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 Climate change has increased rainfall variability and unpredictability, 

significantly impacted agricultural productivity, and raised the risk of crop 

failure, particularly in rain-fed rice farming systems. This study models rainfall 

data from Tabanan, Bali, using a continuous-time Hidden Markov Model 

(HMM) to identify latent weather states and assess the associated risk of rice 

crop failure. The model assumes four hidden states, each generating rainfall 

observations following a Gamma distribution. Simulation results produced 

Mean Absolute Percentage Error (MAPE) values below 5% for training and 

testing sets, indicating strong model performance in replicating rainfall patterns. 

Risk analysis compared simulated rainfall with rice crop water requirements 

across three planting periods. The second planting period (July–October) 

exhibited the highest risk at 3.75%. Compared to other predictive models, 

HMM offers superior capability in capturing temporal rainfall structure and 

identifying critical transition phases, making it highly suitable for agricultural risk 

assessment and climate-adaptive planning. 
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1. INTRODUCTION 
Indonesia is one of the biggest agricultural countries in the world, with rice as one of its major commodities. 

However, the increasing variability in rainfall patterns caused by global climate change has become a major 

challenge for the agricultural sector. Uncertainty in the amount and distribution of rainfall can significantly affect 

climate change [1]. This increasing variability of rainfall patterns also impacts the uncertainty of the planting 

schedules, crop growth, and overall agricultural productivity [2]. In agrarian countries like Indonesia, where many 

farmers rely heavily on rain-fed agriculture, the risks posed by irregular rainfall patterns can lead to reduced 

yields, economic losses, and food insecurity [3]. 
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Rainfall plays a crucial role in the success of the agricultural sector. Its instability due to climate change 

poses a serious challenge, especially in water risk management issues [4]. Excessive and insufficient rainfall can 

reduce agricultural productivity [5]. This situation is increasingly concerning as changes in rainfall patterns in 

tropical regions like Indonesia are expected to become more extreme and unpredictable. Through modelling 

approaches, policymakers, researchers, and stakeholders can thoroughly comprehend how climate change may 

impact different dimensions of agriculture, such as plant development, water resources [6], soil quality, and 

agricultural productivity [7]. 

To address these challenges, predictive models that can capture the stochastic nature of rainfall are essential 

for supporting data-driven agricultural planning. One promising statistical approach is the hidden Markov model 

(HMM), which is particularly effective for modelling time series data with underlying hidden states [8]. In climate 

and weather analysis, HMM can represent unobserved weather, such as wet and dry conditions, and associate 

them with observable rainfall data distributed to a specific continuous distribution [9]. The application of HMM 

in time series analysis has become increasingly widespread, demonstrating success in diverse fields such as 

modelling trend prediction in financial markets [10], disease analysis [11], Ecology [12], and human behaviours 

[13]. In the analysis of weather data itself, HMM is widely applied to uncovering hidden patterns in atmospheric 

dynamics. For example, Hmm can be implemented to capture characteristics of rainfall and temperature, as well 

as seasonal or daily transitions between weather states [14], [15], [16]. 

This study aims to develop a hidden Markov model for rainfall data to uncover hidden weather patterns 

and measure the associated risks to agriculture. By applying HMM to rainfall data, we can estimate transition 

probabilities between different weather states and characterise rainfall distribution within each state. These allow 

for a quantitative assessment of agricultural risk, such as delayed rainy seasons, extreme rainfall events, or uneven 

rainfall distribution throughout the growing period. This modelling framework enables probabilistic forecasting 

of extreme events, making it valuable for agricultural planning, disaster risk reduction, and water resource 

management. Such insights are valuable for early warning systems and designing more resilient farming strategies 

in the face of climate uncertainty. The outcomes of this research will likely provide helpful information for 

policymakers and farmers in managing climate-related risks and improving the sustainability of agricultural 

practices. 

2. RESEARCH METHODE 

2.1 Continuous Hidden Markov Model (HMM) 

A hidden Markov model is a probabilistic model that assumes the observed data are generated by an 

underlying sequence of unobservable (hidden) states, which evolve according to a Markov process [17]. Consider 

a pair stochastic process (𝑆, 𝑂) where 𝑆 is an unobserved process and 𝑂 is the observed process. The hidden 

process 𝑆 is a Markov chain and 𝑂 is a process whose distribution depends on the value of 𝑆𝑡 [18]. Based on the 

observation data type, HMM is divided into two types, discrete HMM and continuous HMM. In a continuous 

HMM, the observation 𝑂𝑡 is a continuous random variable and the conditional distribution of 𝑂𝑡 given 𝑆𝑡 = 𝑖 
for 𝑖 = 1,2, . . . , 𝑁 come from a specific family of parametric distributions.  

A continuous HMM can be parametrized by 𝜆 = (𝐴, 𝐵, 𝜋) and has the following characteristics: 

• 𝐴 = [𝑎𝑖𝑗]
𝑁×𝑁

 is a transition probability matrix, with 𝑎𝑖𝑗 = 𝑃(𝑆𝑡+1 = 𝑗 |𝑆𝑡 = 𝑖), for 𝑖, 𝑗 = 1,2, . . . , 𝑁 and 

∑ 𝑎𝑖𝑗 = 1𝑁
𝑗=1 , for 𝑖 = 1,2, . . . , 𝑁.  

• 𝐵 = [𝑓(𝑜𝑡 |𝜃𝑖)]𝑁×1is a probability density function matrix, with 𝑓(𝑜𝑡 |𝜃𝑖) is the conditional probability 

density function of 𝑂𝑡 |𝑆𝑡  = 𝑖, for 𝑖 =  1,2, . . . , 𝑁.  

• 𝜋 = [𝜋𝑖]𝑁×1 is an initial probability matrix, with 𝜋𝑖  = 𝑃(𝑆1 = 𝑖) for 𝑖 = 1,2, . . . , 𝑁 and ∑ 𝜋𝑖
𝑁
𝑖=1 = 1. 

Estimating the transition matrix 𝐴 involves determining the probabilities of transitioning between hidden 

states based on the observed data. Accurate estimation of 𝐴 is essential, as it governs the probability of remaining 

in or moving between different states. In principle, this transition makes it possible to move from one condition 

to a different condition characterized by the distribution in matrix 𝐵. Equally important are the initial state 

probabilities 𝜋, which define the probability of the system starting in each hidden weather state. These initial 

probabilities play a critical role in short-term simulations and risk assessment, particularly at the beginning of the 

simulation. However, over a longer time horizon, the influence of initial conditions diminishes as the system 

approaches a stationary distribution determined by the transition matrix 𝐴. Therefore, a solid understanding of 

both 𝐴 and 𝜋 is essential for accurate short-term forecasting and long-term analysis of the data behaviour. 

Together, they form the backbone of the HMM's dynamic structure, driving the evolution of hidden state regimes 

while anchoring the model's starting assumptions, ensuring reliable simulation, forecasting, and interpretation of 

rainfall patterns. 

The parameters of the model 𝜆 = (𝐴, 𝐵, 𝜋) including the initial state probabilities (𝜋), transition 

probabilities (𝐴), and the parameters of the continuous distributions (𝐵) are estimated using the Expectation-
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Maximization (EM) algorithm, specifically the Baum-Welch algorithm [19]. The EM algorithm is used to find  

𝜆̂ = (𝐴̂, 𝐵̂, 𝜋̂)  that maximize the joint density of observations 𝑜1, . . . , 𝑜𝑇 

𝑝(𝑜1, . . . , 𝑜𝑇  | 𝜆̂)  = max
𝜆𝜖Λ

𝑝(𝑜1, . . . , 𝑜𝑇  | 𝜆). 

This iterative method refines the model by maximizing the likelihood of the observed rainfall data given the 

hidden states. It updates the transition matrix by calculating the expected number of transitions between states 

and adjusts the emission distribution parameters to best fit the observed rainfall associated with each state. 

Accurate estimation of these parameters is crucial, as the transition matrix governs how likely the system is to 

move between different weather conditions over time. This directly influences the model’s ability to simulate 

realistic rainfall sequences and identify periods of dry or wet conditions, which are essential for assessing 

agricultural risk and predicting rainfall-driven crop failures. 

The EM algorithm consists of two stages as follow [20]. 

• E step 

For a given 𝜆 = (𝐴, 𝐵, 𝜋) define two functions 𝐺 and 𝐻 in 𝛬 which is a set of all possible parameter 

for HMM. For all 𝜆′ =  (𝐴′, 𝐵′, 𝜋′)  ∈  𝛬, define 𝐺(𝜆, 𝜆′), 𝐻(𝜆, 𝜆′), and 𝑙(𝜆′) as follow.   

𝐺(𝜆, 𝜆′)  = ∑ 𝑝(𝑠1, . . . , 𝑠𝑇  |𝑜1, . . . , 𝑜𝑇, 𝜆) × log[𝑝(𝑜1, . . . , 𝑜𝑇, 𝑠1, . . . , 𝑠𝑇 | 𝜆′)]

𝑁

𝑠𝑇,…,1

.  (1) 

𝐻(𝜆, 𝜆′) = ∑  𝑝(𝑠1, . . . , 𝑠𝑇  |𝑜1, . . . , 𝑜𝑇, 𝜆)  × log[𝑝(𝑠1, . . . , 𝑠𝑇 |𝑜1, . . . , 𝑜𝑇, 𝜆′)].

𝑁

𝑠𝑇,…,1

 (2) 

𝑙(𝜆′)  =  log[𝑝(𝑜1, . . . , 𝑜𝑇  | 𝜆′)]  =  𝐺(𝜆, 𝜆′)  −  𝐻(𝜆, 𝜆′). (3) 

• M step 

On this stage, we will find 𝜆̂ ∈ 𝛬 such that  

𝐺(𝜆, 𝜆̂) = max
𝜆′∈𝛬

𝐺(𝜆, 𝜆′). 

Based on the equations in the E step, the following things can be shown [21]. 

𝑙(𝜆̂) − 𝑙(𝜆)  =  𝐺(𝜆, 𝜆̂) − 𝐻(𝜆, 𝜆̂) − (𝐺(𝜆, 𝜆) − 𝐻(𝜆, 𝜆))  

=  (𝐺(𝜆, 𝜆̂) − 𝐺(𝜆, 𝜆)) + (𝐻(𝜆, 𝜆) − 𝐻(𝜆, 𝜆̂)) 

Since 

𝐻(𝜆, 𝜆) ≥ 𝐻(𝜆, 𝜆̂), 𝜆̂ ∈ 𝛬. 
So that 

𝑙(𝜆̂) − 𝑙(𝜆) ≥ 𝐺(𝜆, 𝜆̂) − 𝐺(𝜆, 𝜆) ≥ 0. 
This result prove that  

𝑙 (𝜆̂) ≥ 𝑙(𝜆). 
Because logarithmic is an increasing function, it can be concluded that  

𝑝(𝑜1, . . . , 𝑜𝑇 |𝜆̂) ≥ 𝑝(𝑜1, . . . , 𝑜𝑇  |𝜆). 

Now, the optimization problem becomes finding the parameter 𝜆̂ = (𝐴̂, 𝐵̂, 𝜋̂) that maximize 𝐺 with two 

constrains. The problem is  

max
𝜆′∈𝛬

𝐺(𝜆, 𝜆′) 

with 𝐺(𝜆, 𝜆′) in equation (1) satisfies the following equation. 

 

𝐺(𝜆, 𝜆′) = ∑ 𝑝(𝑠𝑡 |𝑜1, … , 𝑜𝑇 , 𝜆)log𝜋𝑠𝑡
′

𝑁

𝑠𝑡=1

  

+ ∑ ∑ ∑ 𝑝(𝑠𝑡 |𝑜1, … , 𝑜𝑇 , 𝜆)𝑎𝑠𝑡𝑠𝑡+1
′

𝑇−1

𝑡=1

𝑁

𝑠𝑡+1=1

𝑁

𝑠𝑡=1

 

+ ∑ ∑ 𝑝(𝑠𝑡 |𝑜1, … , 𝑜𝑇 , 𝜆)

𝑇−1

𝑡=1

𝑁

𝑠𝑡=1

log𝑓′(𝑜𝑡 |𝜃𝑠𝑡
 ) 

(4) 

with constrains 

∑ 𝜋𝑠𝑡
′  = 1

𝑁

𝑠𝑡=1

 

 

∑ 𝑎𝑠𝑡𝑠𝑡+1
′ = 1

𝑁

𝑠𝑡+1=1

, 
 

𝑠𝑡 = 1,2, . . . , 𝑁. 
 

This problem can be solved using the multiplier Lagrange. From equation (4), define the Lagrange equation 

for 𝜆′ ∈ 𝛬 as 
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𝐿(𝜆′) = 𝐺(𝜆, 𝜆′) + 𝜂1  (∑ 𝜋𝑠𝑡
′ − 1

𝑁

𝑠𝑡=1

) 

+ ∑ 𝜂2  ( ∑ 𝑎𝑠𝑡𝑠𝑡+1
′ − 1

𝑁

𝑠𝑡+1=1

) 

𝑁

𝑠𝑡=1

 

(5) 

with 𝜂1 and 𝜂2 are Lagrange multiplier variables. By solving three equations below 

𝜕𝐿

𝜕𝜋𝑠𝑡
′

 = 0,
𝜕𝐿

𝜕𝑎𝑠𝑡𝑠𝑡+1
′   

 = 0 

And we obtain the estimate parameters 𝐴̂ and  𝜋̂ as follows.  

𝑎̂𝑠𝑡𝑠𝑡+1
=

∑  𝜉𝑡(𝑠𝑡, 𝑠𝑡+1) 𝑇−1
𝑡=1

∑ 𝛾𝑡(𝑠𝑡)𝑇−1
 𝑡=1

, 𝜋̂ = 𝛾1(𝑠𝑡) 

with  

𝜉𝑡(𝑠𝑡 , 𝑠𝑡+1) = 𝑝(𝑠𝑡 , 𝑠𝑡+1|𝑜1, . . . , 𝑜𝑇 , 𝜆)  (6) 

and 

𝛾𝑡(𝑠𝑡) = 𝑝(𝑠𝑡 |𝑜1, . . . , 𝑜𝑇, 𝜆).  (7) 

Probability 𝜉𝑡(𝑠𝑡, 𝑠𝑡+1) is the probability of state 𝑠𝑡 at time 𝑡 and state 𝑠𝑡+1 at time 𝑡 + 1 given a series of 

observations sequence 𝑜1, 𝑜2, . . . , 𝑜𝑇 and model 𝜆. Whereas 𝛾𝑡(𝑠𝑡) is the probability of being in state 𝑠𝑡 at time 

𝑡 given a series of observations sequence 𝑜1, 𝑜2, . . . , 𝑜𝑇 and model 𝜆 [22]. These two probabilities can be 

calculated using forward and backward algorithms [23].  

Let 𝛼𝑡(𝑠𝑡) is called forward variable and can be calculated as follow, for 𝑡 =  1, 2, . . . , 𝑇,  
𝛼𝑡(𝑥𝑡)  =  𝑝(𝑜1, . . . , 𝑜𝑇, 𝑠𝑡 | 𝜆), 𝑠𝑡 =  1, 2, . . . , 𝑁. (8) 

Let 𝛽𝑡(𝑠𝑡) is called backward variable and can be calculated as follow, for 𝑡 =  𝑇 − 1, 𝑇 − 2, … ,1,  
𝛽𝑡(𝑥𝑡)  =  𝑝(𝑜𝑡+1, . . . , 𝑜𝑇, 𝑠𝑡 | 𝜆), 𝑠𝑡 =  1, 2, . . . , 𝑁. (9) 

Using equation (8) and (9), probability 𝜉𝑡(𝑠𝑡, 𝑠𝑡+1) can be reform, for 𝑡 = 1, 2, … , 𝑁, 

𝜉𝑡(𝑠𝑡, 𝑠𝑡+1) =
𝛼𝑡(𝑠𝑡)𝑎𝑠𝑡𝑠𝑡+1

 𝑓(𝑜𝑡+1|𝜃𝑠𝑡+1
 )𝛽𝑡+1(𝑠𝑡+1)

∑ 𝛼𝑡(𝑠𝑡)𝛽𝑡(𝑠𝑡)𝑁
𝑠𝑡=1

 (10) 

and 𝛾𝑡(𝑠𝑡) can be reform, for 𝑡 = 1, 2, … , 𝑁, 

𝛾𝑡(𝑠𝑡) =
𝛼𝑡(𝑠𝑡)𝛽𝑡+1(𝑠𝑡+1)

∑ 𝛼𝑡(𝑠𝑡)𝛽𝑡(𝑠𝑡)𝑁
𝑠𝑡=1

. (11) 

For parameter 𝐵̂, the result depends on distribution of 𝑓(𝑜𝑡 |𝜃𝑠𝑡
). In this research, the distributions used is 

selected from family continuous distribution, such as Weibull, exponential, gamma, lognormal, and Pareto 

distribution. The parameters of each distribution are estimated using the maximum likelihood estimation (MLE). 

Once trained, the model is used to infer the most likely sequence of hidden states via the Viterbi algorithm 

[21] and to simulate synthetic rainfall series that preserve the temporal dependence structure observed in the 

original data. Let 𝛿𝑡(𝑠𝑡) represents the highest probability in first 𝑡 observations and ends in state 𝑠𝑡. This variable 

can be defined as follow. 

𝛿𝑡(𝑠𝑡) = max
𝑠1,…,𝑠𝑡−1

𝑝(𝑜1, . . . , 𝑜𝑡 , 𝑠1, . . . , 𝑠𝑡  | 𝜆),   𝑠𝑡 =  1, 2, . . . , 𝑇. (12) 

Using induction, will be obtain 

𝛿𝑡+1(𝑠𝑡+1) = max
𝑠1,…,𝑠𝑡

𝑓(𝑜𝑡+1 |𝜃𝑠𝑡+1
 )[𝛿𝑡(𝑠𝑡)𝑎𝑠𝑡𝑠𝑡+1

],   𝑠𝑡+1 =  1, 2, . . . , 𝑇. (13) 

Let array 𝜓𝑡+1(𝑠𝑡+1) represents the state at time 𝑡 from which a transition to state 𝑠𝑡+1 maximizes the 

probability 𝛿𝑡+1(𝑠𝑡+1). This array can be define as follow. 

𝜓𝑡+1(𝑠𝑡+1) = arg max
𝑠𝑡=1,…,𝑁

[𝛿𝑡(𝑠𝑡)𝑎𝑠𝑡𝑠𝑡+1
],   𝑠𝑡+1 =  1, 2, . . . , 𝑇. (14) 

The steps in the Viterbi algorithm as follow. 

• Initialization 

𝛿1(𝑥1) =  𝜋𝑠1
 𝑓(𝑜1 |𝜃𝑠1

), 𝑠1  =  1, 2, . . . , 𝑁.  

𝜓1(𝑠1) =  0, 𝑠1 =  1,2, . . . , 𝑁. 
• Recursion for 𝑡 = 1, 2, … , 𝑇 − 1 

𝛿𝑡+1(𝑠𝑡+1) =  max
𝑠𝑡=1,...,𝑁

[𝛿𝑡(𝑠𝑡)𝑎𝑠𝑡𝑠𝑡+1
 ]𝑓(𝑜𝑡+1 |𝜃𝑠𝑡+1

) , 𝑠𝑡+1  =  1, 2, . . . , 𝑁. 

𝜓𝑡+1(𝑠𝑡+1) = arg max
𝑠𝑡=1,2,...,𝑁

𝛿𝑡(𝑠𝑡)𝑎𝑠𝑡𝑠𝑡+1
 , 𝑠𝑡+1  =  1, 2, . . . , 𝑁. 

• Termination 

𝑝∗  = max
𝑠𝑇=1,...,𝑁

[𝛿𝑇 (𝑠𝑇)].   
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𝑠𝑇
∗  = arg max

𝑠𝑇=1,...,𝑁

[𝛿𝑇 (𝑠𝑇)]. 

• Backtracking 

𝑠𝑡−1
∗  =  𝜓𝑡(𝑠𝑡

∗), 𝑡 =  𝑇, 𝑇 − 1, . . . ,2. 
From this step, will be obtain 

{𝑠𝑇
∗  , 𝑠𝑇−1

∗ , . . . , 𝑠1
∗}. 

2.2 Rainfall Data 

The rainfall data used in this study were obtained from power.larc.nasa.gov in the form of 15-day rainfall 

time series covering the period from January 2010 to February 2023. The total number of data is 316, with 2 data 

each month. The data were collected from climatological or meteorological stations located in the region of 

Tabanan Regency, Bali. The data are divided into 292 training data points and 24 testing data points. The testing 

data is also used as simulation data to calculate risk probability. All computations are performed using a custom 

implementation in Mathematica 12.3, where both the estimation and simulation phases are handled through 

numerical optimization routines and stochastic sampling. The plot of the training and testing data used can be 

seen in Figure 1 and Figure 2 below. 

 

 
Figure 1. Plot of training data for the January 2010 - February 2022 period 

 
Figure 2. Plot of testing data for the March 2022 - February 2023 period 

3. RESULT AND ANALYSIS 
3.1 Hidden Markov Model Modelling 

The initial stage of data modelling involves identifying the optimal number of hidden states with the 

appropriate probability distribution. One commonly used method for model selection is the Akaike information 

criterion (AIC). The AIC can be calculated as follow [24]. 

AIC = −2𝑙𝑜𝑔𝐿 + 2(𝑁2 + 𝑘𝑁 − 1) (15) 

where 𝐿 is the likelihood, 𝑁 is number of hidden states, and 𝑘 is the number of parameters in each distribution. 

The results of AIC calculations can be seen in the Table 1 below. 
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Table 1. Akaike information criterion calculation result 

Number of 

Hidden states 
Weibull Exponential Gamma Lognormal Pareto 

2 2928.41 3230.63 2919.94 2925.72 3270.13 

3 2856.32 3242.68 2848.92 2856.82 3262.68 

4 2848.45 3258.54 2831.92 2862.29 3073.91 

5 2849.71 3277.75 2842.14 2847.71 2997.45 

 

Based on the Table 1 above, the yellow number indicate the smallest AIC value. From these results, the 

most optimal model is a continuous time HMM with 4 states and Gamma distribution. The estimated parameter 

𝜆̂  =  ( 𝐴̂, 𝐵̂, 𝜋̂) as follows.  

𝐴̂ = [

0.555 0.213 0.029 0.202
0.249 0.751 4.429 × 10−55 1.267 × 10−5

4.766 × 10−16 1.724 × 10−132 0.858 0.142
0.192 2.436 × 10−14 0.171 0.637

] 

 

𝐵̂ = [

𝐺𝑎𝑚𝑚𝑎(14.477, 3.917)

𝐺𝑎𝑚𝑚𝑎(8.789, 3.183)

𝐺𝑎𝑚𝑚𝑎(23.822, 6.853)

𝐺𝑎𝑚𝑚𝑎(30.853, 3.152)

]     𝜋̂ = [

7.17 × 10−186

0.
1.

7.83 × 10−19

]. 

From the parameters above, each state tries to remain in that state without moving with a probability greater 

than 0.5. Each state communicates with each other even though there are pairs of states that are almost impossible 

to transition directly, such as states 2 and 3. Using the Viterbi algorithm, for the estimated parameter 𝜆̂  =

 ( 𝐴̂, 𝐵̂, 𝜋̂), we can find the sequence of hidden states that generated the data. The data and the estimated hidden 

states are shown in Figure 3 as below.  

 
Figure 3. Plot of hidden state sequence 

Each hidden state distribution on parameter 𝐵 is then tested using the Kolmogorov-Smirnov test with the 

hypothesis:  

𝐻0: the data is gamma distributed.  

𝐻1: the data is not gamma distributed.  

The results of the Kolmogorov-Smirnov test can be seen in Table 2 below. 

Table 2. Kolmogorov-Smirnov test on the distribution of each hidden state 

Hidden state parameter Statistic 𝒑-value 

1 (14.477, 3.917) 0.079 0.836 

2 (8.789, 3.183) 0.089 0.747 

3 (23.822, 6.853) 0.073 0.604 

4 (30.853, 3.152) 0.072 0.826 

Based on the Table 2, the 𝑝-value obtained for each hidden state data is greater than 0.05. This means there 

is insufficient evidence to reject 𝐻0, so it can be accepted that all hidden state distributions have been estimated 

well. 

Hidden state 1 
Hidden state 2 
Hidden state 3 
Hidden state 4 
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The obtained HMM parameter 𝜆̂ = ( 𝐴̂, 𝐵̂, 𝜋̂) is then used for simulations on training and testing data. The 

simulations were conducted using Mathematica 12.3 software by generate random data. In this research, the 

accuracy metric mean absolute percentage error (MAPE) is used as a benchmark for model error relative to 

actual data. MAPE can be calculated as follow. 

MAPE =
1

𝑇
∑ |

𝑜𝑡 − 𝑜̂𝑡

𝑜𝑡
|

𝑇

𝑡=1

 (16) 

with 𝑜𝑡 is actual data, 𝑜̂𝑡 is prediction data, and 𝑇 is number of data [25]. 

The simulation results show MAPE results for the training data are 4.973% and 1.177 %. The plot 

comparing the simulated data using HMM on the training data with the actual data can be seen in Figure 4 below.  

 
Figure 4. Plot of prediction and actual data for the January 2010 - December 2021 period 

Figure 4 demonstrates that HMM successfully captures the underlying pattern of the data. The yellow line, 

representing the actual data, closely follows the blue line, which representing the simulated output. Nevertheless, 

there are still certain time intervals where the model fails to accurately replicate the original data. The simulation 

results show MAPE results for the testing data is 0.994%. A comparison between the HMM-simulated data and 

the actual data during the testing period is illustrated in Figure 5 below.  

 

 
Figure 5. Plot of prediction and actual data for the January 2022 - December 2022 period 

Based on Figure 5, simulation results demonstrate that the HMM successfully predicts testing data. The 

plots of actual and prediction almost coincide in some places, but there are still some errors at certain times. 

Simulations on training and testing data yielded a MAPE of less than 5%. This indicates that HMM can model 

rainfall data accurately. Based on these results, risk calculations on rainfall data can be performed using a hidden 

Markov model. 

3.2 Model Interpreted 

The HMM constructed in this study consists of 4 hidden states representing the primary weather conditions, 

namely the dry, very dry, wet, and transition state. Each state is assumed to generate rainfall data following a 
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gamma distribution with different parameter, which allows the model to capture the continuous and asymmetric 

characteristics of rainfall distribution. 

The parameter estimation results indicate that: 

• State 1 (“dry”) is associated with a low average rainfall, with a narrow and consistent distribution close to 

zero. This corresponds to dry season conditions or days without significant precipitation. 

• State 2 (“very dry”) is associated with extremely low or zero rainfall, with a very narrow distribution close to 

zero. It represents days with no precipitation at all, often occurring during the peak of the dry season. 

• State 3 (“wet”) is characterized by moderate average rainfall and increased variability, this state represents 

regular rain events, commonly seen during the wet season. 

• State 4 (“very wet”) shows high mean rainfall with large variability, indicating periods of heavy and intense 

precipitation, such as during peak rainy season or extreme weather events. 

The estimated transition matrix reveals a strong tendency toward state persistence. The probability of 

remaining in the same state from one time to the next is relatively high. This suggests that the model successfully 

captures the seasonal structure of rainfall patterns, which tend to occur in extended periods rather than shifting 

randomly. The distribution of hidden states obtained through simulation also shows a clear seasonal pattern. The 

wet state appears more frequently during specific months (e.g., December to March), while the dry state 

dominates the other periods. This aligns with the typical tropical seasonal climate patterns observed in Indonesia 

and surrounding regions. 

3.3 Risk Analysis 

In rice farming activities, water availability is the most important aspect. Rice cultivation in this Tabanan 

region is generally divided into three planting periods: March–June, July–October, and November–February, 

with different water requirements for each growth phase. Water availability is greatly influenced by rainfall, so 

fluctuations in rainfall can cause a risk of water shortages or excesses, impacting crop productivity. 

The application of the Hidden Markov Model allows for a more structured understanding of rainfall 

variability and its implications for agricultural risk. Through the identification of distinct hidden weather states 

particularly dry and wet periods, this model provides insight into both the frequency and intensity of rainfall 

events over time. Such information is crucial in assessing the level of exposure that agricultural systems have to 

weather-related risks. This risk analysis aims to evaluate the potential mismatch between agricultural crop water 

requirements and predicted rainfall. By understanding these risks, mitigation strategies can be formulated to 

minimize the negative impacts of water shortages or excesses on agriculture. In this risk assessment, upper and 

lower thresholds are set at 50% of the effective requirement to reflect the plant's tolerance to water availability. 

The data used for comparison was from March 2022 to February 2023, covering 3 planting periods. Data 

randomly generated, with 40000 samples with MAPE less than 15%. This generated data then reviewed to 

determine whether there were specific periods exceeding the upper or lower threshold for water requirements. 

The first planting period, from March to June 2022, was compared with simulated data. An overview of water 

requirements for the first planting period can be seen in Figure 6 below. 

 

 
Figure 6. Comparison plot of water requirements and estimated the first planting period 

Figure 6 is an example of a comparison of one of the datasets during the first planting period. The dashed 

lines represent the upper and lower threshold values, while the blue line represents the water requirement data 

for the first planting period. Risk calculations for the first planting period can be seen in Table 3 as follow. 
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Table 3. Risk calculates for the first planting period 

Period Shortage of Water Excess Water 

Mar I 8 8 

Mar II 1 18 

Apr I 3 14 

Apr II 15 12 

Mei I 6 17 

Mei II 4 8 

Jun I 8 0 

Jun II 1 13 

Total 46 90 

 

Based on Table 3, the exact number of points exceeding the threshold for each period can be identified. 

This number indicates the risk of crop failure during the first planting period. Crop failure during the first planting 

period due to water shortages was recorded at 46 out of a total of 4000 estimates, or 1.15%. Meanwhile, crop 

failure due to excess water was recorded at 90 out of a total of 4000 estimates, or 2.25%. The overall risk of crop 

failure during the first planting period was 145 out of 4000 estimates, or 3.4%. Next, we will show a comparison 

of the estimated data with the water requirements for the second planting period. The second planting period, 

from July to October 2022, was compared with simulated data. An overview of water requirements for the second 

planting period can be seen in Figure 7 below. 

 
Figure 7. Comparison plot of water requirements and estimated the second planting period 

Figure 7 is an example of a comparison of one of the datasets during the second planting period. As before, 

the dashed lines represent the upper and lower threshold values, while the blue line represents the water 

requirement data for the second planting period. In this example, there is no risk of water shortage or excess in 

rice farming. Risk calculations for the second planting period can be seen in Table 4 as follow. 

Table 4. Risk calculates for the second planting period 

Period Shortage of Water Excess Water 

Jul I 8 17 

Jul II 17 6 

Aug I 11 10 

Aug II 1 48 

Sep I 2 8 

Sep II 2 7 

Oct I 3 0 

Oct II 10 0 

Total 54 96 

Based on Table 4, the exact number of points exceeding the threshold for each period can be identified. 

This number indicates the risk of crop failure during the second planting period. Crop failure during the second 

planting period due to water shortages was recorded at 54 out of a total of 4000 estimates, or 1.35%. Meanwhile, 

crop failure due to excess water was recorded at 96 out of a total of 4000 estimates, or 2.4%. The overall risk of 

crop failure during the second planting period was 150 out of 4000 estimates, or 3.75%. Next, we will show a 
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comparison of the estimated data with the water requirements for the third planting period. The third planting 

period, from November 2022 to February 2023, was compared with simulated data. An overview of water 

requirements for planting period 3 can be seen in Figure 8 below. 

 
Figure 8. Comparison plot of water requirements and estimated the third planting period 

Figure 8 illustrates a sample comparison from one of the datasets during the third planting period. The 

dashed lines indicate the upper and lower threshold values, while the blue line depicts the water requirement 

data for this period. The corresponding risk assessment for the third planting period is presented in Table 5 

below. 

Table 5. Risk calculates for the third planting period 

Period Shortage of Water Excess Water 

Nov I 4 3 

Nov II 2 20 

Dec I 7 3 

Dec II 9 0 

Jan I 20 0 

Jan II 8 0 

Feb I 1 5 

Feb II 2 13 

Total 53 44 

 

Based on Table 5, the exact number of points exceeding the threshold for each period can be identified. 

This number indicates the risk of crop failure during the third planting period. Crop failure during the third 

planting period due to water shortages was recorded at 53 out of a total of 4000 estimates, or 1.325%. Meanwhile, 

crop failure due to excess water was recorded at 44 out of a total of 4000 estimates, or 1.1%. The overall risk of 

crop failure during the third planting period was 97 out of 4000 estimates, or 2.425%.  

To optimize agricultural yields that rely solely on rainfall, it is recommended to adopt planting patterns 

aligned with rainfall predictions to optimize agricultural yields that rely solely on rainfall. The first planting period 

(February–June) and the third planting period (November–February) are optimal, as rainfall is generally sufficient 

and the associated risk of crop failure remains below 3.5%. This aligns with risk analysis results, which show 

relatively low probabilities of failure compared to the second planting period (July–October), which is above 3.5% 

failure risk. These findings have direct implications for both farmers and policymakers. This information 

provides farmers with a data-driven basis for adjusting planting schedules or diversifying crop types to minimize 

losses. Alternative solutions for the second planting period can be implemented, namely planting secondary crops 

such as corn, soybeans, or peanuts, which require less water than crops like rice. For policymakers, it enables the 

development of targeted agricultural calendars and resource allocation strategies, such as prioritizing irrigation 

infrastructure during high-risk periods. Compared to findings in other regions, where crop failure risks can exceed 

5–7% under similar rain-fed conditions, the risk levels observed in Tabanan, Bali, are relatively manageable, 

demonstrating the value of localized predictive modelling in supporting climate-resilient agriculture. This 

weather-prediction-based cropping pattern is expected to reduce the risk of crop failure while increasing the 

optimal planting frequency to three times a year. This will ensure more stable and sustainable farmer incomes 

throughout the year, while optimizing agricultural land use. 
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4. CONCLUSION 

This study demonstrates the effectiveness of the Hidden Markov Model in capturing the stochastic nature 

of rainfall and its impact on agricultural risk. By modelling rainfall data using four hidden states representing dry, 

very dry, wet, and very wet conditions and assuming a Gamma distribution for rainfall intensity, the HMM could 

accurately reflect the temporal dynamics and variability of rainfall patterns. The results highlight the presence of 

seasonal structures in rainfall behaviour, where the wet and dry states tend to persist over time, aligning with the 

known climatic cycles in tropical regions. The model also provides valuable insight into the timing and duration 

of critical weather transitions, which are essential factors in agricultural planning. Based on these findings, several 

actionable strategies can be proposed. Policymakers should consider integrating HMM-based weather models 

into national agricultural planning tools, particularly for regions dependent on rain-fed farming. Adaptive 

cropping calendars that shift planting dates based on probabilistic rainfall forecasts could significantly reduce the 

risk of crop failure. Additionally, implementing early warning systems powered by real-time weather data could 

alert farmers to high-risk periods for drought or flooding. 

HMM-based analysis presents a valuable approach to quantifying the uncertainties and risks of rainfall 

variability in agriculture. Its ability to uncover underlying weather regimes and their temporal dynamics makes it 

a practical tool for improving resilience in agricultural systems under changing climatic conditions. From an 

agricultural risk perspective, these results are highly significant. A delayed transition from the dry season to the 

wet season or a shortened duration of the wet season can disrupt planting schedules, lead to soil moisture deficits, 

and even result in crop failure. Additionally, extreme rainfall events within a short period (high rainfall bursts) 

observed under the wet state can increase the risk of flooding and soil erosion. In conclusion, the HMM model’s 

ability to accurately predict rainfall patterns and associated agricultural risks provides a powerful foundation for 

climate-resilient farming. By enabling data-driven decision-making, it empowers farmers to optimize planting 

times, reduce vulnerability to extreme weather, and ultimately improve long-term productivity and sustainability 

in the face of climate uncertainty. 

Future research is recommended in several directions to enhance the model's predictive power further. 

One is the development of hybrid models that integrate HMM with other probabilistic or deterministic 

frameworks, such as ARIMA-HMM or HMM coupled with physical climate models. Applying machine learning 

techniques such as recurrent neural networks (RNNs), LSTM, or ensemble methods could improve the model's 

ability to capture non-linear patterns and long-term dependencies in rainfall data. These approaches may offer 

better generalization, especially under rapidly changing climate scenarios. Exploring spatial extensions of HMM 

using geospatial data may also improve regional risk mapping and localized agricultural decision-making. 
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