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Article Info ABSTRACT

Article history: Drug abuse disrupts normal brain activity and contributes to recurrent impulsive
_ behaviors. While various machine learning approaches have been investigated
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for analyzing brain signals, studies focusing on the use of the K-Nearest
Neighbor (KNN) method for impulsivity detection in drug users remain limited.

In this research, KNN was implemented to classify Electroencephalography

(EEG) signals based on neuroelectric features that reflect impulsive tendencies.

Keywords: EEG recordings were collected from individuals with a history of drug use while
Classification; performing cognitive tasks designed to trigger impulsive responses and were
Drugs; compared with recordings from a healthy control group. The classification
Electroencephalography; results showed that KNN achieved an accuracy of 95% in identifying neural
Impulsivity; patterns associated with impulsivity. This work introduces a novel application of
K-Nearest Neighbors. EEG analysis integrated with KNN for objective and precise detection of
impulsivity in drug users. The findings highlight the potential of this approach
to serve as a supportive tool in rehabilitaion programs through reliable
neuropsychological monitoring.
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1. INTRODUCTION

The increasing prevalence of drug addiction demands innovative scientific approaches to assess its
neurophysiological impacts[1]. Substance abuse alters brain activity, especially in areas related to executive control,
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mcluding impulse regulation and decision-making [2]. Rehabilitaion programs may reduce dependence, yet
residual brain activity changes often persist and are difficult to detect through conventional assessments [3]. A major
challenge during recovery is identifying individuals with high mmpulsivity, as this increases relapse risk [4]. EEG
provides a real-time window into brain electrical activity and has become an essential tool in cognitive neuroscience
and psychiatric research [5][6]. Specific EEG signal features, such as variations in power spectra or event-related
potentials, are closely associated with cognitive control and inhibitory mechanisms, making them valuable
indicators of impulsive tendencies [7].

‘When combined with machine learning methods such as K-Nearest Neighbor (KNN), EEG can be utilized
to reveal distinctive patterns of impulsivity that are not easily captured through behavioral assessments alone.
Previous studies have explored different technologies to monitor impulsivity [8][9], with EEG widely applied to
analyze brain function [10][11]. For instance, employed Random Forest methods to classify impulsivity based on
EEG power features, showing classification accuracy 95% [12]. In EEG-based BCI and cognitive studies, SVM has
often been adopted and shown strong performance compared to simpler models [13]. However, many existing
methods face limitations: behavioral tests often lack objectivity, neuroimaging techniques such as fMRI are costly
and less accessible, and some EEG-based approaches struggle with accuracy or require complex preprocessing
pipelines [14][15]. These challenges highlight the need for an efficient, affordable, and accurate system for
mmpulsivity detection. EEG combined with machine learning offers a more affordable and practical alternative for
early impulsivity detection [16][17]. In fact, classic Machine Learning methods like SVM, KNN, and Random
Forest are widely compared in EEG studies due to their interpretability and computational efficiency [18].

Recent technological mnovations, including Al-based neurofeedback and EEG-AR integration, are under
mvestigation for addiction rehabilitation [19][20]. This technology allows direct training of users to stabilize brain
activity, so that they can better control their impulses towards stimuli that trigger drug cravings[21]. In addition,
Augmented Reality (AR)- based learning systems combined with EEG are also being researched to create a more
immersive interactive experience in the rehabilitation process. The system allows users to practice self-control in a
fully customizable virtual environment, providing more personalized and effective training[22]. The technology
also enables in- depth monitoring of brain responses in various situations such as stress or temptation. The
combination of EEG, AT and AR offers a multidimensional approach to understanding and tackling impulsivity in
drug users[23]. While promising, these technologies are still in the experimental stage and are not yet widely
available in the market, thus requiring further research before they can be implemented clinically.

The KNN method has been widely used in EEG signal classification due to its simplicity, effectiveness, and
ability to handle high- dimensional data without data distribution assumptions[24][25]. In the context of
neuroinformatics, KNN is able to distinguish between normal and abnormal brain activity patterns based on the
similarity of pre-trained signal data[26]. Several studies have shown that KNN is quite reliable in identifying
neurological disorders such as epilepsy, ADHD, and even addiction, although its accuracy is highly dependent on
proper signal preprocessing and feature extraction. In the field of drug rehabilitation, the utilization of KINN is still
relatively limited and has not been specifically applied to detect or evaluate impulsivity in drug users[27]. However,
its potential use 1s quite large considering that this method can be optimized with a combination of feature selection
or dimensionality reduction techniques such as Principal Component Analysis (PCA) or Wavelet Transform|[28].
Therefore, applying KNN in EEG analysis to detect impulsivity patterns in drug users is a promising new approach
that has been relatively unexplored in previous studies. This implementation can also be the basis in the
development of a simple, fast, and cost- effective artificial intelligence-based rehabilitaion support system[29].

Along with the development of technology, some new mnovations that have great potential to improve
effectiveness in addiction rehabilitation are still in the development stage and not yet widely available in the market.
One promising technology 1s Al-based neurofeedback, which combines EEG signal reading with machine learning
methods to predict impulsive patterns in the brain. With this technology, therapy can be conducted in real-time to
stabilize brain activity associated with addiction or impulsivity[30]. Although this technology has been used in
several fields such as stress management, its use in drug rehabilitation 1s still imited. In addition, AR-based learning
systems coupled with EEG is also an emerging research area. These systems provide interactive and immersive
training in a virtual environment that can be customized to individual needs, helping users control their impulses
in situations that resemble the real world. However, this technology 1s not yet widely available in the market, as
many challenges remain to be resolved in terms of integration, cost, and user acceptance. Therefore, although
promising, both technologies still require further research and development before they can be applied in
rehabilitation practice.

Although technologies like neurofeedback and AR-based systems are being developed, their integration in
rehabilitation practice 1s still constrained. Existing EEG-based neurofeedback has shown effectiveness in conditions
such as anxiety and sleep disorders, but its role in drug rehabilitation 1s underutilized[31]. Given that KNN has
proven successful in EEG signal classification for other neurological disorders, its application to impulsivity
detection in drug users represents a promising yet underexplored area [32]. This research therefore emphasizes
the potential of combining EEG and KNN as a cost-effective, accurate, and clinically relevant approach to support
relapse prevention and rehabilitation programs. In addition, future studies could adopt a longitudinal pre-post
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therapy design to evaluate the sensitivity of this method to clinical changes and explore its integration into
monitoring or feedback interfaces, thereby strengthening its applicability in real rehabilitation settings.

2. RESEARCH METHOD

This study was conducted at a Correctional Institution in North Sumatra Province through a collaboration
between Prima Indonesia University and Padjadjaran University Bandung. A total of 21 male participants aged 28-
35 years with a history of methamphetamine and ecstasy use were recruited. All procedures utilized standard EEG
equipment, including an electrocap, conductive gel, a laptop with WinEEG software, a multi-channel EEG system,
amplifiers, and band-pass filters (BPFs) to enhance signal quality. During data collection, participants were seated
comfortably while the electrocap was positioned on the scalp with gel to ensure conductivity, and a chest strap was
used to stabilize posture. EEG signals were recorded using 19 channels positioned at standard sites (Fpl, Fp2, F7,
I8, F3, F4, Fz, C3, C4, Cz, T3, T4, T5, T6, P3, P4, Pz, O1, O2) with 33 electrodes in total, including bilateral ear
references. Cognitive stimuli were presented to elicit impulsivity-related brain responses, and signals were captured
with WinEEG software. To reduce potential demographic bias, the control group consisted of 21 healthy males
matched by age (28-35 years).

EEG preprocessing included noise and artifact removal using filtering techniques to ensure that the extracted
signals represented relevant neural activity. Feature extraction was then performed using Fourier and Wavelet
transforms. Fourier analysis was selected for its ability to capture frequency-domain characteristics of EEG, while
Wavelet was prioritized for its strength in handling non-stationary signals by providing both time and frequency
localization. These methods were favored over alternatives such as Power Spectral Density (PSD) and entropy
measures, which are more limited in temporal resolution and may be more sensitive to noise in impulsivity-related
tasks. For classification, the K-Nearest Neighbor (KNN) algorithm was applied. KNN was chosen not only for its
simplicity and effectiveness but also for its proven ability to handle high-dimensional EEG data without strong
distributional assumptions. Compared with more complex models such as Support Vector Machines (SVM) or
Random Forest, KNN offers a transparent baseline that is easier to interpret and tune for small datasets. This study
therefore focused on KNN to evaluate its feasibility, with broader comparisons against other algorithms planned
for future research. Several values of k were tested, and the optimal parameter was determined using 50-fold cross-
validation to minimize overfitting and increase robustness. Model performance was evaluated using accuracy and
Fl-score metrics.

Despite these measures, the relatively small sample size (n = 21) remains a limitation, as it may increase the
risk of overfitting and reduce the generalizability of the findings. The use of extensive cross-validation was intended
to mitigate this issue, but future studies with larger and more diverse populations will be essential to validate and
strengthen the clinical applicability of the proposed system. The overall framework of EEG acquisition,
preprocessing, feature extraction, and classification 1s depicted in Fig. 1, illustrating the pathway from raw brain
signals to impulsivity-level classification through the KNN approach. This framework is designed to contribute to
clinical and experimental studies by providing an objective system for detecting impulsivity-related brain activity
patterns in drug users.
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Figure 1. Diagram Block
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3. RESULT AND ANALYSIS

The data obtained after the collection process still contained considerable noise, so it was filtered using a
band-pass filter (BPF) with a frequency range of 0.5-50 Hz. As shown in Fig. 2, the raw EEG signal in Fig. 2(a)
contains a high level of noise that obscures relevant neural information, while the filtered result in Fig. 2(b)
demonstrates cleaner and more structured waveforms. This improvement facilitates the interpretation of brain

activity and ensures that subsequent analyses are based on signals with reduced artifacts and irrelevant frequency
components.
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Figure 2. (2) Raw EEG (before filtering)
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Figure 2. (b) Filtered EEG (after BPF)

The comparative results of EEG brainwave features across subjects consist of five frequency components—
Delta, Theta, Alpha, Beta 1, and Beta 2—together with their aggregated output values. Delta waves, which have the
lowest frequency, are typically related to deep sleep or highly relaxed states, whereas Theta waves correspond to
drowsiness and emotional processes. Alpha waves are associated with calm and relaxation, while Beta 1 and Beta
2, which are higher in frequency, are linked to concentration, alertness, and active cognitive states. Table 1 shows
that subjects SI-S10 (control group) exhibited relatively higher Delta and Theta power with lower Beta activity,
producing outputs between 314.66 and 1033.37. In contrast, subjects S11-S21 (drug-user group) displayed a
dominant Beta pattern, with higher outputs ranging from 851.66 to 998.11. These distinct spectral profiles reflect
differences in neurophysiological states between the two groups, which form the basis for subsequent classification.
The extraction of frequency-domain features is consistent with standard EEG signal processing practice, where
time-domain signals are transformed to reveal meaningful spectral characteristics.
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Table 1. EEG Brainware Feature Comparison Across Subjects
No. Delta Theta Alpha Betal Beta2 Output
S1 158 127,04 605,72 69,2 73,41 1033,37
S2 231,81 131,12 236,22 61,64 46,33 707,12
S8 195,37 103,89 78,31 28,03 30,28 435,88
S4 132,7 156,4 1434 44,18 46,9 523,58
S5 115,99 64,34 160,16 28,44 31,06 399,99
S6 229,79 107,07 102,78 49,82 57,1 546,561
S7 7528 47,52 124,82 31,48 35,56 314,66
S8 105,35 6291 92,29 44,92 82,68 388,15
S9 228,61 89,53 144,32 32,36 46,73 541,55
S10  131,5 79,26 83,94 32,11 35,67 362,48
S11 35,1 79,15 128,12 283,19 370,85 891,41
S12 86,08 82,04 176,81 299,8 370,09 964,82
S13 35,1 70,38 123,12 272,48 400,4 901,48
S14 87,06 77,17 125,06 273,45 358,37 871,11
S15 35,1 70,38 131,89 252,92 507,82 998,11
S16 35,1 86,87 151,43 269,55 365,22 908,17
S17 35,1 72,33 135,79 298,81 360,35 902,38
S18 35,1 70,38 210,96 250,95 399,41 966,8
S19 86,08 70,38 173,9 270,56 371,74 922,6
S20 18,62 74,29 129,96 259,73 371,07 853,67
S21 35,1 70,38 123,12 265,66 357,4 851,66
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Figure 3. EEG Brainware Visualization: (a) Delta, (b) Theta, (c) Alpha, (d) Betal, (e) Beta2

Visualization of EEG signals using the KNN method provides further insight into the dynamics of the five
frequency bands. Delta waves in Fig. 3(a) exhibit high imitial fluctuations (>250 V) before stabilizing at lower values.
Theta waves Fig. 3(b) follow a similar trend, beginning with an amplitude near 150 uV before decreasing. Alpha
waves Fig. 3(c) show a sharp decline from around 700 uV, suggesting a reduction in relaxation-related activity. Beta
1 Fig. 3(d) and Beta 2 Fig. 3(e) both demonstrate sudden increases after the 9th point, stabilizing at higher levels
that indicate increased cognitive load or stress. These changes in amplitude suggest a clear neurophysiological
response to stimuli or drug-related effects. Prior studies have linked such shifts in spectral power to impulsivity,
thereby reinforcing the findings of the present work. To improve interpretability, effect sizes and confidence
mtervals were calculated alongside accuracy and AUC, and feature-importance visualization was used to show the
relative contribution of each band to the KNN classifier.

Electroencephalogram Signal Analysis for Impulsivity Detection in Drug User Using K- Nearest Neighbor (Delima Sitanggang)
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Scatter plots Fig. 4 were generated to visualize the distribution of EEG features in two dimensions. Each point
represents a data sample, with its position determined by Delta and Theta values. Colors represent impulsivity
classes: orange = Active, purple = Tending to be Active, green = Less Active, and light blue = Very Active. The
shape of each pomt indicates the KNN prediction, while the color shows the true label. Most points are correctly
classified, but some overlap occurs, particularly involving the Very Active group. This overlap indicates that high-
impulsivity signals share similarities with other classes, making classification more challenging. The scatter plot thus
not only illustrates feature distribution but also highlights the inherent complexity of EEG-based impulsivity
detection.
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Figure 4. Scatter plot of EEG features (e.g., Alpha, Beta, Delta, and Theta band power) used for KNN
classification, illustrating the distribution between drug users and control subjects.

The ROC (Receiver Operating Characteristic) in Fig. 5 further evaluates classification performance by plotting
the trade-off between true positive and false positive rates. The recorded AUC value was 0.84, which falls within
the “good” range for EEG-based classification tasks (where 0.80-0.90 1s considered strong, and values above 0.90
are excellent). This suggests that the model 1s capable of reliably distinguishing between impulsivity levels. The
point at coordinates (0.01; 0.70) reflects a classifier with a very low false positive rate (19) while maintaining a
sensitivity of 70%. However, performance varied across classes: the model struggled more with the Very Active
group due to its small sample size and overlapping features. To reduce this bias, oversampling was applied to
balance the dataset and improve fairness across categories.
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Figure 5. ROC Curve Displaying Classification Performance with AUC = (.84
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The confusion matrix (Fig. 6) provides a detailed view of classification accuracy across the four main
impulsivity categories. The Active class was recognized with high precision, producing 205 correct predictions. By
contrast, the Very Active class was more difficult to classify, with only 7 correct predictions and several
misclassifications into Active. This outcome can be attributed to both the small sample size and the spectral
similarity between extreme and moderate impulsivity, particularly elevated Beta power. In the Tending to be Active
class, 66 data points were classified correctly, with a few errors into Active and Less Active. The Less Active class
vielded 83 correct classifications but showed some overlap with the Tending to be Active group. Overall accuracy
was 95%, validated using 50-fold cross-validation to minimize overfitting. Confidence intervals were also calculated,
showing accuracy of 95% + 2.1% and AUC of 0.84 + 0.03, confirming that performance remained stable across

folds.
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Figure 6. Confusion matrix illustrating the classification performance of KNN in identifying impulsivity levels
(Active, Tending to be Active, Less Active, and Very Active) from EEG signals.

Future research should incorporate longitudinal designs to evaluate sensitivity to therapeutic changes,
comparing EEG-KNN outcomes before and after rehabilitation. Additionally, integrating the approach into a
clinical monitoring system could enhance its practical impact, enabling clinicians to track impulsivity trends in real
time or provide neurofeedback support. These extensions would increase the clinical applicability of the proposed
system in rehabilitation and relapse prevention.

4. CONCLUSION

This study demonstrates that the KNN method effectively classifies EEG-based impulsivity patterns with an
accuracy of up to 95%, supported by statistical validation. The approach highlights the importance of preprocessing
and feature extraction in capturing neurophysiological conditions. While effective, the complexity of EEG signals
underscores the need for larger and more representative datasets. Future research should include external
validation across sites and devices, as well as integration of additional features such as neurofeedback or biomarkers
to improve accuracy. Practically, this method shows potential for application in rehabilitation settings, from clinical
monitoring and neurofeedback platforms to development as a commercial tool for clinicians.
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