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failure, particularly in rain-fed rice farming systems. This study models rainfall

data from Tabanan, Bali, using a continuous-time Hidden Markov Model

(HMM) to identify latent weather states and assess the associated risk of rice

crop falure. The model assumes four hidden states, each generating rainfall

Keywords: observations following a Gamma distribution. Simulation results produced

Mean Absolute Percentage Error (MAPE) values below 5% for training and
Agricultural risk; testing sets, indicating strong model performance in replicating rainfall patterns.
Hidden Markov Model; Risk analysis compared simulated rainfall with rice crop water requirements
Rainfall Simulation; across three planting periods. The second planting period (July-October)
Time Series Analysis; exhibited the highest risk at 3.75%. Compared to other predictive models,

HMM offers superior capability in capturing temporal rainfall structure and
identifying critical transition phases, making it highly suitable for agricultural risk
assessment and climate-adaptive planning.
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1. INTRODUCTION

Indonesia is one of the biggest agricultural countries in the world, with rice as one of its major commodities.
However, the increasing variability in rainfall patterns caused by global climate change has become a major
challenge for the agricultural sector. Uncertainty in the amount and distribution of rainfall can significantly affect
climate change [1]. This increasing variability of rainfall patterns also impacts the uncertainty of the planting
schedules, crop growth, and overall agricultural productivity [2]. In agrarian countries like Indonesia, where many
farmers rely heavily on rain-fed agriculture, the risks posed by irregular rainfall patterns can lead to reduced
yields, economic losses, and food mnsecurity [3].
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Rainfall plays a crucial role in the success of the agricultural sector. Its instability due to climate change
poses a serious challenge, especially in water risk management issues [4]. Excessive and insufficient rainfall can
reduce agricultural productivity [5]. This situation is increasingly concerning as changes in rainfall patterns in
tropical regions like Indonesia are expected to become more extreme and unpredictable. Through modelling
approaches, policymakers, researchers, and stakeholders can thoroughly comprehend how climate change may
impact different dimensions of agriculture, such as plant development, water resources [6], soil quality, and
agricultural productivity [7].

To address these challenges, predictive models that can capture the stochastic nature of rainfall are essential
for supporting data-driven agricultural planning. One promising statistical approach 1is the hidden Markov model
(HMM), which is particularly effective for modelling time series data with underlying hidden states [8]. In climate
and weather analysis, HMM can represent unobserved weather, such as wet and dry conditions, and associate
them with observable rainfall data distributed to a specific continuous distribution [9]. The application of HMM
In time series analysis has become increasingly widespread, demonstrating success in diverse fields such as
modelling trend prediction in financial markets [10], disease analysis [11], Ecology [12], and human behaviours
[13]. In the analysis of weather data itself, HMM is widely applied to uncovering hidden patterns in atmospheric
dynamics. For example, Hmm can be implemented to capture characteristics of rainfall and temperature, as well
as seasonal or daily transitions between weather states [14], [15], [16].

This study aims to develop a hidden Markov model for rainfall data to uncover hidden weather patterns
and measure the associated risks to agriculture. By applying HMM to rainfall data, we can estimate transition
probabilities between different weather states and characterise rainfall distribution within each state. These allow
for a quantitative assessment of agricultural risk, such as delayed rainy seasons, extreme rainfall events, or uneven
rainfall distribution throughout the growing period. This modelling framework enables probabilistic forecasting
of extreme events, making it valuable for agricultural planning, disaster risk reduction, and water resource
management. Such insights are valuable for early warning systems and designing more resilient farming strategies
in the face of climate uncertainty. The outcomes of this research will likely provide helpful information for
policymakers and farmers in managing climate-related risks and improving the sustainability of agricultural
practices.

2. RESEARCH METHODE
2.1 Continuous Hidden Markov Model (HMM)

A hidden Markov model 1s a probabilistic model that assumes the observed data are generated by an
underlying sequence of unobservable (hidden) states, which evolve according to a Markov process [17]. Consider
a pair stochastic process (S, 0) where S is an unobserved process and O is the observed process. The hidden
process S is a Markov chain and O is a process whose distribution depends on the value of S; [18]. Based on the
observation data type, HMM 1is divided into two types, discrete HMM and continuous HMM. In a continuous
HMM, the observation O; 1s a continuous random variable and the conditional distribution of O; given S; = i
fori =1,2,..., N come from a specific family of parametric distributions.

A continuous HMM can be parametrized by 4 = (4, B, ) and has the following characteristics:

e A= [aij]NxN is a transition probability matrix, with a;; = P(S4q = j|Se = 1), for i,j = 1,2,..., N and
?Izlaij = 1, fori = 1,2,...,N.
o B =[f(0;10;)]yx1is a probability density function matrix, with f(o; |6;) is the conditional probability

density function of O, |S; =i, fori = 1,2,...,N.

e 10 = [m;]yx1 1s an initial probability matrix, with 7; = P(S; = i) fori = 1,2,...,N and Y, 7; = 1.

Estimating the transition matrix A involves determining the probabilities of transitioning between hidden
states based on the observed data. Accurate estimation of 4 is essential, as it governs the probability of remaining
in or moving between different states. In principle, this transition makes it possible to move from one condition
to a different condition characterized by the distribution in matrix B. Equally important are the initial state
probabilities 7, which define the probability of the system starting in each hidden weather state. These initial
probabilities play a critical role in short-term simulations and risk assessment, particularly at the beginning of the
simulation. However, over a longer time horizon, the influence of mitial conditions diminishes as the system
approaches a stationary distribution determined by the transition matrix A. Therefore, a solid understanding of
both A and 7 1s essential for accurate short-term forecasting and long-term analysis of the data behaviour.
Together, they form the backbone of the HMM's dynamic structure, driving the evolution of hidden state regimes
while anchoring the model's starting assumptions, ensuring reliable simulation, forecasting, and interpretation of
rainfall patterns.

The parameters of the model 1 = (4, B, m) including the initial state probabilities (1), transition
probabilities (4), and the parameters of the continuous distributions (B) are estimated using the Expectation-
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Maximization (EM) algorithm, specifically the Baum-Welch algorithm [19]. The EM algorithm is used to find
A= (A, B, 1) that maximize the joint density of observations 04,...,0r
p(oy,...,0r | 1) = rE&xp(ol,...,oT [ 2).
This iterative method refines the model by maximizing the likelihood of the observed rainfall data given the
hidden states. It updates the transition matrix by calculating the expected number of transitions between states
and adjusts the emission distribution parameters to best fit the observed rainfall associated with each state.
Accurate estimation of these parameters is crucial, as the transition matrix governs how likely the system 1s to
move between different weather conditions over time. This directly influences the model’s ability to simulate
realistic rainfall sequences and identify periods of dry or wet conditions, which are essential for assessing
agricultural risk and predicting rainfall-driven crop failures.
The EM algorithm consists of two stages as follow [20].
o Fstep
For a given 2 = (4, B, ) define two functions G and H in A which is a set of all possible parameter

for HMM. For all A’ = (A',B',n") € A, define G(1,1"),H(A, 1), and I(1") as follow.
N

GAA) = Z p(sy,...,S7 l04,..., 01, 1) Xlog[p(o4,...,071,51,...,57 | AD]. )
STI,\.I..,l

HQA,A) = Z p(s4,...,87 l0q,...,00,1) X log[p(sy,..., St |0g,..., 00, A)]. 2)
STl
1) = log[p(oy,...,00 | )] = G(ALA) — H(A ). 3)

o M step
On this stage, we will find A € 4 such that
G ) = max G(4,4).
Based on the equations in the E step, the following things can be shown [21].
IAD -1 = GALD—HXAD) = (G, 1) — H(A L)
= (G- GAD)+ (HA) —HQA D)
Since
HAD) =2H(A ),  Aea
So that
D) -1 =61 -G, =0.
This result prove that
LD =1L).
Because logarithmic is an increasing function, it can be concluded that
p(oy,...,07 |11) = p(oy,...,0r D). o
Now, the optimization problem becomes finding the parameter A = (4, B, ##) that maximize G with two
constrains. The problem is
max G (A, 1)
Aea
with G(4,1") in equation (1) satisfies the following equation.

N
GALN) = Z p(s¢ oy, ..., 07, Dlogmg,

s¢=1
N N T-1
+ Z p(se oy, ..., o1, Dag,s,,, (4)
St=1St41=1 t=1
N T-1
£ 7 plse oy, ., 07, D) logf (o, 165,)
Se=1t=1

with constrains
N
! —
E g, =1
sg=1
N

Z Ayspr =1 5c=12,..., N,
. Se+1=1 o . ) .
This problem can be solved using the multiplier Lagrange. From equation (4), define the Lagrange equation
for ' € A as

Rainfall Risk Modelling for Rice Farming Using Continuous Hidden Markov Models (David Vijanarco Martal)



706 O3 F-ISSN : 2580-5754; P-ISSN : 2580-569X

N
L) = GAA) +n, Z  — 1

st=1
N . (5)
DRI DT
sg=1 St+1=1
with 77; and 7, are Lagrange multiplier variables. By solving three equations below
oL 0 daL :
?ﬂét aa-;tst+1
And we obtain the estimate parameters A and 7 as follows.
a _ t=1 §e(SeSe41) 2 = y1(s0)
= - ) =Y1(St
e Z1ve(se)
with
$e(St, Sev1) = P(Se, Se+1l04, -+, 07, 4) (6)
and
Ye(se) = p(s¢ |og,..., 07, 2). (7

Probability & (¢, S¢4+1) 1s the probability of state s; at time t and state Sy,4 at time t + 1 given a series of
observations sequence 0y, 05, ..., 07 and model 1. Whereas y;(s;) is the probability of being in state s; at time
t given a series of observations sequence 0q,0,,...,0r and model 4 [22]. These two probabilities can be
calculated using forward and backward algorithms [23].

Let a;(s.) is called forward variable and can be calculated as follow, for t = 1,2,...,T,

ai(x) = p(oq,...,07,8: | A), s;=1,2,...,N. (8)
Let B¢ (s;) is called backward variable and can be calculated as follow, fort = T —1,T — 2, ...,1,
ﬁt(.xt) = p(0t+l""’0T’St|A)' St = 1,2,...,N. (9)

Using equation (8) and (9), probability &;(S¢, S¢41) can be reform, fort = 1,2, ..., N,
at(st)aststﬂ f(0t+1|gst+1 )Bt+1(st+1)

S S = (10)
Selse 5e41) TACHTACH)
and y,(s.) can be reform, fort = 1,2, ..., N,
a,(sy) s
vo(s) = 15 )Be+1(Se41) an

sg=1 ai(s)Be(se)

For parameter B, the result depends on distribution of £ (o, |65,). In this research, the distributions used is
selected from family continuous distribution, such as Weibull, exponential, gamma, lognormal, and Pareto
distribution. The parameters of each distribution are estimated using the maximum likelihood estimation (MLE).

Once trained, the model is used to infer the most likely sequence of hidden states via the Viterbi algorithm
[21] and to simulate synthetic rainfall series that preserve the temporal dependence structure observed in the
original data. Let §,(s;) represents the highest probability in first t observations and ends in state s;. This variable
can be defined as follow.

6:(sp) = , max p(04,...,06,81,-.,8: | A), sy = 1,2,...,T. (12)
LreSt—1

Using induction, will be obtain
8e41(Se41) = Jnax f(0rs1 |95t+1 )[5t(st)astst+1]' Sev1 = 1,2,...,T. (13)

1St
Let array ;1 (Se41) represents the state at time t from which a transition to state Sy, maximizes the

probability 841 (S¢41). This array can be define as follow.
Ve41(Seqq) = arg max[6t(st)astst+1]' Sev1 = 1,2,...,T. (14)

s¢=1,...N
The steps in the Viterbi algorithm as follow.
o Initialization
51(X1) = ﬂsl f(01 |9$1), S = 1,2,...,N.
¢1(51)= 0, S1 = 1,2,...,N.
e Recursionfort=1,2,...,T —1
841(Se41) = Stlzlléflv[é‘t(st)astsﬁ_l 1f (044 10s,,,) Sgv1 = 1,2,..,N.
Yri1(Ser1) = arg max 8,.(sp)as,s,,, Ser1 = 1,2,...,N.
5¢=1,2,.,N
e Termination

=1,..,
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sy = arg max[&r (s7)].
st=1,.,N

e Backtracking
sto1 = Pe(sg), t=T"T —1,...,2.
From this step, will be obtain
{s7,8%_4,..., 51}

2.2 Rainfall Data

The rainfall data used in this study were obtained from power.larc.nasa.gov in the form of 15-day rainfall
time series covering the period from January 2010 to February 2023. The total number of data 1s 316, with 2 data
each month. The data were collected from climatological or meteorological stations located in the region of
Tabanan Regency, Bali. The data are divided into 292 training data points and 24 testing data points. The testing
data 1s also used as simulation data to calculate risk probability. All computations are performed using a custom
implementation in Mathematica 12.3, where both the estimation and simulation phases are handled through
numerical optimization routines and stochastic sampling. The plot of the training and testing data used can be
seen in Figure 1 and Figure 2 below.

250 1
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150 F 1
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Figure 1. Plot of training data for the January 2010 - February 2022 period
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Figure 2. Plot of testing data for the March 2022 - February 2023 period

3. RESULT AND ANALYSIS
3.1 Hidden Markov Model Modelling

The mitial stage of data modelling involves identifying the optimal number of hidden states with the
appropriate probability distribution. One commonly used method for model selection is the Akaike information
criterion (AIC). The AIC can be calculated as follow [24].

AIC = —2logL + 2(N? + kN — 1) (15)

where L is the likelihood, N 1s number of hidden states, and k is the number of parameters in each distribution.
The results of AIC calculations can be seen in the Table 1 below.
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Table 1. Akaike information criterion calculation result

I—Ilj(lililzil;;tis Weibull Exponential Gamma Lognormal Pareto
2 2928.41 3230.63 2919.94 2925.72 3270.13
3 2856.32 3242.68 2848.92 2856.82 3262.68
4 2848.45 3258.54 2831.92 2862.29 3073.91
5 2849.71 3277.75 2842.14 2847.71 2997.45

Based on the Table 1 above, the yellow number indicate the smallest AIC value. From these results, the
most optimal model is a continuous time HMM with 4 states and Gamma distribution. The estimated parameter
A= (/i, B, 1) as follows.

0.555 0.213 0.029 0.202
A= 0.249 0.751 4429 x107%% 1.267x107°
4766 x 10716 1724 x 107132 0.858 0.142
0.192 2.436 x 10714 0.171 0.637
Gamma(14.477,3.917) 7.17 X 10-186
B = Gamma(8.789,3.183) 5= 0.
Gamma(23.822,6.853) 1.
Gamma(30.853,3.152) 7.83 x 1071°

From the parameters above, each state tries to remain in that state without moving with a probability greater
than 0.5. Each state communicates with each other even though there are pairs of states that are almost impossible
to transition directly, such as states 2 and 8. Using the Viterbi algorithm, for the estimated parameter 4 =

( A, B, 1), we can find the sequence of hidden states that generated the data. The data and the estimated hidden
states are shown in Fig1|1r§ 3 as rbc“lqw_. ‘

250 r ]

200 ]
E 150; 4 M Hidden state 1
%’ i 1 M Hidden state 2
E 1 M Hidden state 3
@ 100} 1 Hidden state 4
o 1 \r Iy M!*ﬂ \ht
Ob
0 50 100 150 200 250

Time
Figure 3. Plot of hidden state sequence

Fach hidden state distribution on parameter B is then tested using the Kolmogorov-Smirnov test with the
hypothesis:

Hy: the data 1s gamma distributed.

H;: the data 1s not gamma distributed.
The results of the Kolmogorov-Smirnov test can be seen in Table 2 below.

Table 2. Kolmogorov-Smirnov test on the distribution of each hidden state

Hidden state parameter Statistic p-value
1 (14.477,3.917) 0.079 0.836
2 (8.789,3.183) 0.089 0.747
3 (23.822,6.853) 0.073 0.604
4 (30.853,3.152) 0.072 0.826

Based on the Table 2, the p-value obtained for each hidden state data is greater than 0.05. This means there
1s insufficient evidence to reject Hy, so it can be accepted that all hidden state distributions have been estimated
well.
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The obtained HMM parameter A= ( A B, 1) is then used for simulations on training and testing data. The
simulations were conducted using Mathematica 12.3 software by generate random data. In this research, the
accuracy metric mean absolute percentage error (MAPE) is used as a benchmark for model error relative to
actual data. MAPE can be calculated as follow.

T

MAPE = 1 Z
T

t=1

with o; 1s actual data, 6; 1s prediction data, and T is number of data [25].
The simulation results show MAPE results for the training data are 4.973% and 1.177 %. The plot
comparing the simulated data using HMM on the training data with the actual data can be seen in Figure 4 below.
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0 50 100 150 200 250
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Figure 4. Plot of prediction and actual data for the January 2010 - December 2021 period

Figure 4 demonstrates that HMM successfully captures the underlying pattern of the data. The yellow line,
representing the actual data, closely follows the blue line, which representing the simulated output. Nevertheless,
there are still certain time intervals where the model fails to accurately replicate the original data. The simulation
results show MAPE. results for the testing data is 0.994%. A comparison between the HMM-simulated data and
the actual data during the testing period 1s illustrated in Figure 5 below.
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Figure 5. Plot of prediction and actual data for the January 2022 - December 2022 period

Based on Figure 5, simulation results demonstrate that the HMM successfully predicts testing data. The
plots of actual and prediction almost coincide in some places, but there are still some errors at certain times.
Simulations on training and testing data yielded a MAPE of less than 5%. This indicates that HMM can model
rainfall data accurately. Based on these results, risk calculations on rainfall data can be performed using a hidden
Markov model.

3.2 Model Interpreted
The HMM constructed in this study consists of 4 hidden states representing the primary weather conditions,
namely the dry, very dry, wet, and transition state. Each state 1s assumed to generate rainfall data following a
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gamma distribution with different parameter, which allows the model to capture the continuous and asymmetric
characteristics of rainfall distribution.

The parameter estimation results indicate that:

e State 1 (“dry”) is associated with a low average rainfall, with a narrow and consistent distribution close to
zero. This corresponds to dry season conditions or days without significant precipitation.

o State 2 (“very dry”) is associated with extremely low or zero rainfall, with a very narrow distribution close to
zero. It represents days with no precipitation at all, often occurring during the peak of the dry season.

o State 3 (“wet”) is characterized by moderate average rainfall and increased variability, this state represents
regular rain events, commonly seen during the wet season.

o State 4 (“very wet”) shows high mean rainfall with large variability, indicating periods of heavy and intense
precipitation, such as during peak rainy season or extreme weather events.

The estimated transition matrix reveals a strong tendency toward state persistence. The probability of
remaining in the same state from one time to the next is relatively high. This suggests that the model successtully
captures the seasonal structure of rainfall patterns, which tend to occur in extended periods rather than shifting
randomly. The distribution of hidden states obtained through simulation also shows a clear seasonal pattern. The
wet state appears more frequently during specific months (e.g., December to March), while the dry state
dominates the other periods. This aligns with the typical tropical seasonal climate patterns observed in Indonesia
and surrounding regions.

3.3 Risk Analysis

In rice farming activities, water availability is the most important aspect. Rice cultivation in this Tabanan
region 1is generally divided into three planting periods: March-June, July-October, and November-February,
with different water requirements for each growth phase. Water availability is greatly influenced by rainfall, so
fluctuations n rainfall can cause a risk of water shortages or excesses, impacting crop productivity.

The application of the Hidden Markov Model allows for a more structured understanding of rainfall
variability and its implications for agricultural risk. Through the identification of distinct hidden weather states
particularly dry and wet periods, this model provides insight into both the frequency and intensity of rainfall
events over time. Such information is crucial in assessing the level of exposure that agricultural systems have to
weather-related risks. This risk analysis aims to evaluate the potential mismatch between agricultural crop water
requirements and predicted rainfall. By understanding these risks, mitigation strategies can be formulated to
minimize the negative impacts of water shortages or excesses on agriculture. In this risk assessment, upper and
lower thresholds are set at 509% of the effective requirement to reflect the plant's tolerance to water availability.

The data used for comparison was from March 2022 to February 2023, covering 3 planting periods. Data
randomly generated, with 40000 samples with MAPE less than 15%. This generated data then reviewed to
determine whether there were specific periods exceeding the upper or lower threshold for water requirements.
The first planting period, from March to June 2022, was compared with simulated data. An overview of water
requirements for the first planting period can be seen in Figure 6 below.

200F tolerance limit 4
* Actual
Prediction

150

100

Rainfall (mm)

50

Time
Figure 6. Comparison plot of water requirements and estimated the first planting period

Figure 6 is an example of a comparison of one of the datasets during the first planting period. The dashed
lines represent the upper and lower threshold values, while the blue line represents the water requirement data
for the first planting period. Risk calculations for the first planting period can be seen in Table 8 as follow.

Z.ero: Jurnal Sains, Matematika dan Terapan


http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&

Z.ero: Jurnal Sains, Matematika dan Terapan

a 711

Table 3. Risk calculates for the first planting period

Period Shortage of Water Excess Water
Mar I 8 8
Mar IT 1 18
Apr 3 14
Apr 11 15 12
Mei I 6 17
Mei II 4 8
Junl 8 0
Jun II 1 13
Total 46 90

Based on Table 3, the exact number of points exceeding the threshold for each period can be identified.
This number indicates the risk of crop failure during the first planting period. Crop failure during the first planting
period due to water shortages was recorded at 46 out of a total of 4000 estimates, or 1.15%. Meanwhile, crop
failure due to excess water was recorded at 90 out of a total of 4000 estimates, or 2.25%. The overall risk of crop
failure during the first planting period was 145 out of 4000 estimates, or 3.4%. Next, we will show a comparison
of the estimated data with the water requirements for the second planting period. The second planting period,
from July to October 2022, was compared with simulated data. An overview of water requirements for the second
planting period can be seen in Figure 7 below.

Rainfall (mm)

250

200

150

100

50

tolerance limit
Actual

Time

Figure 7. Comparison plot of water requirements and estimated the second planting period

Figure 7 1s an example of a comparison of one of the datasets during the second planting period. As before,
the dashed lines represent the upper and lower threshold values, while the blue line represents the water
requirement data for the second planting period. In this example, there is no risk of water shortage or excess in
rice farming. Risk calculations for the second planting period can be seen in Table 4 as follow.

Table 4. Risk calculates for the second planting period

Period Shortage of Water Excess Water
Jull 8 17
Jul I 17 6
Augl 11 10
Aug II 1 48
Sep 1 2 8
Sep 11 2 7
Oct 1 3 0
Oct II 10 0
Total 54 96

Based on Table 4, the exact number of points exceeding the threshold for each period can be identified.
This number indicates the risk of crop failure during the second planting period. Crop failure during the second
planting period due to water shortages was recorded at 54 out of a total of 4000 estimates, or 1.35%. Meanwhile,
crop failure due to excess water was recorded at 96 out of a total of 4000 estimates, or 2.49%. The overall risk of
crop failure during the second planting period was 150 out of 4000 estimates, or 3.75%. Next, we will show a
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comparison of the estimated data with the water requirements for the third planting period. The third planting
period, from November 2022 to February 2023, was compared with simulated data. An overview of water
requirements for planting period 3 can be seen in Figure 8 below.

300 T T T T

tolerance limit ‘ S e
Actual P .
Prediction - S~ ’

.

250

200

150

Rainfall (mm)

100

50

Time
Figure 8. Comparison plot of water requirements and estimated the third planting period

Figure 8 illustrates a sample comparison from one of the datasets during the third planting period. The
dashed lines indicate the upper and lower threshold values, while the blue line depicts the water requirement
data for this period. The corresponding risk assessment for the third planting period is presented in Table 5
below.

Table 5. Risk calculates for the third planting period

Period Shortage of Water Excess Water
Nov 1 4 3

Nov II 2 20

Decl 7 ¢

Dec II 9 0

Jan 1 20 0

Jan 11 8 0

Feb 1 1 5

Feb 11 2 13

Total 53 44

Based on Table 5, the exact number of points exceeding the threshold for each period can be identified.
This number indicates the risk of crop failure during the third planting period. Crop failure during the third
planting period due to water shortages was recorded at 53 out of a total of 4000 estimates, or 1.325%. Meanwhile,
crop failure due to excess water was recorded at 44 out of a total of 4000 estimates, or 1.1%. The overall risk of
crop failure during the third planting period was 97 out of 4000 estimates, or 2.425%.

To optimize agricultural yields that rely solely on rainfall, it is recommended to adopt planting patterns
aligned with rainfall predictions to optimize agricultural yields that rely solely on rainfall. The first planting period
(February-June) and the third planting period (November-February) are optimal, as rainfall 1s generally sufficient
and the associated risk of crop failure remains below 3.5%. This aligns with risk analysis results, which show
relatively low probabilities of failure compared to the second planting period (July-October), which is above 3.5%
failure risk. These findings have direct implications for both farmers and policymakers. This information
provides farmers with a data-driven basis for adjusting planting schedules or diversifying crop types to minimize
losses. Alternative solutions for the second planting period can be implemented, namely planting secondary crops
such as corn, soybeans, or peanuts, which require less water than crops like rice. For policymakers, it enables the
development of targeted agricultural calendars and resource allocation strategies, such as prioritizing irrigation
infrastructure during high-risk periods. Compared to findings in other regions, where crop failure risks can exceed
5-7% under similar rain-fed conditions, the risk levels observed in Tabanan, Bali, are relatively manageable,
demonstrating the value of localized predictive modelling in supporting climate-resilient agriculture. This
weather-prediction-based cropping pattern is expected to reduce the risk of crop faillure while increasing the
optimal planting frequency to three times a year. This will ensure more stable and sustainable farmer incomes
throughout the year, while optimizing agricultural land use.

Z.ero: Jurnal Sains, Matematika dan Terapan


http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&

Zero: Jurnal Sains, Matematika dan Terapan ad 713

4. CONCLUSION

This study demonstrates the effectiveness of the Hidden Markov Model in capturing the stochastic nature
of rainfall and its impact on agricultural risk. By modelling rainfall data using four hidden states representing dry,
very dry, wet, and very wet conditions and assuming a Gamma distribution for rainfall intensity, the HMM could
accurately reflect the temporal dynamics and variability of rainfall patterns. The results highlight the presence of
seasonal structures 1n rainfall behaviour, where the wet and dry states tend to persist over time, aligning with the
known climatic cycles in tropical regions. The model also provides valuable insight into the timing and duration
of critical weather transitions, which are essential factors in agricultural planning. Based on these findings, several
actionable strategies can be proposed. Policymakers should consider integraing HMM-based weather models
into national agricultural planning tools, particularly for regions dependent on rain-fed farming. Adaptive
cropping calendars that shift planting dates based on probabilistic rainfall forecasts could significantly reduce the
risk of crop failure. Additionally, implementing early warning systems powered by real-time weather data could
alert farmers to high-risk periods for drought or flooding.

HMM-based analysis presents a valuable approach to quantifying the uncertainties and risks of rainfall
variability in agriculture. Its ability to uncover underlying weather regimes and their temporal dynamics makes it
a practical tool for improving resilience in agricultural systems under changing climatic conditions. From an
agricultural risk perspective, these results are highly significant. A delayed transition from the dry season to the
wet season or a shortened duration of the wet season can disrupt planting schedules, lead to soil moisture deficits,
and even result in crop failure. Additionally, extreme rainfall events within a short period (high rainfall bursts)
observed under the wet state can increase the risk of flooding and soil erosion. In conclusion, the HMM model’s
ability to accurately predict rainfall patterns and associated agricultural risks provides a powerful foundation for
climate-resilient farming. By enabling data-driven decision-making, it empowers farmers to optimize planting
times, reduce vulnerability to extreme weather, and ultimately improve long-term productivity and sustainability
in the face of climate uncertainty.

Future research is recommended in several directions to enhance the model's predictive power further.
One is the development of hybrid models that integrate HMM with other probabilistic or deterministic
frameworks, such as ARIMA-HMM or HMM coupled with physical climate models. Applying machine learning
techniques such as recurrent neural networks (RNNs), LSTM, or ensemble methods could improve the model's
ability to capture non-linear patterns and long-term dependencies in rainfall data. These approaches may offer
better generalization, especially under rapidly changing climate scenarios. Exploring spatial extensions of HMM
using geospatial data may also improve regional risk mapping and localized agricultural decision-making.
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