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 Tuberculosis (TB) remains a critical public health issue in North Sumatra, 
Indonesia, calling for accurate statistical techniques to understand its spatial 
distribution and related risk factors. This study compares three methods — 
Poisson Regression, Negative Binomial Regression (NBR), and Geographically 
Weighted Negative Binomial Regression (GWNBR) — to model TB cases 
across 33 districts and cities in 2022. An overdispersion test showed significant 
variance, making the Poisson model inappropriate. The NBR approach 
identified the number of medical staff as the only significant variable, yielding 
an AIC of 478.31. Meanwhile, a Breusch–Pagan test revealed significant spatial 
heterogeneity, supporting the use of GWNBR. This method captured spatially 
varying relationships between TB incidence and its covariates, yielding an AIC 
of 512.34 and offering more localized insights. These results underscore the 
value of spatially adaptive modeling techniques for analyzing disease patterns, 
providing evidence to guide targeted, area-specific public health policies and 
interventions. 
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1. INTRODUCTION 

Tuberculosis (TB) remains a serious public health threat and is the second leading cause of death globally, 
after coronary heart disease[1][2] This translates to approximately 824,000 cases and 93,000 deaths each year, or 
roughly 11 people dying every hour [3][4]. In Indonesia, the disease is highly prevalent, with the country ranking 
second in the world for pulmonary TB cases, following India[5]. Its occurrence is influenced by a range of factors, 
including population density[6] and clean and healthy lifestyle habits (PHBS), which play an important role in 
prevention and control within communities. 

To model the factors associated with TB incidence, statistical approaches for count data are required. In 
Poisson regression, the equidispersion assumption must be satisfied, meaning the mean and the variance are 
assumed to be equal. However, in many TB datasets, this assumption is violated due to overdispersion, where the 
variance is larger than the mean[7]. In such instances, the Negative Binomial (NB) model is generally preferred, as 
it better accommodates overdispersed data[8]. 
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 The Geographically Weighted Negative Binomial Regression (GWNBR) has emerged as an effective 
approach for addressing both overdispersion and spatial heterogeneity. GWNBR allows parameter estimates to 
vary across locations, making it especially suitable for spatial count data with significant variability across 
areas[9][10][11]. Studies conducted in Indonesia have demonstrated the strength of GWNBR for capturing 
spatially varied patterns in disease data, yielding more accurate and robust insights for public health interventions 
[12][13]. 

Compared to previous studies such as Prasenda et al. (2024), which were limited to analyzing TB incidence 
among children in 30 sub-districts in Bandung, this study makes several novel contributions. First, it broadens the 
geographical scope by covering 33 districts and cities across North Sumatra, a province characterized by more 
complex topographical, socio-economic, and infrastructural diversity. Unlike Bandung, which is largely urban and 
relatively homogenous in healthcare infrastructure, North Sumatra exhibits sharp contrasts between urban centers 
like Medan and remote areas such as Nias or Mandailing Natal. These disparities intensify the effects of spatial 
heterogeneity, making localized modeling not only more informative but also crucial for targeted policy-making. 
Second, this study incorporates a richer set of covariates, including population density, clean and healthy living 
behaviors (PHBS), waste management, access to safe drinking water, and the availability of medical personnel—
factors that interact differently across districts due to uneven development and resource distribution.  

Third, the application of the GWNBR model allows the detection of varying relationships between these 
predictors and TB incidence across space, overcoming the limitations of global models like Poisson or NB 
regression that assume spatial stationarity. This makes the model more responsive to local health conditions and 
better suited for informing district-level public health interventions in spatially heterogeneous provinces such as 
North Sumatra. 
 
2. RESEARCH METHOD 
2.1 Reasearch Design 

This research adopts a quantitative design based on a spatial statistical framework to analyze the incidence of 
Tuberculosis (TB) across 33 districts and cities in North Sumatra in 2022. The methods used for modeling include 
Poisson Regression, Negative Binomial Regression (NBR), and Geographically Weighted Negative Binomial 
Regression (GWNBR). 
2.2 Poisson Regression Model 

Poisson regression is an extension of the global regression approach, where the response variable represents 
a count of cases and, therefore, can only take non-negative values[14][15]. Poisson Regression is a statistical 
approach frequently applied to model data that represent counts. This method is used to model the relationship 
between a dependent variable and one or more independent variables, based on the given assumption where the 
dependent variable Y is assumed to have a Poisson distribution [16]. 

 
Yi~Poisson"μi#, μi = exp(Xiβ) (1) 

Where: 
Yi: Number of TB cases in area i, 
μi: Mean of Yi, 
Xi:Vector of covariates for area i, 
β: Vector of regression coefficients. 

2.3 Negative Binomial Regression Model 
Negative Binomial Regression (NBR) assumes that the response variable Yi	follows a Negative Binomial 

distribution derived from a Poisson–Gamma mixture [[17]. This approach is used when the Poisson model is 
inappropriate due to overdispersion (i.e., when the variance is larger than the mean) [5], Under the NBR, 𝑌! 	is 
modeled as: 

 
Yi~NB"μi, θ#, μi=exp(Xiβ) (2) 

 
With the variance defined as: 
 

Var(Yi) = μi+θμi2 (3) 
 
Where:  

Yi: Number of TB cases in area i, 
μi: Mean of Yi, 
θ: dispersion parameter. 

Assumptions of NBR: 
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NBR assumes that the count data arise from a Poisson process with an added Gamma-distributed error term, 
making it suitable for overdispersed data. This allows for more accurate estimation when the data’s variance is 
larger than its mean, unlike Poisson regression. 

 
2.4 Spatial Heterogeneity 

There are two types of spatial testing: spatial heterogeneity and spatial dependence. To evaluate whether 
spatial heterogeneity exists within the data, the Breusch–Pagan test can be performed[18][19]. This test is used to 
assess whether a global model is adequate or if a spatially adaptive method, like GWNBR[20], is required to 
capture spatial heterogeneity in the data. 

 

BP =+
1
2
,  fTZ"ZTZ#-1

ZTf~X(p)
2  

(4) 

Where: 

f = (f1,f2,…,fn)Twith fi =
ei
2

σ2 -1 

ei = the error term for the i-th observation 
σ2 = thee error variance 
Z = an 𝑛 × (p+1) matrix containing a column of constants 
the null hypothesis H$ is rejected if the BP test statistic is greater than X(p,a)

2  or if the 𝑝	value is less than α. 
This means that the variances across locations are different. 

2.5  Geographically Weighted Negative Binomial Regression Model 
GWNBR estimation is a highly effective approach for modeling overdispersed count data that exhibit spatial 

heterogeneity[21][22]. This method produces location-specific parameter estimates, allowing each site to have its 
own set of regression coefficients[23][24]. 

 

Yi~NB"μi, θ#   μi=exp +β0(ui, vi) +0 βk(ui, vi)Xik

p

k=1
, (5) 

 
Where: 

Yi: number of TB cases in are i 
μi: Mean of Yi, 
Xik: Value of the 𝑘-th covariate in are i, 
β0(ui, vi): location-dependent intercept, 
βk(ui, vi): location-dependent coeffient for covariate k. 

2.6 Model Selection Criteria 
1. Akaike Information Criterion (AIC) 

The Akaike Information Criterion (AIC) is used to compare the quality of different statistical models by 
assessing both their fit and complexity. The model with the lowest AIC value is generally preferred, as it 
achieves an optimal balance between goodness of fit and parsimony[25]. 
AIC formula: 
 

AIC=2p-2 ln L (θ4) 
 

(6) 

Where: 
L"θ4#: The likelihood value of the estimated model, derived from the log-likelihood. 
p: The number of estimated parameters in the model. 

 
2. McFadden’s R-Squared 

In Poisson and Negative Binomial regression models, the traditional 𝑅% measure is not applicable. 
Instead, McFadden’s R-Squared is used as an indicator of model fit, ranging from 0 to 1, where higher values 
reflect a better fit of the model to the data. 

McFadden’s R-Squared formula: 
 

RMcFadden
2 =1-

ln Lmodel

ln Lnull
 

(7) 

 
Where: 

ln  Lmodel: The log-likelihood of the estimated model (including covariates). 
ln Lnull: The log-likelihood of the null model (intercept-only). 

2.7 Research Procedure 
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The following steps outline the analytical process for identifying the factors associated with the number of 
Tuberculosis (TB) cases in North Sumatra Province: 

1. Collect the data on the total number of TB cases in North Sumatra for the year 2022. 
2. Provide an overall description of the pulmonary TB case data, along with an explanation of the potential 

explanatory variables. 
3. Check for signs of multicollinearity among the independent variables using the Variance Inflation Factor 

(VIF). 
4. Perform Poisson Regression Modeling by:  

a. Estimating the parameters using the Maximum Likelihood Estimation (MLE) approach. 
b. Assessing the significance of the Poisson model parameters both globally, using the Maximum 

Likelihood Ratio Test (MLRT), and individually, using the Wald test. 
5. Conduct an overdispersion test. 
6. Build the Negative Binomial Regression model through the following steps: 

a. Estimate the parameters using the MLE method. 
b. Evaluate the significance of the model parameters, both globally via the MLRT and individually via 

the Wald test. 
7. Test for spatial heterogeneity by applying the Breusch–Pagan test. 
8. Develop the Geographically Weighted Negative Binomial Regression (GWNBR) model, which involves 

the following steps: 
a. Measure the Euclidean distances between observations based on their latitude and longitude 

coordinates. 
b. Identify the optimal bandwidth using a minimum value criterion. 
c. Calculate the adaptive bi-square kernel weighting scheme. 
d. Estimate the GWNBR model parameters using the MLE method. 
e. Compare the GWNBR model with the NBR model to assess parameter consistency. 
f. Evaluate the significance of the GWNBR parameters globally using the MLRT and individually using 

the Wald test. 
g. Choose the best-fit model by comparing NBR and GWNBR based on the AIC statistic. 
h. Interpret the results derived from the GWNBR model. 

9. Formulate conclusions based on the results of the analyses conducted. 
 

3. RESULT AND ANALYSIS 
3.1 Characteristics of Tuberculosis Cases in North Sumatra in 2022 
 North Sumatra is a province in Indonesia with a high prevalence of tuberculosis (TB). The area consists of 
33 regencies and cities, with the number of TB cases in 2022 showing considerable variation across these locations. 
Medan City recorded the highest count with 10,050 cases, followed by Deli Serdang Regency with 4,170 cases, and 
Langkat Regency with 1,927 cases. In contrast, the lowest numbers were observed in Pakpak Bharat Regency (117 
cases), West Nias Regency (119 cases), and North Nias Regency (163 cases). The spatial distribution of TB cases 
across North Sumatra is presented in Figure 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Distribution of Tuberculosis Cases in North Sumatra Province in 2022 
 

As shown in Figure 1. Medan City recorded the highest number of TB cases, with a total of 10,050 
cases, while Pakpak Bharat Regency had the lowest count, with only 117 cases. 
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3.2 Descriptive Analysis 
Table 1. Descriptive Analysis 

Variable Maximum Minimum St.Deviation Variance 
𝑌 1 117 1786,561 3191801 
𝑋& 9314 4482 2120,802 4,497802 
𝑋% 83 0 26.2626 689.7289 
𝑋' 37,4545 0 653,2394 4267218 
𝑋( 23,714 0 6851,505 4694312 
𝑋) 279 18 49.3921 2439.5852 

Table 1. presents the descriptive statistics for the variables used in this study across the 33 districts and cities 
in North Sumatra for the year 2022. The results show a substantial variation between areas. The number of TB 
cases ranged from 117 to 1,786, indicating significant differences in disease distribution across the region. Similarly, 
other variables—including population density, household hygiene (PHBS), waste management, access to clean 
water, and the number of medical personnel—exhibit a wide range of values. This highlights the diverse conditions 
across North Sumatra, suggesting that such variability may play a role in the spatial distribution of tuberculosis 
cases. 
3.3 Multicollinearity Test 

Table 2. Correlation Coefficients Among Predictor Variables 
 𝑋& 𝑋% 𝑋' 𝑋( 
𝑋% 
𝑋' 

0.0615617399    
0.0008942562 0.37449311   

𝑋( -0.0972435260 0.18337072 0.1951587204  
𝑋) 0.4984257033 -0.26524089 0.2797298474 0.07986768 

 
Table 2. displays the correlation coefficients calculated among the predictor variables used in this study. In 

general, the correlation values remain below 0.95, suggesting that no strong relationships exist between the 
independent variables. This result indicates that multicollinearity is not a concern within the dataset, allowing all 
the predictors to be included in the model simultaneously without adversely affecting the reliability of the parameter 
estimates. 

Table 3. Variance Inflation Factors (VIF) for the Predictor Variables 
Predictor 
Variable 

VIF 

𝑋& 1.641522 
𝑋% 1.692854 
𝑋' 1.589282 
𝑋( 1.107625 
𝑋) 2.133815 

 
The calculated VIF values for all the predictor variables are below the threshold of 10, indicating that no 

significant multicollinearity is present in the model. In other words, all the variables can be included simultaneously 
in the analysis without causing distortion or instability in the parameter estimates. 
3.4 Poisson Regression Modeling 

Table 4. Poisson Regression Model Parameter Estimates 
 Estimation Std.Error Z.Value Pr(>|z|) 

(Intercept)   58,64 0.01591 368.601 < 2e-16 *** 
𝑋& -0,00001206 0,000004001 -3.014 0.00258 ** 
𝑋% -0,004679 0,0003406 −13.736 < 2e-16 *** 
𝑋' 0,000001885 0,00000007410 25.438 < 2e-16 *** 
𝑋( 0,000009912 0,0000009614 10.310 < 2e-16 *** 
𝑋) 0,01256 0,0001701 73.879 < 2e-16 *** 

 
 The Poisson regression results yielded a null deviance of 46,994.2 with 32 degrees of freedom, a residual 

deviance of 3,631.2 with 27 degrees of freedom, and an AIC value of 3,915. Based on these results, the Poisson 
regression model can be expressed as: 

 
μi=exp(58,64-0,00001206x1i

-0,004679x2i+0,000001885x3i+0,000009912x4i+0,01256x5i 
 
From the parameter estimates presented in the table, it can be concluded that all the independent variables 

included in this study have an effect on the number of Tuberculosis cases across the districts and cities in North 
Sumatra. 
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3.5 Overdispersion 
Prior to applying the Negative Binomial Regression, a dispersion test was conducted on the Poisson model 

by calculating the ratio of the deviance to its degrees of freedom (df): 
 

∅= nilaidevience

df
 ∅= 3631.2

27
 ∅= 134.4873 

 

 The result, a dispersion value of approximately 134.4873, is far greater than 1, indicating the presence of 
overdispersion — a condition where the variance is significantly higher than the mean. This situation suggests that 
the Poisson model may not be suitable, as it can lead to inefficient estimates and higher error rates. As a result, the 
Negative Binomial Regression model was selected as a more appropriate approach for analyzing the factors 
associated with Tuberculosis cases in North Sumatra. 
3.6 Negative Binomial Regression Modeling 

Table 5. Negative Binomial Regression Model Parameter Estimates 
 Estimation Std.Error z Value Pr(>|z|) 
(intercept) 56,71 1.901e-01 29.840 < 2e-16 *** 

𝑋& 0,00004564 4.708e-05 0.969 0.332 
𝑋% -0,004640 3.862e-03 -1.201 0.230 
𝑋' 0,000001898 1.500e-06 1.266 0.206 
𝑋( 0,00001699 1.196e-05 1.421 0.155 
𝑋) 0,001363 2.302e-03 5.919 3.23e-09 *** 

  
 Based on Table 5. it can be observed that among the five predictor variables included in the analysis, only 

𝑋) (the number of medical personnel) has a statistically significant effect on the number of Tuberculosis cases in 
North Sumatra, with a p-value of 3.23e-09 (less than 0.05). The other variables were found to be statistically 
insignificant, as their p-values were greater than 0.05. The resulting Negative Binomial Regression Model is 
expressed as: 

 
μi=exp(56,71+0,00004564x1i

-0,004640x2i+0,000001898x3i+0,00001699	x4i+0,001363x5i 
 
The model yielded a null deviance of 189.782 with 32 degrees of freedom, a residual deviance of 34.096 with 

27 degrees of freedom, and an AIC value of 478.31. These results indicate that the Negative Binomial Regression 
Model is well suited for analyzing the number of Tuberculosis cases, especially in the presence of overdispersion. 
3.7 Spatial Effect Testing 

Table 6. Spatial Heterogeneity and Dependence Test Results 
Test Statistic 

Value 
Df p-value Conclusion 

Breusc-Pagan 13.313 5 0.02062 Significant spatial heterogeneity 
detected (p < 0.05) 

Moran’s I -0.0222 - 0.78660 No significant spatial 
autocorrelation detected (p > 0.05) 

 
Based on the results shown in the table, the Breusch-Pagan test yielded a statistic value of 13.313 with a 

p-value of 0.02062, indicating significant spatial heterogeneity (p < 0.05). This result suggests that the residual 
variances are not constant across locations, implying a violation of the homoscedasticity assumption. Hence, a 
spatial modeling approach such as the Geographically Weighted Negative Binomial Regression (GWNBR) is 
required to properly accommodate this spatial heterogeneity. 

Meanwhile, the Moran’s I test resulted in a value of -0.0222 with a p-value of 0.78660, indicating no significant 
spatial autocorrelation (p > 0.05). In other words, the distribution of Tuberculosis cases does not exhibit a 
significant clustering pattern across the study area. 

Due to the presence of spatial heterogeneity, a global modeling approach such as the Negative Binomial 
Regression is insufficient to fully capture the relationship between the predictor variables and the number of 
Tuberculosis cases across the entire study area. Therefore, it is necessary to proceed with a more advanced 
modeling approach, such as the Geographically Weighted Negative Binomial Regression (GWNBR), which is 
capable of capturing the variations in the effects of the predictors at each location. 
3.8 Geographically Weighted Negative Binomial Regression (GWNBR) Modeling 
Calculating Distance, Bandwidth, and Weights 

In the GWNBR modeling process, the first step is to construct a spatial weighting matrix based on the 
distances between locations. These distances are calculated using the Euclidean formula, which is derived from the 
latitude and longitude coordinates of each district.  
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For example, the distance between South Tapanuli District (98.87, 2.55) and North Tapanuli District (99.02, 
2.00) is calculated as: 

 

d12 = >(98.87-99.02)2+(2.55-2.00)2 = >(-0.15)2 + (0.55)2 = √0.0225+0.3025 = √0.325≈0.570 

 
 
Since this value is in decimal degrees, it is then converted to kilometers by multiplying it by approximately 

111.319 km (the average length of one degree). Thus: 
 

0.570 ×111.319=6.452 km 
 
After obtaining the distances between locations, the next step is to determine the bandwidth value, which 

serves as the spatial range for the weighting scheme. In this example, the bandwidth for South Tapanuli is set to 
1.43, based on a calibration method such as cross-validation. 

Once the bandwidth is defined, spatial weights can be calculated using the adaptive bisquare kernel. For 
instance, for South Tapanuli (i) and North Tapanuli (j), the weight is: 

 

wij = A1- +
0.570
1.43

,
2

B
2

= [1-(0.3986)2]2 = (1-0.1589)2 = (0.8411)2≈0.7075 

 
This result indicates that closer locations have a higher influence in the GWNBR model, allowing the method 

to capture spatial variations effectively. 
Significance Testing of the GWNBR Model Parameters 

Table 7. Parameter Estimation of the GWNBR Model 
No. Regency/City Significant variable 

1 Tapanuli Selatan Intercept, 𝑋&, 𝑋) 
2 Tapanuli Utara Intercept, 𝑋( 
3 Tapanuli Selatan Intercept, 𝑋) 
4 Nias Intercept, 𝑋) 
5 Langkat Intercept, 𝑋) 
6 Karo Intercept, 𝑋) 
7 
8 

Deli Serdang 
Simalungan 

Intercept, 𝑋) 
Intercept, 𝑋%, 𝑋) 

9 Asahan Intercept, 𝑋&, 𝑋%𝑋', 𝑋) 
10 Labuhan Batu Intercept, 𝑋&, 𝑋%𝑋' 

Intercept, 𝑋&, 𝑋%𝑋) 11 Dairi 
12 Toba Intercept, 𝑋&, 𝑋) 
13 Mandailing Natal Intercept, 𝑋) 
14 Nias Selatan Intercept, 𝑋) 
15 Pakpak Barat Intercept 
16 Humbang Hasundutan Intercept, 𝑋) 
17 Samosir Intercept 
18 Serdang Berdagai Intercept 
19 Batu Bara Intercept 
20 Padang Lawas Utara Intercept 
21 Padang Lawas Intercept 
22 Labuhan Batu Selatan Intercept, 𝑋%, 𝑋', 𝑋) 
23 Labuhan Batu Utara Intercept 
24 Nias Utara Intercept, 𝑋&, 𝑋( 
25 Nias Barat Intercept, , 𝑋&, 𝑋( 
26 Medan Intercept 
27 Pamatang Siantar Intercept 
28 Sibolga Intercept, 𝑋' 
29 Tanjung Balai Intercept 
30 Binjai Intercept, 𝑋&, 𝑋%, 𝑋', 𝑋(, 𝑋) 
31 Tebing Tinggi Intercept 
32 Padang Sidempuan Intercept 
33 Gunung Sitoli Intercept 
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The GWNBR estimation results (Table 7) reveal that the effects of the covariates vary across different 
districts. In urban areas such as Medan and Deli Serdang, variables like population density and waste management 
have a significant positive influence, indicating a higher TB incidence in areas with higher population densities and 
poorer waste management. Meanwhile, variables such as clean and healthy living behavior (PHBS), access to clean 
water, and availability of medical staff tend to have significant negative effects in certain areas, suggesting their role 
in reducing TB cases. These findings highlight the spatial heterogeneity of TB determinants and underscore the 
importance of tailored intervention strategies for each area.3.7.3. Optimal Model Selection. 

Table 8. Optimal Model Selection. 
Model AIC 

value 
Nilai McFadden’s R-

Squared 
Regresi Poisson 3915.04 0.9174242 

Regresi Binomial 
Negatif 

478.3097 0.1160469 

GWNBR 512.34 0.1500 
  
Although the GWNBR model has a slightly higher AIC than the NBR, its ability to capture spatially varying 

parameter estimates provides more nuanced insights for targeted policy formulation. Its McFadden’s R² value of 
0.15 confirms an acceptable fit for a spatially adaptive count model. 

Based on the results in Table 8, the lowest AIC value was obtained from the GWNBR model, which was 
512.34. Subsequently, a plot will be created to examine the agreement between the estimated number of TB cases 
in North Sumatra and the actual observed values. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Scatter Plot of Estimated number versus Observed number. 
 

As illustrated in Figure 2, the data points form a pattern that closely aligns with a diagonal line at a 45-degree 
angle, representing the ideal condition where the estimated number of TB cases matches the actual values. For 
example, when the actual number of TB cases in a district is 4,000, the predicted value using the GWNBR model 
is also approximately 4,000. This alignment indicates that the Geographically Weighted Negative Binomial 
Regression (GWNBR) method provides accurate predictions of TB case counts across districts in North Sumatra. 

The effectiveness of the model is further supported by its Akaike Information Criterion (AIC) value of 
512.34, which, despite being slightly higher than that of the global Negative Binomial model (AIC = 478.31), offers 
the crucial advantage of accounting for spatial heterogeneity in the data. This makes GWNBR more suitable for 
interpreting localized risk factors, especially in areas with highly variable conditions. 

As an example of local model interpretation, we consider Medan City, for which the estimated model is: 
 

μE = exp -16.0032+0.0213X1+0.00000041X2+0.1981X3+0.000321X4+0.0059X5) 
 
This model suggests that increases in population density (X&), waste management practices (X3), and the 

proportion of medical personnel (X5)	are associated with higher TB incidence in Medan. This may indicate a 
reverse causality, where areas with more medical staff are also those with higher case burdens, rather than staff 
availability directly causing more cases. 

In contrast, the model for Deli Serdang Regency is as follows: 
  

μE = exp -17.2085+0.0257X1+0.00000032X2+0.2186X3+0.000275X4+0.0101X5) 
 
Here, the negative coefficient for medical personnel (𝑋)) implies that greater healthcare access contributes to 

reducing TB cases. Meanwhile, variables such as population density and waste management continue to play a 
positive role in increasing TB incidence. 

These contrasting results demonstrate that the influence of each factor is not uniform across all districts, 
highlighting the necessity of using a spatially adaptive model like GWNBR. This approach enables targeted public 
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health strategies by identifying which variables drive TB transmission locally, ensuring that interventions are both 
efficient and context-specific. 
Description of the Magnitude of Predictor Variable Effects 

 
Figure 3. Distribution of Estimated Values by Regency/City in North Sumatra. 

Figure 3 reveals a pattern of regionalization in the variable representing the percentage of households 
practicing clean and healthy living behavior (β2), which falls within the range of –0.004128109 to –0.000215732. A 
similar spatial tendency is observed in the variable for access to clean drinking water (β4), with estimated coefficients 
ranging from –0.000486057 to 0.000145605. These findings suggest that these two variables have a relatively 
consistent negative association with TB incidence, particularly concentrated in the central and eastern regions of 
North Sumatra. This implies that healthier household practices and improved access to clean water are linked to 
lower TB case counts in those areas.In contrast, the variables for waste management (β3) and availability of medical 
personnel (β5) exhibit more dispersed patterns, without forming clear regional clusters. Their respective coefficient 
values range between –0.000201849 to 0.000213981 and –0.005851211 to –0.000152861, indicating that the 
influence of these predictors on TB incidence varies locally and does not follow a uniform regional trend. 

Additionally, the population density variable (β1) displays a positive spatial pattern, particularly in urban 
districts such as Medan and Deli Serdang, with coefficient values ranging from 0.00000485 to 0.00000694. This 
suggests that higher population density is associated with increased TB incidence, likely due to greater exposure 
and transmission risks in densely populated areas.Overall, the spatial distribution of local coefficient estimates 
highlights the importance of using a geographically weighted model like GWNBR. It effectively captures non-
stationary relationships between predictors and TB cases, allowing for more context-specific interpretations and 
targeted public health interventions across districts in North Sumatra. 

 
4. CONCLUSION 

This study demonstrates the importance of spatially adaptive modeling in analyzing the distribution and 
determinants of Tuberculosis (TB) in North Sumatra. By applying the Geographically Weighted Negative 
Binomial Regression (GWNBR) model, the analysis captures local variations in how factors such as population 
density, clean and healthy living behaviors, waste management, water access, and medical personnel availability 
affect TB incidence.Although the GWNBR model had a slightly higher AIC compared to the global model, its 
strength lies in identifying localized risk patterns that global models often overlook. For example, urban areas like 
Medan and Deli Serdang require targeted interventions addressing environmental conditions, while rural districts 
like Langkat may benefit more from improving the distribution of healthcare workers. These spatially nuanced 
insights support the formulation of district-specific public health policies rather than one-size-fits-all strategies. 

To strengthen disease control efforts, future studies should integrate spatio-temporal modeling and machine 
learning approaches to enhance prediction accuracy and enable early warning systems. Such advancements are 
especially critical for regions with limited resources, where timely and targeted interventions can significantly reduce 
the burden of TB.  
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