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 Drug abuse disrupts normal brain activity and contributes to recurrent impulsive 
behaviors. While various machine learning approaches have been investigated 
for analyzing brain signals, studies focusing on the use of the K-Nearest 
Neighbor (KNN) method for impulsivity detection in drug users remain limited. 
In this research, KNN was implemented to classify Electroencephalography 
(EEG) signals based on neuroelectric features that reflect impulsive tendencies. 
EEG recordings were collected from individuals with a history of drug use while 
performing cognitive tasks designed to trigger impulsive responses and were 
compared with recordings from a healthy control group. The classification 
results showed that KNN achieved an accuracy of 95% in identifying neural 
patterns associated with impulsivity. This work introduces a novel application of 
EEG analysis integrated with KNN for objective and precise detection of 
impulsivity in drug users. The findings highlight the potential of this approach 
to serve as a supportive tool in rehabilitation programs through reliable 
neuropsychological monitoring. 
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1. INTRODUCTION 

The increasing prevalence of drug addiction demands innovative scientific approaches to assess its 
neurophysiological impacts[1]. Substance abuse alters brain activity, especially in areas related to executive control, 
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including impulse regulation and decision-making [2]. Rehabilitation programs may reduce dependence, yet 
residual brain activity changes often persist and are difficult to detect through conventional assessments [3]. A major 
challenge during recovery is identifying individuals with high impulsivity, as this increases relapse risk [4]. EEG 
provides a real-time window into brain electrical activity and has become an essential tool in cognitive neuroscience 
and psychiatric research [5][6]. Specific EEG signal features, such as variations in power spectra or event-related 
potentials, are closely associated with cognitive control and inhibitory mechanisms, making them valuable 
indicators of impulsive tendencies [7]. 

When combined with machine learning methods such as K-Nearest Neighbor (KNN), EEG can be utilized 
to reveal distinctive patterns of impulsivity that are not easily captured through behavioral assessments alone. 
Previous studies have explored different technologies to monitor impulsivity [8][9], with EEG widely applied to 
analyze brain function [10][11]. For instance, employed Random Forest methods to classify impulsivity based on 
EEG power features, showing classification accuracy 95% [12]. In EEG-based BCI and cognitive studies, SVM has 
often been adopted and shown strong performance compared to simpler models [13]. However, many existing 
methods face limitations: behavioral tests often lack objectivity, neuroimaging techniques such as fMRI are costly 
and less accessible, and some EEG-based approaches struggle with accuracy or require complex preprocessing 
pipelines [14][15]. These challenges highlight the need for an efficient, affordable, and accurate system for 
impulsivity detection. EEG combined with machine learning offers a more affordable and practical alternative for 
early impulsivity detection [16][17]. In fact, classic Machine Learning methods like SVM, KNN, and Random 
Forest are widely compared in EEG studies due to their interpretability and computational efficiency [18]. 

Recent technological innovations, including AI-based neurofeedback and EEG-AR integration, are under 
investigation for addiction rehabilitation [19][20]. This technology allows direct training of users to stabilize brain 
activity, so that they can better control their impulses towards stimuli that trigger drug cravings[21]. In addition, 
Augmented Reality (AR)- based learning systems combined with EEG are also being researched to create a more 
immersive interactive experience in the rehabilitation process. The system allows users to practice self-control in a 
fully customizable virtual environment, providing more personalized and effective training[22]. The technology 
also enables in- depth monitoring of brain responses in various situations such as stress or temptation. The 
combination of EEG, AI and AR offers a multidimensional approach to understanding and tackling impulsivity in 
drug users[23]. While promising, these technologies are still in the experimental stage and are not yet widely 
available in the market, thus requiring further research before they can be implemented clinically. 

The KNN method has been widely used in EEG signal classification due to its simplicity, effectiveness, and 
ability to handle high- dimensional data without data distribution assumptions[24][25]. In the context of 
neuroinformatics, KNN is able to distinguish between normal and abnormal brain activity patterns based on the 
similarity of pre-trained signal data[26]. Several studies have shown that KNN is quite reliable in identifying 
neurological disorders such as epilepsy, ADHD, and even addiction, although its accuracy is highly dependent on 
proper signal preprocessing and feature extraction. In the field of drug rehabilitation, the utilization of KNN is still 
relatively limited and has not been specifically applied to detect or evaluate impulsivity in drug users[27]. However, 
its potential use is quite large considering that this method can be optimized with a combination of feature selection 
or dimensionality reduction techniques such as Principal Component Analysis (PCA) or Wavelet Transform[28]. 
Therefore, applying KNN in EEG analysis to detect impulsivity patterns in drug users is a promising new approach 
that has been relatively unexplored in previous studies. This implementation can also be the basis in the 
development of a simple, fast, and cost- effective artificial intelligence-based rehabilitation support system[29]. 

Along with the development of technology, some new innovations that have great potential to improve 
effectiveness in addiction rehabilitation are still in the development stage and not yet widely available in the market. 
One promising technology is AI-based neurofeedback, which combines EEG signal reading with machine learning 
methods to predict impulsive patterns in the brain. With this technology, therapy can be conducted in real-time to 
stabilize brain activity associated with addiction or impulsivity[30]. Although this technology has been used in 
several fields such as stress management, its use in drug rehabilitation is still limited. In addition, AR-based learning 
systems coupled with EEG is also an emerging research area. These systems provide interactive and immersive 
training in a virtual environment that can be customized to individual needs, helping users control their impulses 
in situations that resemble the real world. However, this technology is not yet widely available in the market, as 
many challenges remain to be resolved in terms of integration, cost, and user acceptance. Therefore, although 
promising, both technologies still require further research and development before they can be applied in 
rehabilitation practice. 

Although technologies like neurofeedback and AR-based systems are being developed, their integration in 
rehabilitation practice is still constrained. Existing EEG-based neurofeedback has shown effectiveness in conditions 
such as anxiety and sleep disorders, but its role in drug rehabilitation is underutilized[31]. Given that KNN has 
proven successful in EEG signal classification for other neurological disorders, its application to impulsivity 
detection in drug users represents a promising yet underexplored area [32]. This research therefore emphasizes 
the potential of combining EEG and KNN as a cost-effective, accurate, and clinically relevant approach to support 
relapse prevention and rehabilitation programs. In addition, future studies could adopt a longitudinal pre–post 
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therapy design to evaluate the sensitivity of this method to clinical changes and explore its integration into 
monitoring or feedback interfaces, thereby strengthening its applicability in real rehabilitation settings. 

 
2. RESEARCH METHOD 

This study was conducted at a Correctional Institution in North Sumatra Province through a collaboration 
between Prima Indonesia University and Padjadjaran University Bandung. A total of 21 male participants aged 28–
35 years with a history of methamphetamine and ecstasy use were recruited. All procedures utilized standard EEG 
equipment, including an electrocap, conductive gel, a laptop with WinEEG software, a multi-channel EEG system, 
amplifiers, and band-pass filters (BPFs) to enhance signal quality. During data collection, participants were seated 
comfortably while the electrocap was positioned on the scalp with gel to ensure conductivity, and a chest strap was 
used to stabilize posture. EEG signals were recorded using 19 channels positioned at standard sites (Fp1, Fp2, F7, 
F8, F3, F4, Fz, C3, C4, Cz, T3, T4, T5, T6, P3, P4, Pz, O1, O2) with 33 electrodes in total, including bilateral ear 
references. Cognitive stimuli were presented to elicit impulsivity-related brain responses, and signals were captured 
with WinEEG software. To reduce potential demographic bias, the control group consisted of 21 healthy males 
matched by age (28–35 years). 

EEG preprocessing included noise and artifact removal using filtering techniques to ensure that the extracted 
signals represented relevant neural activity. Feature extraction was then performed using Fourier and Wavelet 
transforms. Fourier analysis was selected for its ability to capture frequency-domain characteristics of EEG, while 
Wavelet was prioritized for its strength in handling non-stationary signals by providing both time and frequency 
localization. These methods were favored over alternatives such as Power Spectral Density (PSD) and entropy 
measures, which are more limited in temporal resolution and may be more sensitive to noise in impulsivity-related 
tasks. For classification, the K-Nearest Neighbor (KNN) algorithm was applied. KNN was chosen not only for its 
simplicity and effectiveness but also for its proven ability to handle high-dimensional EEG data without strong 
distributional assumptions. Compared with more complex models such as Support Vector Machines (SVM) or 
Random Forest, KNN offers a transparent baseline that is easier to interpret and tune for small datasets. This study 
therefore focused on KNN to evaluate its feasibility, with broader comparisons against other algorithms planned 
for future research. Several values of k were tested, and the optimal parameter was determined using 50-fold cross-
validation to minimize overfitting and increase robustness. Model performance was evaluated using accuracy and 
F1-score metrics. 

Despite these measures, the relatively small sample size (n = 21) remains a limitation, as it may increase the 
risk of overfitting and reduce the generalizability of the findings. The use of extensive cross-validation was intended 
to mitigate this issue, but future studies with larger and more diverse populations will be essential to validate and 
strengthen the clinical applicability of the proposed system. The overall framework of EEG acquisition, 
preprocessing, feature extraction, and classification is depicted in Fig. 1, illustrating the pathway from raw brain 
signals to impulsivity-level classification through the KNN approach. This framework is designed to contribute to 
clinical and experimental studies by providing an objective system for detecting impulsivity-related brain activity 
patterns in drug users. 

 

 
Figure 1. Diagram Block 
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3. RESULT AND ANALYSIS 
The data obtained after the collection process still contained considerable noise, so it was filtered using a 

band-pass filter (BPF) with a frequency range of 0.5–50 Hz. As shown in Fig. 2, the raw EEG signal in Fig. 2(a) 
contains a high level of noise that obscures relevant neural information, while the filtered result in Fig. 2(b) 
demonstrates cleaner and more structured waveforms. This improvement facilitates the interpretation of brain 
activity and ensures that subsequent analyses are based on signals with reduced artifacts and irrelevant frequency 
components. 

 
Figure 2. (a) Raw EEG (before filtering) 

 

 
Figure 2. (b) Filtered EEG (after BPF) 

 
The comparative results of EEG brainwave features across subjects consist of five frequency components—

Delta, Theta, Alpha, Beta 1, and Beta 2—together with their aggregated output values. Delta waves, which have the 
lowest frequency, are typically related to deep sleep or highly relaxed states, whereas Theta waves correspond to 
drowsiness and emotional processes. Alpha waves are associated with calm and relaxation, while Beta 1 and Beta 
2, which are higher in frequency, are linked to concentration, alertness, and active cognitive states. Table 1 shows 
that subjects S1–S10 (control group) exhibited relatively higher Delta and Theta power with lower Beta activity, 
producing outputs between 314.66 and 1033.37. In contrast, subjects S11–S21 (drug-user group) displayed a 
dominant Beta pattern, with higher outputs ranging from 851.66 to 998.11. These distinct spectral profiles reflect 
differences in neurophysiological states between the two groups, which form the basis for subsequent classification. 
The extraction of frequency-domain features is consistent with standard EEG signal processing practice, where 
time-domain signals are transformed to reveal meaningful spectral characteristics. 
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Table 1. EEG Brainware Feature Comparison Across Subjects 
No. Delta Theta Alpha Beta 1 Beta 2 Output 
S1 158 127,04 605,72 69,2 73,41 1033,37 
S2 231,81 131,12 236,22 61,64 46,33 707,12 
S3 195,37 103,89 78,31 28,03 30,28 435,88 
S4 132,7 156,4 143,4 44,18 46,9 523,58 
S5 115,99 64,34 160,16 28,44 31,06 399,99 
S6 229,79 107,07 102,73 49,82 57,1 546,51 
S7 75,28 47,52 124,82 31,48 35,56 314,66 
S8 105,35 62,91 92,29 44,92 82,68 388,15 
S9 228,61 89,53 144,32 32,36 46,73 541,55 
S10 131,5 79,26 83,94 32,11 35,67 362,48 
S11 35,1 79,15 123,12 283,19 370,85 891,41 
S12 36,08 82,04 176,81 299,8 370,09 964,82 
S13 35,1 70,38 123,12 272,48 400,4 901,48 
S14 37,06 77,17 125,06 273,45 358,37 871,11 
S15 35,1 70,38 131,89 252,92 507,82 998,11 
S16 35,1 86,87 151,43 269,55 365,22 908,17 
S17 35,1 72,33 135,79 298,81 360,35 902,38 
S18 35,1 70,38 210,96 250,95 399,41 966,8 
S19 36,08 70,38 173,9 270,5 371,74 922,6 
S20 18,62 74,29 129,96 259,73 371,07 853,67 
S21 35,1 70,38 123,12 265,66 357,4 851,66 

 
Visualization of EEG signals using the KNN method provides further insight into the dynamics of the five 

frequency bands. Delta waves in Fig. 3(a) exhibit high initial fluctuations (>250 µV) before stabilizing at lower values. 
Theta waves Fig. 3(b) follow a similar trend, beginning with an amplitude near 150 µV before decreasing. Alpha 
waves Fig. 3(c) show a sharp decline from around 700 µV, suggesting a reduction in relaxation-related activity. Beta 
1 Fig. 3(d) and Beta 2 Fig. 3(e) both demonstrate sudden increases after the 9th point, stabilizing at higher levels 
that indicate increased cognitive load or stress. These changes in amplitude suggest a clear neurophysiological 
response to stimuli or drug-related effects. Prior studies have linked such shifts in spectral power to impulsivity, 
thereby reinforcing the findings of the present work. To improve interpretability, effect sizes and confidence 
intervals were calculated alongside accuracy and AUC, and feature-importance visualization was used to show the 
relative contribution of each band to the KNN classifier. 

 

 
Figure 3. EEG Brainware Visualization: (a) Delta, (b) Theta, (c) Alpha, (d) Beta1, (e) Beta2 
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Scatter plots Fig. 4 were generated to visualize the distribution of EEG features in two dimensions. Each point 
represents a data sample, with its position determined by Delta and Theta values. Colors represent impulsivity 
classes: orange = Active, purple = Tending to be Active, green = Less Active, and light blue = Very Active. The 
shape of each point indicates the KNN prediction, while the color shows the true label. Most points are correctly 
classified, but some overlap occurs, particularly involving the Very Active group. This overlap indicates that high-
impulsivity signals share similarities with other classes, making classification more challenging. The scatter plot thus 
not only illustrates feature distribution but also highlights the inherent complexity of EEG-based impulsivity 
detection. 

 

 
Figure 4. Scatter plot of EEG features (e.g., Alpha, Beta, Delta, and Theta band power) used for KNN 

classification, illustrating the distribution between drug users and control subjects. 
 
The ROC (Receiver Operating Characteristic) in Fig. 5 further evaluates classification performance by plotting 

the trade-off between true positive and false positive rates. The recorded AUC value was 0.84, which falls within 
the “good” range for EEG-based classification tasks (where 0.80–0.90 is considered strong, and values above 0.90 
are excellent). This suggests that the model is capable of reliably distinguishing between impulsivity levels. The 
point at coordinates (0.01; 0.70) reflects a classifier with a very low false positive rate (1%) while maintaining a 
sensitivity of 70%. However, performance varied across classes: the model struggled more with the Very Active 
group due to its small sample size and overlapping features. To reduce this bias, oversampling was applied to 
balance the dataset and improve fairness across categories. 

 

 
Figure 5. ROC Curve Displaying Classification Performance with AUC = 0.84 
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The confusion matrix (Fig. 6) provides a detailed view of classification accuracy across the four main 
impulsivity categories. The Active class was recognized with high precision, producing 205 correct predictions. By 
contrast, the Very Active class was more difficult to classify, with only 7 correct predictions and several 
misclassifications into Active. This outcome can be attributed to both the small sample size and the spectral 
similarity between extreme and moderate impulsivity, particularly elevated Beta power. In the Tending to be Active 
class, 66 data points were classified correctly, with a few errors into Active and Less Active. The Less Active class 
yielded 83 correct classifications but showed some overlap with the Tending to be Active group. Overall accuracy 
was 95%, validated using 50-fold cross-validation to minimize overfitting. Confidence intervals were also calculated, 
showing accuracy of 95% ± 2.1% and AUC of 0.84 ± 0.03, confirming that performance remained stable across 
folds. 

 

 
Figure 6. Confusion matrix illustrating the classification performance of KNN in identifying impulsivity levels 

(Active, Tending to be Active, Less Active, and Very Active) from EEG signals. 
 
Future research should incorporate longitudinal designs to evaluate sensitivity to therapeutic changes, 

comparing EEG–KNN outcomes before and after rehabilitation. Additionally, integrating the approach into a 
clinical monitoring system could enhance its practical impact, enabling clinicians to track impulsivity trends in real 
time or provide neurofeedback support. These extensions would increase the clinical applicability of the proposed 
system in rehabilitation and relapse prevention. 
 
4. CONCLUSION 

This study demonstrates that the KNN method effectively classifies EEG-based impulsivity patterns with an 
accuracy of up to 95%, supported by statistical validation. The approach highlights the importance of preprocessing 
and feature extraction in capturing neurophysiological conditions. While effective, the complexity of EEG signals 
underscores the need for larger and more representative datasets. Future research should include external 
validation across sites and devices, as well as integration of additional features such as neurofeedback or biomarkers 
to improve accuracy. Practically, this method shows potential for application in rehabilitation settings, from clinical 
monitoring and neurofeedback platforms to development as a commercial tool for clinicians.  
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