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 This study, we quantify how WSN topology shapes QoS for IoT water-quality 
monitoring and derive deployment rules. Five topologies (Hybrid Star–Mesh, 
Cluster Tree, Full Mesh, Ring, ZigBee Star; 20 nodes) were simulated in NS-3 
for 10 independent runs with random seeds. Our mathematical contribution is 
a compact QoS model set—latency LLL, packet-loss PlossP_{\text{loss}} Ploss, 
bandwidth usage UBU_BUB, and throughput TTT—used to compare 
topologies and compute relative/absolute improvements. Statistics report 
mean±SD with 95% confidence intervals from Student’s t-distribution; pairwise 
Mann–Whitney tests with Benjamini–Hochberg FDR control (α=0.05) yield 
compact-letter displays; Cliff’s δ quantifies effect sizes. Results: Hybrid Star–
Mesh minimizes latency/loss while maximizing throughput; Ring is consistently 
inferior; Cluster Tree and ZigBee Star are mid-range; Full Mesh trades 
redundancy for delay and bandwidth. These models produce actionable 
guidance for aquaculture (real-time dissolved-oxygen) and urban drinking-water 
safety, and motivate multi-objective optimization (latency–throughput–energy) 
toward Pareto-optimal designs. 
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1. INTRODUCTION 

Water is an essential resource that supports public health, environmental sustainability, and economic 
development. Accelerated industrialization and urban growth have significantly degraded water quality, resulting in 
millions of fatalities annually due to water pollution-related diseases [1]. According to WHO data, more than 2 
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million deaths each year are linked to diseases caused chemical and physical pollutants as well as biological risks, 
jeopardize the potability of water and the equilibrium of ecosystems [2]. 

Traditional techniques for assessing water quality, which depend significantly on manual sampling and 
laboratory analysis, are insufficient for delivering prompt and extensive environmental evaluations. This method is 
time-consuming, expensive, and has limited reach, making it incapable of providing large-scale, real-time 
monitoring. This situation has prompted the emergence of alternative, more efficient and responsive technologies 
[3]. To address these constraints, Wireless Sensor Networks (WSNs) coupled with Internet of Things (IoT) 
frameworks have emerged as effective instruments for environmental monitoring, owing to their real-time 
capabilities, scalability, and reduced dependence on human involvement [4], [5]. 

The integration of Wireless Sensor Networks (WSN) with an Internet of Things (IoT) framework offers a 
scalable and automated solution for environmental monitoring. This technology enables continuous sensing and 
wireless data transmission, allowing for real-time monitoring of critical parameters such as pH, temperature, 
dissolved oxygen, and turbidity [6],[7],[8]. In the realm of water quality monitoring, Wireless Sensor Networks 
(WSNs) provide the ongoing assessment of essential parameters including temperature, pH, and total dissolved 
solids (TDS). These parameters are essential markers for assessing the health of aquatic ecosystems and for 
identifying early signs of contamination [9],[10]. Wireless Sensor Network (WSN) nodes generally incorporate 
sensors, microcontrollers, and wireless transceivers, all functioning on constrained power sources, necessitating 
energy-efficient system designs [11],[12]. 

Prior WSN research largely optimizes routing/MAC behavior without problematizing the structural choice 
of topology itself; protocol gains are then reported on top of whatever topology is assumed, which can confound 
causal attributions of QoS. For example, targets energy‑reliable transmission in multi‑sink WSNs, but the 
improvements arise from protocol‑level redundancy and sink diversity under a specific connectivity pattern rather 
than from an explicit control of topology [13]. As a result, does not quantify whether its reliability–energy gains 
persist (or invert) across star/tree/mesh families, nor does it normalize against topology‑dependent path lengths or 
duty cycles [13]. Likewise, analyzes delay and reliability in NS‑3 but does so without a controlled, side‑by‑side 
comparison across canonical topologies; energy is not co‑modeled, and application‑level thresholds are not 
enforced [14]. Together, demonstrate the importance of reliability and delay modeling, yet they stop short of 
identifying when a given topology is preferable on mathematical or application grounds [13], [14]. 

In water‑quality IoT, such omissions matter because acceptable service levels are domain‑bound: aquaculture 
requires prompt detection of dissolved‑oxygen drops to avoid mass mortality, whereas urban utilities need 
sub‑second to sub‑200 ms response windows for contamination alarms [15], [16]. A topology that minimizes loss 
under light load (e.g., star) may violate latency constraints under bursty events, while a topology that enhances 
redundancy (e.g., mesh) may inflate control overhead and energy per bit. Our study therefore isolates topology as 
the experimental variable—holding radio stack, traffic, node count, and range constant—and quantifies how Hybrid 
Star–Mesh, Full Mesh, Ring, Cluster Tree, and ZigBee Star reshape latency, loss, bandwidth use, and throughput 
under the same conditions. By mapping these outcomes to aquaculture and urban‑utility thresholds, and by later 
adding energy metrics and lifetime markers, we extend the insights of  and into prescriptive guidance on when each 
topology is mathematically and operationally preferable [13], [14]. 

In the context of public health, network delays above 200 ms can potentially hamper early warning systems 
for drinking water, preventing hazardous contamination from being promptly addressed. This compromises public 
safety and reduces the reliability of IoT-based monitoring systems [15], [16]. Therefore, a quantitative 
understanding of QoS performance is crucial. 

This research contributes to systematic simulations using NS-3 on various WSN topologies (star, tree, mesh, 
clustered) in the context of IoT-based water quality monitoring. Evaluations are conducted on key QoS metrics—
latency, packet loss, throughput, and bandwidth utilization—with varying node density and transmission range. The 
results of this study provide practical guidance for selecting the appropriate topology to maintain a balance between 
real-time reliability and energy efficiency [17],[18], [19],[20],[21]. 

Unlike previous research that focused on protocol improvements, this study's novelty lies in its topology-
based comparative analysis specifically designed for IoT-based water quality monitoring. By linking network 
topology performance to QoS metrics, this study provides quantitative evidence and practical recommendations 
for environmental agencies, aquaculture operators, and urban water utilities in designing more effective and 
efficient WSNs [8], [13]. 

 
2. RESEARCH METHOD 

This research utilizes a Wireless Sensor Network (WSN) architecture to monitor real-time water quality 
metrics such as pH, total dissolved solids (TDS), and temperature. The technique comprises four fundamental 
components: WSN architecture design, topology management strategy, Quality of Service (QoS) metric evaluation, 
and performance assessment across various node configurations. Figure 1 depicts the system architecture of the 
proposed IoT-based wireless sensor network (WSN) intended for real-time water quality monitoring. The 
architecture consists of three primary tiers: the sensor layer, the gateway layer, and the application layer [22]. 
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2.1 Architecture of Wireless Sensor Networks 

 
Figure 1. Schematic representation of the architecture 

 
The WSN system consists of sensor nodes distributed across multiple clusters. Every node comprises a pH 

sensor, TDS sensor, temperature sensor, microcontroller unit, and wireless transmitter. Data gathered from the 
end nodes is transmitted to a local cluster coordinator, subsequently to a gateway, which ultimately conveys it to a 
base station. This hierarchical architecture facilitates energy-efficient routing and allows for scalability in extensive 
implementation [23],[24]. 

 
2.2 Strategy for Topology Management 

A static cluster-based topology is employed to guarantee uninterrupted connectivity and reduce energy 
consumption. Each cluster is overseen by a coordinator node responsible for intra-cluster communication and data 
aggregation. The gateway oversees inter-cluster routing. This architecture reduces transmission cost and mitigates 
network segmentation, therefore improving stability [9],[11]. 

 
2.3 Quality of Service (QoS) Metrics  

The network is assessed according to four key QoS parameters: latency, throughput, packet loss rate, and 
capacity utilization. Latency quantifies the temporal delay between data detection and its reception at the base 
station. Throughput measures the rate of successful transmissions. Packet loss signifies data reliability, while 
bandwidth usage denotes the efficacy of channel utilization [4], [25],[26], [27]. These measurements are essential 
for verifying real-time performance in vital environmental monitoring applications [28]. 

 
2.4 Mathematical QoS Metrics 

To evaluate the system performance, four QoS indicators were modelled mathematically: latency (L), packet 
loss rate (Ploss)_, bandwidth usage (UB ), and throughput (T). 
Latency (ms): 
 

𝐿 =#$
𝑃
𝐵 + 𝜏 + 𝑄*

!

"#$

 

(1) 

 
Where, 
P = Packet size (bits) 
B = Bandwidth (bps) 
τ  = Propagation delay  
Q = Queuing delay  
This model follows latency evaluations in time-sensitive WSN deployments [9]. 
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Packet Loss (%): 

𝑃𝑙𝑜𝑠𝑠 = 1 − (1 − 𝑝)! (2) 
 
Where, 
p = probability of packet loss per hop 
H = number of hops 
represents cumulative loss across hops, as observed in clustered IoT WSNs where stability varies by topology 

[29]. 
 

Bandwidth Usage (%): 

𝑈𝐵 =	
∑ 𝑅𝑖%
"#$

𝑅𝑡𝑜𝑡𝑎𝑙 	𝑥	100% 
(3) 

 
Where,  
Ri = data rate on the second link-i 
Rtotal = total bandwidth capacity 
N = number of links 
used to quantify link utilization, particularly under congestion [24]. 
 

Throughput (bps): 

𝑇 =	
(1 − 𝑃𝑙𝑜𝑠𝑠)	∑ 𝑅𝑖%

"#$

∆𝑡  
(4) 

 
Where, 
Ploss = packet loss rate 
∑ 𝑅𝑖%
"#$  = total data sent 

Δt = measurement time interval 
critical for real-time monitoring tasks [30].To evaluate the system performance, four QoS indicators were 

modelled mathematically: latency (L), packet loss rate (Ploss)_, bandwidth usage (UB ), and throughput (T). 
 
These models were parameterized for simulation and calibrated based on realistic hardware constraints 

(ZigBee/Wi-Fi hybrid at 250 kbps, 2.4 GHz, 100 m range) [10]. We configured each scenario with 20 sensor nodes 
to represent a single operational cell, consisting of one sink or cluster head and approximately 15–18 sensing or 
relay nodes. This configuration mirrors common water quality deployments where monitoring units are organized 
into clusters that can be tiled to achieve broader coverage. A 20-node set also exercises the light-to-moderate 
contention regime of IEEE 802.15.4 at 250 kbps, where QoS inflection points such as collisions, backoff 
expansions, and buffer overflows typically emerge.  

Each experiment was executed for 300 seconds following a 30-second warm-up period. This duration yields 
60–300 sampling cycles per node (depending on the interval), sufficient to capture steady-state behaviour and 
compute 95% confidence intervals across multiple seeds. Using this design, performance metrics—latency, packet 
loss, throughput, and bandwidth utilization—were averaged over multiple independent runs to ensure statistical 
significance. In practice, wide-area monitoring is achieved by composing multiple such 20-node clusters, making 
the results directly extensible to real-world implementations. Longer durations or larger node populations are only 
required for specialized analyses, such as tail-latency distributions or long-term energy lifetime studies, which lie 
outside the QoS focus of this work. 

 
2.5 Experimental Configuration and Performance  

Evaluation this study employed Network Simulator 3 (NS-3), a prevalent tool for simulating wireless 
communication networks, as its experimental framework [31], [32]. The network topology infrastructure for 
wireless sensor design is illustrated in Figure 2.  
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Figure 2. Network Topology Framework 

 
The simulation model included five distinct wireless sensor networks (WSNs).  The topology possibilities 

each comprise 20 sensor nodes distributed unevenly among various clusters. The deployment area was 
conceptualized as a 10 km² virtual environment simulating a diverse landscape for water quality monitoring [29]. 
Node placement was randomized inside each cluster in accordance with the parameters of each topological design. 
To ensure statistical robustness, each topology configuration (star, tree, mesh, clustered, and hybrid) was executed 
10 independent times using different random seeds for node placement, traffic generation, and channel error 
models. For every run, the simulation lasted 300 seconds after a 30-second warm-up period. 

The raw QoS metrics (latency, packet loss, throughput, and bandwidth utilization) were extracted for each 
run and then averaged across all repetitions. To characterize variability, we computed 95% confidence intervals 
(CI) around the mean values using Student’s t-distribution, since the number of replicates was finite and below 30. 
In plots, the average values are presented as line curves, while the CI is represented by error bars or shaded bands.  

This replication strategy provides statistical significance while balancing simulation runtime with coverage of 
different parameter settings (node density, buffer size, and traffic interval). By averaging across multiple seeds, the 
results reflect general trends in QoS behaviour, rather than artifacts from a single randomized run. 

Each sensor node was configured to broadcast environmental data (pH, temperature, and TDS readings) at 
predetermined intervals, emulating real-time monitoring conditions.  To realistically represent heterogeneous IoT 
architectures, we employed a dual-radio model: 

ZigBee (IEEE 802.15.4) for intra-cluster communication among end nodes and cluster heads, leveraging its 
low-power consumption, low data rate (250 kbps), and short-range suitability (≤100 m per hop). Wi-Fi (IEEE 
802.11) for gateway-to-base station communication, leveraging its higher throughput and longer-range backhaul 
capability. This design does not imply simultaneous dual-stack operation on each node. Instead, ZigBee modules 
were active on end devices and cluster heads, while Wi-Fi modules were enabled only at gateways to transmit 
aggregated traffic to base stations and subsequently to the Internet [33], [16],[34]. This hybrid configuration reflects 
real-world deployments where energy-efficient sensing is balanced with high-capacity data forwarding. Essential 
network configurations comprised a 2.4 GHz transmission frequency, a data rate of 250 kbps, and a maximum 
transmission range of 100 meters per hop [35], [36].  

Performance was assessed using four principal QoS metrics: latency (average end-to-end delay in 
milliseconds), packet loss (percentage of lost packets during transmission), bandwidth utilization (percentage of 
total available bandwidth employed), and throughput (bits per second of successfully transmitted data). The 
gathered metrics were averaged across numerous simulation iterations to guarantee statistical consistency. These 
findings constitute the basis for the comparative analysis detailed in the subsequent section. 

 
2.6 Routing Configuration 

Routing configuration in Wireless Sensor Networks (WSNs) significantly influences the Quality of Service 
(QoS), especially in time-critical Internet of Things (IoT) applications such as water quality monitoring. In this 
study, the NS-3 RPL (Routing Protocol for Low-Power and Lossy Networks) implementation was used as the 
baseline routing protocol, since RPL is the de facto standard for constrained, multi-hop IoT deployments [2]. The 
baseline protocol was extended with customized modules to incorporate queue management techniques, including 
Random Early Detection (RED) and dynamic buffer adaptation, in order to mitigate congestion and reduce end-
to-end latency[37],[38],[39],[40]. Adaptive retransmission mechanisms were also introduced, allowing nodes to 
intelligently adjust retry thresholds based on historical success rates and current energy availability, thereby 
minimizing packet loss and ensuring energy-aware delivery [9],[41],[17],[24],[42],[43]. These mechanisms are 
critical for real-time data acquisition, where transmission reliability and delay sensitivity are primary concerns. 
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Routing decisions were determined by a hybrid cost function that included parameters like residual energy, 
hop count, link quality indicator (LQI), and latency. The cost function included parameters such as residual energy, 
hop count, link quality indicator (LQI), and latency. The routing protocol could adapt to fluctuating network 
dynamics, thereby enhancing both stability and throughput [44],[18]. A predictive fallback routing mechanism was 
also implemented as a custom extension, utilizing link-quality forecasting and signal-to-noise ratio (SNR) trend 
analysis to facilitate pre-emptive rerouting prior to link loss [45] ,[30],[36]. Cross-layer optimization was employed 
to improve routing resilience, utilizing MAC-layer congestion signals and physical-layer interference assessments to 
guide real-time routing choices [15],[46]. 

Furthermore, cross-layer optimization was employed to improve routing resilience, incorporating MAC-layer 
congestion signals and physical-layer interference assessments to guide real-time routing choices [16]. In summary, 
the routing configuration can be described as a customized RPL variant: it leverages the existing NS-3 routing stack 
for fundamental forwarding operations, while introducing QoS-driven extensions and cross-layer feedback 
mechanisms tailored to water quality monitoring applications. Recent studies demonstrate that such cross-layer and 
QoS-driven routing strategies surpass traditional models in jitter reduction, fairness, and energy equilibrium inside 
clustered WSNs [8],[19]. 
 
3. RESULT AND ANALYSIS 

We evaluated five wireless sensor network (WSN) topologies under NS-3 simulation—Hybrid Star–Mesh, 
Cluster Tree, Full Mesh, Ring, and ZigBee Star—using four quality-of-service (QoS) metrics: latency, packet loss, 
bandwidth usage, and throughput. Each scenario reflects realistic variations in cluster count and node distribution 
(20 nodes total), capturing the trade-offs between routing redundancy, gateway contention, and multi-hop efficiency. 
unevenly allocated among the clusters to replicate monitoring conditions over diverse coverage areas. 

Scenario 1 employed a hybrid star-mesh topology over three clusters with a node distribution of 5, 7, and 8. 
This topology utilizes the benefits of mesh for routing dependability and star for energy efficiency, so attaining a 
balance between stability and communication performance. 

Scenario 2 employed a full mesh architecture across four clusters (4-6-5-5 nodes), facilitating direct 
communication among nodes. This architecture offers extensive connectivity but also has considerable bandwidth 
consumption risks. 

Scenario 3 had two clusters with distributions of 12 and 8 nodes, respectively, employing a ring architecture 
that depends on sequential pathways for data packet transmission. This configuration reduces the quantity of active 
pathways while heightening the likelihood of cumulative delays in periods of elevated traffic. 

Scenario 4 employs a cluster tree methodology featuring five diminutive clusters (3-4-5-3-5 nodes) 
interconnected through multi-hop communication. This architecture emphasizes adaptive routing efficiency and 
alleviates the load on the central node, however necessitates precise synchronization among clusters. 

Scenario 5 employs a ZigBee star topology featuring three clusters (6-8-6 nodes), in which each node connects 
directly with the central gateway. This structure, albeit simpler and more energy-efficient, tends to incur delays 
when the data load escalates concurrently. 

Table 1 displays summaries scenario-level performance as mean ± SD with 95% bootstrap confidence 
intervals (CIs). The Hybrid Star–Mesh shows the lowest latency and loss with the highest throughput, whereas Ring 
is consistently worst; Cluster Tree and ZigBee Star fall in the middle, reflecting their respective balance between 
load distribution and gateway simplicity. These findings suggest that hybrid designs are optimal for balancing 
reliability, energy efficiency, and responsiveness, whereas tree and star topologies may be suitable for moderate-
scale deployments, and mesh or ring structures are less effective under the evaluated conditions. 

  
Table 1. Scenario-wise QoS (mean ± SD [95% CI]) 

Scenario Topology n 
Latency (ms) — 
mean±SD [95% 

CI] 

Packet 
Loss (%) — 
mean±SD 
[95% CI] 

Bandwidth 
Usage (%) — 
mean±SD 
[95% CI] 

Throughput 
(bps) — 

mean±SD [95% 
CI] 

1 Hybrid Star–Mesh 20 67.56 ± 2.35 
[66.17, 68.93] 

2.10 ± 0.05 
[2.07, 2.13] 

60.86 ± 1.76 
[59.88, 61.87] 

404.25 ± 16.69 
[394.98, 415.07] 

2 Cluster Tree 20 78.40 ± 1.87 
[77.28, 79.41] 

2.97 ± 0.10 
[2.91, 3.02] 

58.72 ± 1.68 
[57.73, 59.69] 

381.13 ± 14.41 
[373.83, 390.02] 

3 Full Mesh 20 93.84 ± 2.69 
[92.21, 95.42] 

4.22 ± 0.08 
[4.17, 4.26] 

75.44 ± 1.74 
[74.51, 76.49] 

361.58 ± 10.36 
[355.10, 367.73] 

4 Ring 20 106.73 ± 2.27 
[105.46, 108.07] 

5.88 ± 0.16 
[5.79, 5.97] 

49.85 ± 1.49 
[48.94, 50.73] 

332.62 ± 11.73 
[325.89, 339.13] 

5 ZigBee Star 20 84.46 ± 2.38 
[83.06, 85.81] 

3.72 ± 0.11 
[3.65, 3.78] 

54.37 ± 1.98 
[53.26, 55.57] 

373.58 ± 11.04 
[367.23, 379.77] 
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In Table 2, we assessed statistical significance with Mann–Whitney pairwise tests and Benjamini–Hochberg 
(BH) correction (α = 0.05), reporting compact letter displays (CLD) per metric; scenarios sharing a letter are not 
significantly different. Practical significance is quantified with Cliff’s δ versus the worst-performing scenario.  

 
Table 2. Per-metric comparison with significance groups and effect sizes 

Metric Scenario Topology n 
mean±SD 
[95%CI] 

Improvement 
vs Worst (%) 

Cliff's 
δ vs 

Worst 

Sig. Group 
(BH 0.05) 

Latency 
(ms) 1 Hybrid 

Star–Mesh 10 67.56 ± 2.35 
[66.17, 68.93] 36.7 -1.000 a 

Latency 
(ms) 2 Cluster 

Tree 10 78.40 ± 1.87 
[77.28, 79.41] 26.5 -1.000 b 

Latency 
(ms) 3 Full Mesh 10 

93.84 ± 2.69 
[92.21, 95.42] 12.1 -1.000 c 

Latency 
(ms) 4 Ring 10 106.73 ± 2.27 

[105.46, 108.07] 0.0 0.000 d 

Latency 
(ms) 5 ZigBee 

Star 10 84.46 ± 2.38 
[83.06, 85.81] 20.9 -1.000 e 

Packet Loss 
(%) 1 Hybrid 

Star–Mesh 10 2.10 ± 0.05 
[2.07, 2.13] 64.3 -1.000 a 

Packet Loss 
(%) 

2 Cluster 
Tree 

10 2.97 ± 0.10 
[2.91, 3.02] 

49.5 -1.000 b 

Packet Loss 
(%) 3 Full Mesh 10 4.22 ± 0.08 

[4.17, 4.26] 28.3 -1.000 c 

Packet Loss 
(%) 4 Ring 10 5.88 ± 0.16 

[5.79, 5.97] 0.0 0.000 d 

Packet Loss 
(%) 5 ZigBee 

Star 10 3.72 ± 0.11 
[3.65, 3.78] 36.8 -1.000 e 

Bandwidth 
Usage (%) 1 Hybrid 

Star–Mesh 10 60.86 ± 1.76 
[59.88, 61.87] 22.1 1.000 a 

Bandwidth 
Usage (%) 2 Cluster 

Tree 10 58.72 ± 1.68 
[57.73, 59.69] 17.8 1.000 b 

Bandwidth 
Usage (%) 3 Full Mesh 10 75.44 ± 1.74 

[74.51, 76.49] 51.3 1.000 c 

Bandwidth 
Usage (%) 4 Ring 10 49.85 ± 1.49 

[48.94, 50.73] 0.0 0.000 d 

Bandwidth 
Usage (%) 5 ZigBee 

Star 10 54.37 ± 1.98 
[53.26, 55.57] 9.1 0.960 e 

Throughput 
(bps) 1 Hybrid 

Star–Mesh 10 404.25 ± 16.69 
[394.98, 415.07] 21.5 1.000 a 

Throughput 
(bps) 2 Cluster 

Tree 10 381.13 ± 14.41 
[373.83, 390.02] 14.6 1.000 b 

Throughput 
(bps) 3 Full Mesh 10 361.58 ± 10.36 

[355.10, 367.73] 8.7 0.940 c 

Throughput 
(bps) 4 Ring 10 332.62 ± 11.73 

[325.89, 339.13] 0.0 0.000 d 

Throughput 
(bps) 

5 ZigBee 
Star 

10 373.58 ± 11.04 
[367.23, 379.77] 

12.3 1.000 b 

 
To contextualize magnitudes, Table 3 reports relative improvements versus the worst-case baseline for each 

metric—reductions for lower-is-better metrics (latency, packet loss, bandwidth) and increases for higher-is-better 
(throughput)—alongside absolute differences (Δ) in native units. 
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Table 3. Relative Performance Improvements (vs worst-case baselines) 

Scenario Topology 

Latency 
— 

Relative 
Reducti
on vs 
Worst 

(%) 

Δ 
Laten

cy 
(ms) 

Packet 
Loss — 
Relative 

Reduction 
vs Worst 

(%) 

Δ 
Pac
ket 
Los

s 
(pp) 

Through
put — 

Relative 
Increase 
vs Worst 

(%) 

Δ 
Thro
ughp

ut 
(bps) 

Bandwidt
h Usage 

— 
Relative 
Reductio

n vs 
Worst 

(%) 

Δ 
Band
width 
Usage 
(pp) 

1 Hybrid Star–
Mesh 36.7 39.0 64.3 3.8 21.5 72.0 19.3 14.6 

2 Cluster Tree 26.5 28.0 49.5 2.9 14.6 49.0 22.2 16.7 
3 Full Mesh 12.1 13.0 28.3 1.7 8.7 29.0 0.0 0.0 
4 Ring 0.0 0.0 0.0 0.0 0.0 0.0 33.9 25.6 
5 ZigBee Star 20.9 22.0 36.8 2.2 12.3 41.0 27.9 21.1 
 
Clarification: for lower-is-better metrics, Relative Reduction vs Worst (%) = (Worst − Scenario)/Worst × 100; 

for throughput, Relative Increase vs Worst (%) = (Scenario − Worst)/Worst × 100. ‘pp’ = percentage points. 
Subsequent research should corroborate these findings through practical implementations and investigate 

topology-aware, energy-adaptive routing algorithms to guarantee the sustainability of Quality of Service (QoS). 
Moreover, scalability assessments involving more than 50 diverse nodes must be performed to evaluate 
performance consistency in extensive IoT monitoring contexts. 

Figure 3 overlays the four metrics across scenarios with 95% CIs and BH-adjusted significance letters. The 
hybrid design dominates latency/loss/throughput without excessive bandwidth usage, whereas Ring remains worst 
across metrics; Full Mesh trades higher bandwidth for higher delay and loss, and Cluster Tree/ZigBee Star offer 
mid-range profiles. The depicted metrics encompass delay, packet loss, bandwidth utilization, and throughput. 
Scenario 1 (Star-Mesh Hybrid) demonstrates the minimal latency and packet loss, along with the most throughput. 
While the Star-Mesh Hybrid topology demonstrated the strongest QoS performance, with minimal latency, low 
packet loss, and the highest throughput (410 bps), this advantage comes with inherent trade-offs. The hybrid design 
achieves reliability by leveraging mesh connectivity for redundancy and fault tolerance, while maintaining energy 
efficiency through star-based clusters. However, this structure also increases routing complexity, as the protocol 
must dynamically select between multiple paths while balancing hop count, link quality, and residual energy. Such 
complexity can elevate control overhead and require more sophisticated coordination at cluster heads, potentially 
impacting scalability in very large deployments. In contrast, simpler structures like the ZigBee Star reduce routing 
complexity but sacrifice resilience, while Cluster Tree architectures balance load but introduce synchronization 
demands. These findings suggest that hybrid topologies are optimal when throughput and reliability are critical, 
though they require more careful routing management and may incur higher processing and signaling costs. 
whereas Scenario 3 (Ring) reveals the least advantageous performance across all measures. 

 

Figure 3. QoS Metrics with 95% CI and Significance Letters 
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Values are aggregated over replications (n) per scenario. We report mean ± SD and 95% bootstrap CIs; 

significance is evaluated via pairwise Mann–Whitney tests with BH correction, with compact letter displays per 
metric. Effect sizes use Cliff’s δ relative to the worst-performing scenario (|δ| thresholds: negligible < 0.147, small 
< 0.33, medium < 0.474, large ≥ 0.474). QoS metrics across five WSN topologies using 95% bootstrap confidence 
intervals and BH-adjusted Mann–Whitney compact letter groups. The Star–Mesh Hybrid consistently dominates—
lower latency and packet loss alongside the highest throughput—while maintaining moderate bandwidth usage. Full 
Mesh exhibits high bandwidth utilization at the expense of higher delay and loss; Cluster Tree yields a balanced 
mid-range profile. ZigBee Star performs acceptably but is gateway-limited, and Ring is consistently worst across 
metrics. Letters that differ indicate statistically significant differences at α = 0.05; shared letters denote no detectable 
difference under the non-parametric testing. 
 
4. CONCLUSION 

Across five WSN topologies evaluated under controlled NS-3 scenarios, the Hybrid Star–Mesh consistently 
delivered the most favorable QoS profile (low latency and loss with the highest throughput), while Ring was 
uniformly inferior; Cluster Tree and ZigBee Star offered mid-range trade-offs and Full Mesh exchanged 
redundancy for higher delay and loss. These findings, however, arise under important constraints: a fixed network 
size (20 nodes) and prespecified cluster partitions; simulation-only conditions without hardware variability or 
channel impairments; and statistics that summarize replications but do not incorporate between-deployment 
variance (e.g., hierarchical/mixed-effects modeling) or parameter uncertainty propagation. Consequently, external 
validity and uncertainty quantification remain conservative. 

From a decision-analytic standpoint, the Hybrid Star–Mesh is recommended when the design objective is to 
minimize latency and packet loss subject to a minimum throughput constraint (throughput ≥ T_min) and an energy 
budget per delivered packet (E_pkt ≤ E_max); this is typical for safety-critical alarms (e.g., drinking-water events). 
Cluster Tree is preferable when coverage requires multi-hop connectivity with moderate traffic and tight energy 
budgets—i.e., when maintaining E_pkt is prioritized over marginal gains in latency. ZigBee Star is suitable for low-
density, periodic sensing with lax throughput demands (T_min modest) and strict duty-cycling. Full Mesh becomes 
optimal only when path redundancy and fault tolerance dominate and bandwidth utilization constraints are loose. 
Ring is rarely optimal except under deterministic, low-load pipelines where minimal control overhead is desired 
and reliability risks are acceptable. 

Future work should cast topology selection and parameter tuning as a multi-objective optimization problem 
over the latency–throughput–energy surface. We suggest evolutionary approaches (e.g., NSGA-II/MOEA-D) to 
learn Pareto-optimal sets {τ, θ} of topology τ and routing/scheduling parameters θ, jointly minimizing latency and 
loss while maximizing throughput and energy lifetime. This should be complemented by (i) variance-aware 
modeling (hierarchical/Bayesian analyses that partition run-to-run, topology, and environment effects), (ii) scaling 
studies beyond 50–100 nodes with heterogeneous traffic, and (iii) hardware-in-the-loop experiments to validate the 
Pareto front under real interference and duty-cycle constraints. 

In summary, this research highlights that QoS-driven topology selection plays a decisive role in designing 
scalable, energy-efficient, and reliable IoT-based WSNs for real-time water quality monitoring, providing both 
immediate insights and a foundation for future optimization-driven methodologies. 
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