2‘2253% 0.0 0.000 d
Tty 5 AT w0 S 91 0 e
Thr(gglput | Smfll\_;ldih 10 [334158’1 1“;8;’] 91.5 1.000 a
e, G W e e
Thr&’)ﬁ?p‘“ 5 FalMeh 10 200 00 8.7 0.940 ¢
Thr(?);liilpul 1 Ring 10 [gggaiisﬁ] 0.0 0.000 d
Thr(%glput 5 Zisﬁi?e 10 [jgjz’fi ;;;);‘] 12.3 1.000 b

To contextualize magnitudes, Table 3 reports relative improvements versus the worst-case baseline for each
metric—reductions for lower-is-better metrics (latency, packet loss, bandwidth) and increases for higher-is-better
(throughput)—alongside absolute differences (A) in native units.

Zero: Jurnal Sains, Matematika dan Terapan



Zero: Jurnal Sains, Matematika dan Terapan

O 403

Table 3. Relative Performance Improvements (vs worst-case baselines)

Laten Bandwidt
4 Packet A Through h Usage
- A Loss — Pac t— A - A
Relative . P Thro . Band
Scenario Topology Reducti Laten Relative ket  Relative ughp Relative width
cy Reduction Los Increase Reductio
on vs ut Usage
Worst (ms) vs Worst ) vs Worst (bps) nvs D)
%) (%) (op) (%) P Worst PP
(%)
1 Hybrid Star=— g5 7 59 64.3 3.8 91.5 79.0 19.3 14.6
Mesh
2 Cluster Tree 26.5 28.0 49.5 2.9 14.6 49.0 22.2 16.7
é Full Mesh 12.1 13.0 28.3 1.7 8.7 29.0 0.0 0.0
4 Ring 0.0 0.0 0.0 0.0 0.0 0.0 33.9 25.6
5 ZigBee Star 20.9 22.0 36.8 2.2 12.3 41.0 27.9 21.1

Clarification: for lower-is-better metrics, Relative Reduction vs Worst (%) = (Worst — Scenario)/Worst x 100;
for throughput, Relative Increase vs Worst (%) = (Scenario — Worst)/Worst x 100. ‘pp’ = percentage points.

Subsequent research should corroborate these findings through practical implementations and investigate
topology-aware, energy-adaptive routing algorithms to guarantee the sustainability of Quality of Service (QoS).
Moreover, scalability assessments mnvolving more than 50 diverse nodes must be performed to evaluate
performance consistency in extensive IoT monitoring contexts.

Figure 3 overlays the four metrics across scenarios with 959% ClIs and BH-adjusted significance letters. The
hybrid design dominates latency/loss/throughput without excessive bandwidth usage, whereas Ring remains worst
across metrics; Full Mesh trades higher bandwidth for higher delay and loss, and Cluster Tree/ZigBee Star offer
mid-range profiles. The depicted metrics encompass delay, packet loss, bandwidth utlization, and throughput.
Scenario 1 (Star-Mesh Hybrid) demonstrates the minimal latency and packet loss, along with the most throughput.
‘While the Star-Mesh Hybrid topology demonstrated the strongest QoS performance, with minimal latency, low
packet loss, and the highest throughput (410 bps), this advantage comes with inherent trade-offs. The hybrid design
achieves reliability by leveraging mesh connectivity for redundancy and fault tolerance, while maintaining energy
efficiency through star-based clusters. However, this structure also increases routing complexity, as the protocol
must dynamically select between multiple paths while balancing hop count, link quality, and residual energy. Such
complexity can elevate control overhead and require more sophisticated coordination at cluster heads, potentially
impacting scalability in very large deployments. In contrast, simpler structures like the ZigBee Star reduce routing
complexity but sacrifice resilience, while Cluster Tree architectures balance load but introduce synchronization
demands. These findings suggest that hybrid topologies are optimal when throughput and reliability are critical,
though they require more careful routing management and may incur higher processing and signaling costs.
whereas Scenario 3 (Ring) reveals the least advantageous performance across all measures.

a
b
400 b
c
d
300
[
= Latency (ms)
3 Packet Loss (%)
2 200+ —é— Bandwidth Usage (%)
2 Throughput (bps)
s ghp
d
100 | c
b c e
¢ P T A
ol a b < d e
1.0 15 2.0 2.5 3.0 3.5 4.0 4.5 5.0
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Figure 3. QoS Metrics with 959 CI and Significance Letters
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Values are aggregated over replications (n) per scenario. We report mean + SD and 95% bootstrap Cls;
significance 1s evaluated via pairwise Mann-Whitney tests with BH correction, with compact letter displays per
metric. Effect sizes use Cliff’s & relative to the worst-performing scenario (| 8| thresholds: negligible < 0.147, small
<0.33, medium < 0.474, large > 0.474). QoS metrics across five WSN topologies using 95% bootstrap confidence
mtervals and BH-adjusted Mann-Whitney compact letter groups. The Star-Mesh Hybrid consistently dominates—
lower latency and packet loss alongside the highest throughput—while maintaining moderate bandwidth usage. Full
Mesh exhibits high bandwidth utilization at the expense of higher delay and loss; Cluster Tree yields a balanced
mid-range profile. ZigBee Star performs acceptably but 1s gateway-limited, and Ring is consistently worst across
metrics. Letters that differ indicate statistically significant differences at a = 0.05; shared letters denote no detectable
difference under the non-parametric testing.

4. CONCLUSION

Across five WSN topologies evaluated under controlled NS-3 scenarios, the Hybrid Star-Mesh consistently
delivered the most favorable QoS profile (low latency and loss with the highest throughput), while Ring was
uniformly inferior; Cluster Tree and ZigBee Star offered mid-range trade-offs and Full Mesh exchanged
redundancy for higher delay and loss. These findings, however, arise under important constraints: a fixed network
size (20 nodes) and prespecified cluster partitions; simulation-only conditions without hardware variability or
channel impairments; and statistics that summarize replications but do not incorporate between-deployment
variance (e.g., hierarchical/mixed-effects modeling) or parameter uncertainty propagation. Consequently, external
validity and uncertainty quantification remain conservative.

From a decision-analytic standpoint, the Hybrid Star-Mesh 1s recommended when the design objective 1s to
minimize latency and packet loss subject to a minimum throughput constraint (throughput > T_min) and an energy
budget per delivered packet (F_pkt < E_max); this 1s typical for safety-critical alarms (e.g., drinking-water events).
Cluster Tree is preferable when coverage requires multi-hop connectivity with moderate traffic and tight energy
budgets—i.e., when maintaining E_pkt 1s prioritized over marginal gains in latency. ZigBee Star is suitable for low-
density, periodic sensing with lax throughput demands (T_min modest) and strict duty-cycling. Full Mesh becomes
optimal only when path redundancy and fault tolerance dominate and bandwidth utilization constraints are loose.
Ring is rarely optimal except under deterministic, low-load pipelines where minimal control overhead 1s desired
and reliability risks are acceptable.

Future work should cast topology selection and parameter tuning as a multi-objective optimization problem
over the latency-throughput-energy surface. We suggest evolutionary approaches (e.g., NSGA-II/MOEA-D) to
learn Pareto-optimal sets {t, 8} of topology T and routing/scheduling parameters 6, jointly minimizing latency and
loss while maximizing throughput and energy lifeime. This should be complemented by (1) variance-aware
modeling (hierarchical/Bayesian analyses that partition run-to-run, topology, and environment effects), (i1) scaling
studies beyond 50-100 nodes with heterogeneous traffic, and (i1) hardware-in-the-loop experiments to validate the
Pareto front under real interference and duty-cycle constraints.

In summary, this research highlights that QoS-driven topology selection plays a decisive role in designing
scalable, energy-efficient, and reliable IoT-based WSNs for real-time water quality monitoring, providing both
immediate insights and a foundation for future optimization-driven methodologies.
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