
 
Zero : Jurnal Sains, Matematika, dan Terapan 
E-ISSN : 2580-5754; P-ISSN : 2580-569X 
Volume 9, Number 1,  2025 
DOI: 10.30829/zero.v9i1.25455 
Page: 277-288  r   277 
  

Journal homepage: http://jurnal.uinsu.ac.id/index.php/zero/index 
 
 

The Trinomial Tree Method in Pricing European Gold Option with 
Volatility Forecasting Using the GARCH (1,1) Model 
 
1 Difa Tazkya  
  Mathematics Graduate Program, Universitas Syiah Kuala, Aceh, Indonesia 
 
2 Rini Oktavia  
  Department of Mathematics, Universitas Syiah Kuala, Aceh, Indonesia 
 

3 Intan Syahrini  
  Department of Mathematics, Universitas Syiah Kuala, Aceh, Indonesia 
 

Article Info  ABSTRACT   
Article history: 

Accepted, 20 June 2025 
 

 This study enhances the pricing accuracy of European gold options by 
integrating GARCH (1,1)-based volatility forecast into the trinomial tree 
method. GARCH (1,1) captures key characteristics of financial return series, 
such as heteroscedasticity and volatility clustering, while the trinomial tree offers 
greater flexibility than traditional models by allowing three price movements at 
each node. This integration provides a more realistic and robust framework for 
option pricing under dynamic market conditions. Using gold price data from 
October 2017 to October 2024, the model forecast annualized volatilities of 
16.59%, 17.33%, and 17.66% for one, two, and three months. For call options, 
prices increase with longer maturities, ranging from Rp194,048 to Rp207,385. 
Conversely, put options become more valuable when the strike price exceeds 
the market prices, reaching up to Rp107,778. The proposed model offers 
practical value for more accurate pricing and investment strategies. 
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1. INTRODUCTION 

In investment decision-making, two primary factors to consider are return and risk. The relationship between 
these factors is typically positive and linear, where higher risk is associated with higher expected returns, and vice 
versa [1]. However, investors inherently seek to minimize risk, which has led to the development of derivative 
product designed for risk mitigation, such as options. Options are financial instruments that allow investors to 
speculate on the price movements of underlying assets, including company stocks, currencies, agricultural 
commodities, and more. An option provides the holder with the right, but not the obligation, to buy or sell an asset 
at a predetermined price within a specific period [2]. Based on the timing of execution, options are categorized 
into European-style which can only be exercised at expiration, and American-style, which can be exercised any 
time before or at expiration.  

Among various underlying assets, gold is often regarded as a safe-haven asset during periods of economic 
uncertainty or inflation [3],[4]. In Southeast Asian countries like Indonesia, gold serves not only as a financial asset 
but also plays a vital role in cultural and social practices, including dowries and inheritance. Despite its prominence, 
gold-linked financial instruments such as options have not yet been fully developed or widely adopted in these 
markets, partly due to the lack of pricing models that account for local market behavior. Financial markets in 
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Southeast Asia also exhibit structural and behavioral characteristics that differ from those in developed economies, 
such as different levels of investor participation, regulatory environments, and price dynamics. These distinctions 
underscore the need for pricing models that reflect local market realities rather than relying solely on assumptions 
suited to more established financial systems. Addressing this gap is essential for supporting financial innovation, 
market development, and more effective risk management in the region. 

Accurately determining the price of an option is crucial to assess its suitability for investment. Various models 
have been developed to price options, including the Black-Scholes model [5], the Binomial method [6], and Monte 
Carlo simulation [2]. Each method has its advantages and assumptions. Previous studies, such as those by Ding [7] 
and Meng [8], have shown that tree-based methods, particularly the Binomial tree, can outperform other models 
in terms of pricing accuracy, especially when volatility is estimated using more adaptive models.  

However, many of these studies have primarily focused on stock options in developed markets, often under 
assumptions that may not align with the dynamic nature of alternative assets like gold or with the specific 
characteristics of emerging economies. This highlights the need for option pricing approaches that incorporate 
more flexible volatility modeling and are tailored to the behavior of assets and markets in regions such as Southeast 
Asia. 

Volatility represents the degree of uncertainty in the future movement of asset prices. It describes both the 
frequency and magnitude of fluctuations in financial asset prices, serving as a key indicator of market risk and 
uncertainty in investment decision-making [9]. In practice, financial time series data such as daily gold prices exhibit 
time-varying volatility, typically characterized by phenomena such as volatility clustering. This characteristic makes 
the assumption of constant variance unrealistic for modeling financial returns [10].  

To address this issue, Engle (1982) introduced the Autoregressive Conditional Heteroskedasticity (ARCH) 
model, which allows for time-dependent conditional variance based on past disturbances [11]. However, ARCH 
models often require many lag terms and can result in inefficient estimation. To overcome these limitations, 
Bollerslev (1986) developed the Generalized ARCH (GARCH) model, which incorporates both past residuals and 
past variances to better capture the volatility dynamics with fewer parameters [12]. The GARCH model is especially 
effective in modeling financial returns due to its ability to capture volatility clustering and provide more realistic 
volatility estimates.  

Given these advantages, the GARCH model is widely applied in financial modeling, particularly for assets 
like gold that experience significant price fluctuations. Among various GARCH specifications, the GARCH(1,1) 
model is one of the most frequently used due to its simplicity, robustness, and strong empirical performance in 
capturing volatility clustering in financial return series [13],[14],[15]. Recent studies have shown that GARCH(1,1) 
not only effectively models time-varying volatility but also accommodates characteristics such as thick-tailed returns. 
Its use of a single lag for both the conditional variance and past squared residuals also makes it computationally 
efficient and suitable for a wide range of financial time series data [16],[17].  

This study advances prior methodologies by integrating GARCH (1,1)-based volatility forecast into the 
Trinomial tree option pricing framework. While previous research often assumes constant volatility, this combined 
approach allows for a more realistic representation of market behavior. Estimating volatility through GARCH (1,1) 
enhances the accuracy of the input parameters used in the pricing model, ultimately resulting in more representative 
and reliable option prices.  

The Trinomial tree method itself extends the Binomial model by allowing three possible movements such as 
upward, downward, or unchanged at each time step [18],[19]. This added flexibility makes the Trinomial tree 
particularly suitable for capturing the dynamic behavior of gold prices [20], and it has been found to outperform 
the Binomial approach in terms of accuracy and convergence [21]. By integrating GARCH-based volatility into the 
Trinomial framework, this research aim to produce more accurate and realistic pricing of European-style gold 
option contracts, while also examining the impact of strike price and time to maturity on option values.  

In the Indonesian context, where gold holds deep cultural and economic significance, this research offers 
both academic and practical contributions. By providing a more precise framework for pricing gold options, the 
model can assist investors, analysts, and financial institutions in developing financial products and strategies that 
are better aligned with actual market behavior. 
 
2. RESEARCH METHOD 

To position this study within the context of prior research, Table 1 summarizes selected studies based on the 
modeling approach used for volatility forecasting and option pricing, with a particular focus on gold and analogous 
commodities. While many studies apply traditional models under the assumption of constant volatility, recent 
literature has increasingly explored GARCH-family models for more accurate volatility estimation, especially in 
commodity markets. However, few studies integrate such volatility models into option pricing frameworks. 

 
Table 1. Summary of Methods in Previous Studies and This Study’s Positioning 

Study Volatility Model Option Pricing 
Method Asset Notes 
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Mușetescu et al. 
(2022) [13] 

GARCH - Crude oil Forecasting 
volatility 

Ghani & Rahim 
(2019) [16] ARMA-GARCH - Natural rubber 

Volatility 
modeling 

Nissa et al. (2020) 
[20] Constant Trinomial Stock option 

Tree-based 
pricing with 
constant volatility 

Yurttagüler (2024) 
[22] 

ARCH, GARCH, 
EGARCH, 
TGARCH 

- Gold Volatility 
modeling  

This Study (2025) GARCH (1,1) Trinomial European gold 
option 

Combines 
GARCH-based 
volatility with 
trinomial pricing 

 
To strengthen conventional option pricing approaches, this study integrates two well-established frameworks: 

GARCH (1,1) for volatility forecasting and the Trinomial tree for option pricing. Traditional pricing models, such 
as Black-Scholes or Trinomial approaches with constant volatility, often fail to capture time-varying nature of gold 
price movements, particularly in emerging markets where price dynamics tend to be more volatile. By forecasting 
volatility with GARCH (1,1), the model captures volatility clustering, resulting in more realistic input parameters. 
The Trinomial tree, in turn, offers greater flexibility than the Binomial tree by allowing three possible movements 
at each node, which improves numerical stability and convergence. This combination enhances pricing accuracy 
by aligning the model structure more closely with real market behavior. 
2.1 Volatility Forecasting using GARCH (1,1) 

To model the volatility of gold return data, this study employs the Generalized Autoregressive Conditional 
Heteroskedasticity model of order (1,1), or GARCH (1,1), as introduced in [23]. This model was chosen for its 
balance between simplicity and strong empirical performance. While more complex GARCH-family models exist, 
GARCH (1,1) remains widely used in practice and has demonstrated robust capability in capturing volatility 
clustering across various financial assets. Supporting this choice, Yurttagüler [22] has evaluated several ARCH-
family models such as ARCH, GARCH, EGARCH, and TGARCH using gold price data from Türkiye (2005-
2023) and concluded that GARCH (1,1) was the most appropriate for modeling gold price volatility. Given its 
effectiveness and parsimony, GARCH (1,1) is considered well-suited for integration with the Trinomial Tree 
framework in this study. 

The GARCH (1,1) specification captures time-varying conditional variance 𝜎!" as a function of both past 
squared innovations (𝜀!#$" ) and past variances (𝜎!#$" ). The model is specified as: 

𝜎!" = 𝜔 + 𝛼𝜀!#$" + 𝛽𝜎!#$"  (1) 
where 𝜔 > 0, 𝛼 ≥ 0, and 𝛽 ≥ 0. Here, 𝜀! = 𝑟! − 𝜇 represents the return innovation, with 𝜇 as the 

conditional mean of the return series. 
Volatility, which is the standard deviation of returns, is derived directly from the conditional variance by taking 

its square root. In other words, 𝜎! = 0𝜎!" where 𝜎! is interpreted as the forecasted volatility at time 𝑡. 
The return series 𝑟!, which reflects the relative change in gold prices over time, is computed using the 

following formula: 

𝑟! = ln4
𝑆!
𝑆!#$

6 (2) 

where 𝑆! denotes the gold price at time 𝑡 [24]. The data used in this study are daily gold price obtained from 
www.exchange-rates.org, covering the period from October 2017 to October 2024. 

To ensure the appropriateness of the model, several diagnostic checks were conducted [25]. The Augmented 
Dickey-Fuller (ADF) test was first applied to verify the stationarity of the return series. Next, the presence of ARCH 
effects was confirmed using the Lagrange Multiplier (LM) test, which justifies the application of GARCH modeling. 
In addition, ACF and PACF plots were analyzed for preliminary model identification in the context of ARIMA-
based residual diagnostics. All statistical procedures and estimations are performed using EViews 10 due to its 
robust built-in econometric tools and ease of use for time series modeling. 

The long-run variance 𝑉% and the weight parameter 𝛾 are defined such that 𝜔 = 𝛾𝑉% and 𝛾 + 𝛼 + 𝛽 = 1. 
After estimating 𝜔, 𝛼, and 𝛽, the values of 𝛾 and 𝑉% can be derived as 𝛾 = 1 − 𝛼 − 𝛽 and 𝑉% =

&
'

. 

Theorem 1. Assume 𝜔 > 0 and 𝛼, 𝛽 ≥ 0, then the GARCH (1,1) equation has a stationary solution if and 
only if 𝔼[log(𝛼𝑒!" + 𝛽)] < 0. In this case, the solution is uniquely given by: 

𝜎!" = 𝜔(1 +BC(𝛼𝑒!#(" + 𝛽)
)

(*$

+

)*$

 
 

[26]. 
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Parameters in the GARCH (1,1) model are estimated using the Maximum Likelihood Estimation (MLE) 
method under the assumption of conditional normality: 

𝐿 = 	C
1

02𝜋𝜎!"
expK−

𝑟!"

2𝜎!"
L

,

!*$

 
 

with the log-likelihood function given by: 

ln 𝐿 =B[− ln(𝜎!") −
𝑟!"

𝜎!"

,

!*$

 (3) 

After constructing the log-likelihood function, the optimal parameters are obtained by maximizing its value. 
Once estimated, the multi-step-ahead forecast of conditional variance at time 𝑛 + 𝑡, given information up to time 
𝑛, is: 

𝔼[σ-./" ] = 𝑉% + (𝛼 + 𝛽)!(𝜎," − 𝑉%) (4) 
where 𝑉% =

&
($#1#2)

 denotes the long-run variance. The corresponding volatility forecast 𝜎,.! is derived by taking 

the square root of the forecasted variance. Finally, because the data consists of daily gold prices, the daily volatility 
forecast is annualized by multiplying it by √365.  
2.2 Option Pricing using Trinomial Tree Method  

The trinomial tree method is an extension of the binomial tree model which assumes three possible outcomes 
for the underlying asset price (up, down or remain unchanged). First introduced by Boyle in 1986, the trinomial 
method is based on matching the mean and variance of continuous and discrete distributions. It discretizes the 
continuous time interval [0, 𝑇] into 𝑛 equal subintervals with time partition points 0 = 𝑡4 < 𝑡$ < ⋯ < 𝑡, = 𝑇, 
where 𝑡) = 𝑗∆𝑡, ∆𝑡 = 5

,
, and 𝑗 = 0,1,2, … , 𝑛 [27]. 

Compared to the binomial model, the trinomial tree offers better numerical stability and faster convergence, 
especially with fewer time steps, as supported by Josheski [21]. The presence of a middle state (no price change) 
enables a more accurate approximation of the lognormal distribution of asset prices. Although Monte Carlo 
simulation is widely used to model random price paths and estimate option values by averaging discounted payoffs 
[2], it is computationally intensive and more commonly applied in American option pricing [8]. Therefore, this 
study adopts the trinomial tree method for its balance between computational efficiency and accuracy in pricing 
European-style options under time-varying volatility. 

In each time step ∆𝑡, the asset price 𝑆, may move up by a factor 𝑢, down by a factor 𝑑, or remain unchanged 
by a factor 𝑚 with corresponding probabilities 𝑝6, 𝑝7, and 𝑝8 [18]. The trinomial method is built upon several 
assumptions: constant volatility 𝜎, asset prices following a geometric Brownian motion (GBM), a constant risk-free 
interest rate 𝑟, no arbitrage opportunities, absence of transaction costs or taxes, permission for short selling, 
divisibility of assets, and no dividends paid during the contract life. 

Six key parameters govern the model: 𝑢, 𝑚, 𝑑, 𝑝6, 𝑝8, and 𝑝7. The parameter estimation is typically guided 
by the following assumptions [1]: 

1. The discrete model's expected price matches that of the continuous model 
2. The discrete model's price variance matches that of the continuous model 
3. 𝑢𝑑 = 1 
4. 𝑝6 + 𝑝8 + 𝑝7 = 1 
5. 𝑝8 = "

9
 

Once the parameters are established, the possible movements of the asset price at each node can be calculated 
as: 

𝑆() = \
𝑢(𝑆4, 𝑖 ≥ 1
𝑆4, 𝑖 = 0

𝑑|(|𝑆4, 𝑖 ≤ −1
 (5) 

For European-style options, the payoff at maturity is given by: 
𝐶(; = maxb𝑆() −𝐾, 0d (6) 
𝑃(; = maxb𝐾 − 𝑆() , 0d (7) 

Backward induction is then applied to obtain the present value of the option: 
𝐶(,) = 𝑒#=∆!b𝑝6𝐶(.$,).$ + 𝑝8𝐶(,).$ + 𝑝7𝐶(#$,).$d (8) 
𝑃(,) = 𝑒#=∆!b𝑝6𝑃(.$,).$ + 𝑝8𝑃(,).$ + 𝑝7𝑃(#$,).$d (9) 

[28]. 
 
3. RESULT AND ANALYSIS 
3.1 Volatility Forecasting 

Before estimating volatility with the GARCH (1,1) model, a sequence of analyses is conducted, including 
stationarity testing, ARIMA model identification, and testing for ARCH effects. 
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1. Stationarity Test 
Stationarity is tested using the Augmented Dickey-Fuller (ADF) test. The null hypothesis is that the return 

series contains a unit root (non-stationary). Table 2 presents the ADF test result. 
Table 2. ADF Test Result 

ADF Statistic Critical Value (5%) P-value 
-44.70591 -2.862903 0.0001 

 
Since the test statistic is smaller than the critical value and the p-value is below 0.05, the null hypothesis is 

rejected, indicating that the gold return data is stationary. 
2. ARIMA Model Identification 

The identification of ARIMA model orders is conducted using ACF and PACF plots. Based on the ACF 
and PACF in Figure 1, significant spikes appear at lags 1, 8, 9, 11, 12, and 16. As a starting point and in 
accordance with the parsimony principle, AR (1), MA (1), and ARMA (1,1) are evaluated. 

 

 
Figure 1. ACF and PACF plots 

 
Model selection is based on the lowest AIC value. The AIC values are: 
1. AR (1): -6.496438 
2. MA (1): -6.496568 
3. ARMA (1,1): -6.497409 
Thus, the ARMA (1,1) model is selected as the best-fitting model and is used in subsequent analysis. 

3. ARCH Effect Test 
Heteroscedasticity and ARCH effect testing are conducted on the residuals of the ARMA(1,1) model. 

Using EViews 10, the p-value from the ARCH-LM test is 0.0127 (Figure 2), which is below 0.05, indicating 
the presence of ARCH effects. 
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Figure 2. ARCH-LM test result 

 
Additionally, the LM statistics for lags 1 and 2 are 8.736075 and 8.73134, respectively, both exceeding the 

chi-square critical values (3.84 and 5.9915). These results confirm the presence of ARCH effects, validating 
the application of the GARCH model. 
4. Parameter Estimation  

The GARCH (1,1) model is estimated by maximizing the log-likelihood function in (3), assuming that 
𝑟!~𝒩(0, 𝜎!"). Since the return series is defined as 𝑟! = 𝜇! + 𝜀!, and the conditional mean 𝜇! is assumed to 
be zero, it follows that 𝑟! = 𝜀!. Consequently, the conditional variance in (1) can be expressed as: 

𝜎!" = 𝜔 + 𝛼𝑟!#$" + 𝛽𝜎!#$"  (10) 
where 𝑟! is the gold return calculated using (2). The model parameters are estimated using Microsoft 

Excel Solver. The optimal values obtained are: 
𝜔 = 0.000002189, 𝛼 = 0.072801, 𝛽 = 0.902428 

These estimates satisfy the standard GARCH conditions: 𝜔 > 0, 𝛼 ≥ 0, 𝛽 ≥ 0, and 𝛼 + 𝛽 < 1, 
ensuring a valid and stable variance process. Substituting the estimated parameters into (10) yields the fitted 
GARCH (1,1) model: 

𝜎!" = 0.000002189 + 0.072801𝑟!#$" + 0.902428𝜎!#$"  (11) 
The stationarity of the model is verified using the condition 𝔼[log(𝛼𝑒!" + 𝛽)] < 0 as stated in Theorem 

1. A simulation was conducted using Python to estimate this expectation by generating a large number of 
random values from the standard normal distribution. With 100,000 iterations, the simulation yielded a value 
of −0.030027, confirming that the model satisfies the stationarity requirement. 

The estimated parameters imply 𝛼 + 𝛽 = 0.975229 and a weight parameter 𝛾 = 0.024771. These 
values indicate strong persistence in volatility with a slow but consistent toward the long-run variance 𝑉%. The 
presence of a positive 𝛾 confirms that a portion of the conditional variance is always tied to the long-term 
variance, providing stability and a mean-reverting structure to the model. 

These parameters characteristics highlight the theoretical advantages of the GARCH (1,1) model over 
simpler volatility forecasting methods such as moving average (MA) and exponentially weighted moving 
averages (EWMA). While MA and EWMA techniques rely on fixed-length windows and apply uniform or 
exponentially decaying weights to past observations, they do not explicitly model volatility as a dynamic 
process nor include a mechanism for long-term reversion. As emphasized by Hull [1], the inclusion of a 
mean—reverting component through the 𝛾-weighted long-run variance makes GARCH (1,1) a more robust 
and theoretically appealing model, particularly for assets like gold that exhibit volatility clustering and eventual 
return to equilibrium. 
5. Volatility Forecasting 

The volatility for the next 1, 2, and 3 months is forecasted using (4) and the values are shown in Table 3. 
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Table 3. Forecasted Volatility using GARCH (1,1) 
Time Horizon Variance Volatility 

1 month 0.0000754 0.0086809 
2 months 0.0000823 0.0090686 
3 months 0.0000855 0.0092456 

 
To improve forecasting accuracy, a machine learning-based approach is also used. The data is split into 

80% training and 20% testing. Using Python, new parameters are estimated as: 
𝜔 = 0.000001769, 𝛼 = 0.05, 𝛽 = 0.9299 

These values satisfy the GARCH model conditions and yield the following model: 
𝜎!" = 0.000001769 + 0.05𝑟!#$" + 0.9299𝜎!#$"  (11) 

Forecasted volatility using this machine learning approach is shown in Table 4. 
 

Table 4. Forecasted Volatility with Machine Learning Approach 
Time Horizon Variance Volatility 

1 month 0.0000774 0.008798 
2 months 0.0000824 0.009079 
3 months 0.0000852 0.009228 

 
3.2 Option Valuation 

In valuing European-style gold options using the trinomial method, the initial asset price (𝑆4) is taken as the 
most recent historical price, which is 1,388,060 on October 31, 2024. The analysis is conducted by considering 
three cases based on the relationship between the initial market asset price (𝑆4) and the strike price (𝐾), namely 
𝑆4 > 𝐾, 𝑆4 = 𝐾, and 𝑆4 < 𝐾, with the respective strike prices assumed to be 1,200,000; 1,388,060; and 1,500,000. 
The annual risk-free interest rate used in this study is set at 6\% [29]. 

Option prices are computed for maturities of 1--3 months using 𝑛 = 12 time steps. Volatility is forecasted via 
the GARCH(1,1) model and annualized by multiplying daily estimates with √365, resulting in 0.16585, 0.17326, 
and 0.17664, respectively. The initial assumption 𝑝8 = "

9
 is replaced with the empirical value 𝑝8 = $

$44
, obtained 

by classifying returns based on a threshold of 0.0001. Under the constraint 𝑢𝑑 = 1, the up and down factors are 
defined as: 

𝑢 = 𝑒?@
"44
$AB∆! , 𝑑 =

1
𝑢 (13) 

The corresponding transition probabilities are: 

𝑝6 = 4𝑟 −
99
198𝜎

"6m
∆𝑡

800
198𝜎

"
+
99
200 , 𝑝7 =

99
100 − 𝑝6 (14) 

Using these formulas, the parameters are computed for each time to maturity 𝑇 = 1,2,3 months with 𝑛 = 12 
time steps. Table 5 presents the computed values. 

 
Table 5. Estimated Parameters of the Trinomial Tree Method 

Time  𝒖 𝒅 𝒑𝒖 𝒑𝒅 
1 month 1.01399 0.98621 0.50656 0.48344 
2 months 1.02073 0.97969 0.51023 0.47978 
3 months 1.02596 0.97470 0.51305 0.47695 

 
After obtaining the model parameters, the next step is constructing the asset price tree using (3). Each node 

is represented as a pair (𝑖, 𝑗), where 𝑖 indicates the number of up (if 𝑖 > 0), down (if 𝑖 < 0), or neutral (if 𝑖 = 0) 
movements, and 𝑗 denotes the step number (𝑗 = 0,1,2, … , 𝑛). Table 6 shows selected asset price outcomes for 
each maturity. 

 
Table 6. Possible Gold Price Movements at Each Step 

(𝒊, 𝒋) 1 month 2 months 3 months 
(0,0) 1,388,060 1,388,060 1,388,060 
(1,1) 1,407,475 1,416,840 1,424,088 
(0,1) 1,388,060 1,388,060 1,388,060 
(−1,1) 1,368,913 1,359,865 1,352,944 
⋮ ⋮ ⋮ ⋮ 

(12,12) 1,639,830 1,775,653 1,887,773 
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At maturity, the option value at each terminal node is calculated using the payoff function (Eq. (4) for calls 

and Eq. (5) for puts). The option value at earlier nodes is determined using backward induction with discounting, 
as per Eq. (6) or Eq. (7), depending on the option type. The discount factor 𝑒#=∆! reflects the time value of money. 
Figure 3 illustrates the trinomial tree structure used to compute the call option value with 𝐾 = 1,200,000 and 𝑇 =
1 month. 

 

 
Figure 3. Trinomial Tree for Option Valuation (𝐾 = 1,200,000	; 𝑇 = 1 months) 

 
The backward discounting process is applied recursively from the terminal nodes to the root node (0,0), 

which represents the option price at time zero. As illustrated in Figure 3, the option value at the root node is 
194,048.18. This procedure is repeated for each maturity and strike price scenario. The resulting option values are 
summarized in Table 7-9. 

 
Table 7. Option Values for 𝑇 = 1 month 

(𝒊, 𝒋) 𝑺𝟎 > 𝑲 𝑺𝟎 = 𝑲 𝑺𝟎 < 𝑲 
Call Put Call Put Call Put 

(0,0) 194,048 4.41 29,615 22,694 1,862 106,322 
(1,1) 212,962 0,00 39,989 14,227 3,034 88,701 
(0,1) 193,549 2.89 29,078 22,732 1,451 106,533 
(−1,1) 174,408 9.07 18,784 31,585 644.40 124,874 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

(12,12) 439,830 0,00 251,770 0,00 139,830 0,00 
(0,12) 188,060 0,00 0,00 0,00 0,00 111,940 
(−12,12) 0,00 25,055 0,00 213,115 0,00 325,055 

 
Table 8. Option Values for 𝑇 = 2 months 

(𝒊, 𝒋) 𝑺𝟎 > 𝑲 𝑺𝟎 = 𝑲 𝑺𝟎 < 𝑲 
Call Put Call Put Call Put 

(0,0) 200,410 414.96 45,616 31,810 8,914 105,934 
(1,1) 227,889 104.17 61,362 19,921 13,614 83,092 
(0,1) 199,221 215.60 44,655 31,994 8,048 106,305 
(−1,1) 171,561 750.35 28,970 44,504 3,950 130,403 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

(12,12) 575,653 0,00 387,593 0,00 275,653 0,00 
(0,12) 188,060 0,00 0,00 0,00 0,00 111,940 
(−12,12) 0,00 114,928 0,00 302,988 0,00 414,928 
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Table 9. Option Values for 𝑇 = 3 months 

(𝒊, 𝒋) 𝑺𝟎 > 𝑲 𝑺𝟎 = 𝑲 𝑺𝟎 < 𝑲 
Call Put Call Put Call Put 

(0,0) 207,385 1,470 58,748 38,093 18,159 107,778 
(1,1) 240,949 484.54 78,811 23,838 26,759 82,198 
(0,1) 205,634 1,197 57,387 38,442 14,809 106,275 
(−1,1) 171,860 2,539 37,349 53,520 9,026 135,609 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

(12,12) 687,773 0,00 499,713 0,00 387,773 0,00 
(0,12) 188,060 0,00 0,00 0,00 0,00 111,940 
(−12,12) 0,00 179,374 0,00 367,434 0,00 479,374 

 
The option price at node (0,0) of each tree represents the fair price of the option at time zero. For the call 

option under the condition 𝑆4 > 𝐾, the price increases with maturity: Rp194,048 for 1 month, Rp200,410 for 2 
months, and Rp207,385 for 3 months. This upward trend reflects the increasing probability that the option will 
end in-the-money over a longer time horizon. 

When 𝑆4 = 𝐾, the call values are lower: Rp29,615, Rp45,616, and Rp58,748, indicating a reduced probability 
of ending in-the-money compared to the 𝑆4 > 𝐾 case. In contrast, for 𝑆4 < 𝐾, the call option values are significantly 
lower: Rp1,862, Rp8,914, and Rp18,159, due to the option being out-of-the-money across all maturities. 

Regarding put options, the values are negligible for 𝑆4 > 𝐾: Rp4.41, Rp414.96, and Rp1,470. This is expected 
as the option holder has no advantage in selling at a strike price below the market price. When 𝑆4 = 𝐾, put values 
are modest: Rp22,694, Rp31,810, and Rp38,093. However, for 𝑆4 < 𝐾, the put option becomes highly valuable: 
Rp106,322, Rp105,934, and Rp107,778, since the right to sell above the market price provides clear payoff 
advantages. 

 
Figure 4. Effect of Strike Price on Option Value 

 
Figure 4 illustrates that call option values decline with increasing strike prices, while put option values increase. 

This pattern aligns with standard financial theory: call options become less valuable as they move further out-of-
the-money, and put options become more valuable as they move further in-the-money. 

Figure 5 shows that both call and put option values generally increase with time to maturity. A longer time 
horizon provides more opportunities for the underlying asset to experience price movements favorable to the 
option holder, thereby increasing the option’s time value. 
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Figure 5. Effect of Time to Maturity on Option Value 

 
4. CONCLUSION 

This study applied the GARCH(1,1) model to forecast the volatility of gold return data and used the trinomial 
method to determine the price of European-style gold options. The GARCH(1,1) model was specified as  

𝜎!" = 0.000002189 + 0.072801𝑟!#$" + 0.902428𝜎!#$"  
with volatility calculated as the square root of the conditional variance. The forecasting results produced by 

this model were found to be comparable to those obtained using machine learning-based approaches. 
In the option pricing stage, a fixed probability of $

$44
 was employed in the trinomial model, with transition 

probabilities estimated from historical data. The analysis revealed that call option prices decrease as the strike price 
increases, while put option prices exhibit the opposite trend, increasing with higher strike prices. Furthermore, 
both call and put option prices increase with longer time to maturity, reflecting the greater potential for favorable 
movements in the underlying asset price over extended periods. Overall, the findings support the effectiveness of 
the GARCH(1,1)-based volatility forecast combined with the trinomial method for evaluating European gold 
options under different market conditions.  

From a practical perspective, this approach can guide traders and investors in strategy selection. For instance, 
if investors expect rising gold prices, long-term call options (e.g., T = 3 months) may yield better returns. Conversely, 
long-term put options are more beneficial when anticipating a price decline. When the strike price equals the 
current gold price, short-term options (T = 1 month) may be preferred due to lower costs. Future research may 
extend this framework by exploring other GARCH specifications such as EGARCH or GJR-GARCH to better 
capture volatility asymmetry, extending the model to American options or other commodities (e.g., crude oil, 
silver), and integrating machine learning to enhance predictive performance. 
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