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 Dengue Hemorrhagic Fever (DHF) is an endemic disease in Indonesia, marked 
by uneven distribution patters driven by environmental, social, and economic 
factors. This study develops a predictive model for DHF incidence using the 
LASSO Quantile Regression approach, which estimates conditional quantiles 
(τ = 0.25, 0.50, 0.75) by minimizing the check loss function with an added L1 
penalty term. This method enables variable selection and captures non-uniform 
effects across quantiles while addressing multicollinearity. The data used 
includes nine predictor variables obtained from BPS for the year 2025 and were 
analyzed using R version 2024.12.0. The results show that urban/rural area size 
significantly influences all quantiles, while poverty rate and number of healthcare 
facilities are significant only at τ = 0.25 and τ = 0.50. The model achieves its best 
predictive performance at τ = 0.25 with a pseudo-R² of 0.2838. These findings 
demonstrate the model’s robustness in capturing varying risk factors. 
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1. INTRODUCTION 

Dengue Hemorrhagic Fever (DHF) remains one of the major public health problems in Indonesia [1]. The 
disease is transmitted by Aedes aegypti mosquitoes and often occurs seasonally, with incidence rates varying across 
regions [2]. Data from the Ministry of Health indicate that the number of DHF cases in Indonesia fluctuates 
significantly each year, highlighting the need for accurate modeling to understand the factors influencing its spread 
[3]. 

Previous studies have applied various statistical methods to analyze the determinants of DHF incidence, 
including multiple linear regression [4], logistic regression [5], and Poisson regression [6]. However, these 
approaches mainly capture the average effects of predictor variables, making them less effective in identifying 
different relationship patterns at lower and upper quantiles. Additionally, Poisson regression assumes 
overdispersion where the mean and variance of count data are equal [7] . This can lead to underestimated standard 
errors and biased statistical inference. The incidence of DHF is unevenly distributed and influenced by different 
risk factors at lower, median, and upper ends of the distribution [8], which calls for more flexible analytical 
frameworks. 

Quantile regression provides a robust alternative by estimating conditional quantiles of the response variable, 
denoted by τ, where τ ∈ (0, 1). For example, τ = 0.25, 0.50, and 0.75 represent the 25 percentile, 50 percentile as 
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median, and 75 percentile of DHF incidence, respectively [9]. These quantiles were chosen to capture low, 
moderate, and moderately high levels of incidence, offering a balanced view of risk without the estimation instability 
often encountered at extreme quantiles such as τ = 0.05 or 0.95 [10]. Quantile regression is also more robust in 
the presence of outliers and is suitable when data do not follow a normal distribution [11].  

In addition, DHF incidence is influenced by many environmental, demographic, and socio-economic factors 
that are often correlated with each other [12]. To manage this complexity, regularization techniques such as the 
LASSO can be applied. LASSO helps to select the most relevant predictors, reduce multicollinearity [13], and 
prevent overfitting, which improves model accuracy and interpretation [14]. Combining quantile regression with 
LASSO creates a powerful and efficient modeling framework that can handle complex and diverse data while still 
giving reliable predictions [15]. This approach is especially useful in public health, where decision-makers need to 
understand risks across different levels of severity. 

Importantly, this method also has real-world benefits. Because the pattern and risk factors of DHF vary across 
regions, quantile-based models provide detailed insights that can help local governments identify high-risk areas 
and take more targeted action. The results can support better allocation of resources, more effective prevention 
strategies, and stronger local disease surveillance. Based on this background, the aim of this study is to develop a 
quantile regression model with LASSO regularization to examine the factors that influence DHF incidence in 
Indonesia in 2024. This method addresses previous limitations and supports more adaptive, evidence-based public 
health strategies at the regional level. 

 
2. RESEARCH METHOD 
Quantile Regression 

Quantile Regression was introduced by Koenker and Bassett (1978) as a generalization of the classical linear 
regression model [16]. The quantile regression estimates the conditional quantiles of the response variable, 
denoted as 𝑄!( 𝜏 ∣ 𝑋 ), where 𝜏 ∈ (0,1) represents the quantile level of interest commonly 0.25 as a lower quartile, 
0.50 as a median, or 0.75 as a upper quartile, while Ordinary Least Squares (OLS) regression estimates the 
conditional mean of the dependent variable, denoted as 𝐸(𝑌|𝑋) [17]. This approach provides a more 
comprehensive analysis of the conditional distribution of Y, capturing heterogeneity across the distribution that 
OLS might overlook.  

In this study, the quantile levels τ = 0.25, 0.50, and 0.75 were selected to reflect different degrees of DHF 
incidence. Specifically, 𝜏 = 0.25 captures the behavior of predictors in areas with relatively low incidence, 𝜏 = 0.50 
represents the median condition, and 𝜏 = 0.75 focuses on moderately high incidence. This selection allows the 
model to explore whether the influence of covariates varies across different levels of disease burden. The use of 
these central quantiles ensures robustness against outliers while still providing meaningful interpretation across the 
distribution without concentrating only on the extremes, which may be more sensitive to noise in the data. 

The estimation steps of quantile regression are outlined as follows: 
1. Model Specification 

Let 𝑌" ∈ 𝑅 denote the dependent variable, 𝑋" ∈ 𝑅# the vector of covariates, and 𝛽$ ∈ 𝑅# the regression 
parameters at quantile level τ. The quantile regression model is specified as: 

𝑄!( 𝜏 ∣∣ 𝑋" ) = 𝑿𝒊𝑻𝜷𝝉     (1) 
2. Defining the Loss Function 

Quantile regression employs the check loss function, which is defined as: 

𝜌$(𝑢) = 5𝜏𝑢															if	𝑢 ≥ 0
(𝜏 − 1)𝑢			if	𝑢 < 0     (2) 

where 𝑢 = 𝑦" −𝑿𝒊𝑻𝜷. This function applies asymmetric weights to residuals above and below the target 
quantile, allowing the model to capture conditional quantile behavior effectively. 

3. Parameter Estimation via Optimization 
To estimate the quantile regression coefficients 𝛽=$, numerical optimization techniques are applied [18]. 
These typically involve linear programming methods such as the Simplex algorithm or Interior Point 
Method, depending on the size and complexity of the data. 

𝛽=$ = arg min
(∈*!	

∑ 𝜌$,
"-. (𝑦" −𝑿𝒊𝑻𝜷)    (3) 

4. Model Evaluation 
Model performance in quantile regression can be assessed using the R-Squared Pseudo [19], calculated 
as follows:  

𝑅#/01234 = 1 − ∑ #$(&'(𝑿𝒊
𝑻𝜷-𝝉)0

'12
∑ #$(&'(&3$)
0
'12

     (4) 

LASSO Regression 
LASSO regression is a regularization method used to simplify predictive models through automatic variable 

selection and to prevent overfitting, especially when the number of predictors is large or when multicollinearity is 
present. LASSO achieves this by shrinking some regression coefficients exactly to zero, thereby producing a more 
parsimonious or sparse model [20]. The objective function of LASSO regression is defined as: 
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𝛽= = arg min
(∈*!	

D .
4,
∑ E𝑦" −𝑿𝒊𝑻𝜷F

4 + 𝜆||𝛽||.,
"-. I   (5) 

Where ||𝛽||! = ∑ |𝛽"|
#
"$!  represents the LASSO penalty function, and 𝜆 ≥ 0 is the regularization 

parameter that controls the strength of the penalty [21]. 
LASSO Quantile Regression 

LASSO Quantile Regression LASSO or penalized quantile regression, is an extension of the standard 
Quantile Regression that incorporates the LASSO penalty into its objective function [22]. This model extension is 
capable of addressing multicollinearity issues, performing automatic variable selection, and is well-suited for high-
dimensional data or models with a large number of predictors. The estimation steps of LASSO quantile regression 
as follows: 

1. Model Specification 
Let 𝑌" ∈ 𝑅 denote the dependent variable, 𝑋" ∈ 𝑅# the vector of covariates, and 𝛽$ ∈ 𝑅# the regression 
parameters at quantile level τ. The conditional quantile function is a model as: 

𝑄!( 𝜏 ∣∣ 𝑋" ) = 𝑿𝒊𝑻𝜷𝝉     (6) 
2. Quantile Loss Function 

The quantile loss function 𝜌$(𝑢), also known as the check function, is defined as: 

𝜌$(𝑢) = 5𝜏𝑢																if	𝑢 ≥ 0
(𝜏 − 1)𝑢				if	𝑢 < 0     (7) 

where 𝑢 = 𝑦" −𝑿𝒊𝑻𝜷. This loss function applies asymmetric penalties, allowing the model to capture the 
effects of predictors at different quantiles of the outcome distribution. 

3. Parameter Estimation with LASSO Regularization 
To enhance sparsity and reduce overfitting, a regularization term is added to the objective function. The 
LASSO-penalized quantile regression minimizes the following: 

𝛽=$ = arg min
(∈*!	

J∑ 𝜌$,
"-. E𝑦" −𝑿𝒊𝑻𝜷F + 𝜆||𝛽||.K    (8) 

𝜆 ≥ 0where is the regularization parameter controlling the degree of penalization? Higher 𝜆 values 
increase sparsity by shrinking less important coefficients toward zero. Optimization is commonly solved 
via coordinate descent or interior point methods, especially when embedded in high-dimensional settings. 
In this framework, any coefficient estimated as 𝛽=5 = 0 is considered to have been excluded from the 
model through LASSO variable selection process, indicating that the associated predictor is not statistically 
relevant at the given quantile level. This shrinkage mechanism simplifies the model while retaining only 
the significant variables [23]. 

4. Model Evaluation 
Model performance is evaluated using the R-Squared Pseudo [19], which measures the proportion of 
quantile loss explained by the model: 

𝑅#/01234 = 1 − ∑ #$(&'(𝑿𝒊
𝑻𝜷-𝝉)0

'12
∑ #$(&'(&3$)
0
'12

     (9) 

where 𝑦)% the predicted value from a baseline model (e.g., median or constant model). A higher 
𝑅#&'()*+  indicates better model fit. 

 
3. RESULT AND ANALYSIS 

This study is quantitative research aimed at developing a predictive model for the number of DHF cases in 
Indonesia using the Quantile Regression method with a LASSO penalty function. Nine important predictor 
variables that are thought to affect the prevalence of DHF in Indonesia are included in the model. These variables 
are population density (x1), percentage of households with access to clean water (x2), percentage of households 
with proper sanitation facilities (x3), percentage of households using earthen floors (x4), percentage of the 
population living below the poverty line (x5), total area of urban or rural regions (x6), number of healthcare facilities 
such as community health centers and hospitals (x7), number of healthcare workers (x8), and climate-related factors 
including monthly average rainfall and temperature (x9). These variables were selected based on their relevance in 
epidemiological and environmental literature. The data were obtained from the publication of The Central 
Statistics Agency (BPS) Indonesia, Indonesia in Figures 2025 [24]. Data were analyzed using R version 2024.12.0. 
Data Visualization 

The boxplot in Figure 1 is the visualization data to illustrate data distribution, central tendency, and to detect 
the presence of outliers for each variable [25]. Through the use of boxplots, the researcher can identify whether 
any variables exhibit asymmetric distributions, wide interquartile ranges, or extreme values that may affect 
parameter estimation in the model [26]. In the context of this study, boxplots were applied to the nine predictor 
variables, as shown in Figure 1. The presence of outliers, as revealed by the boxplots, serves as a key justification 
for the use of quantile regression, which is more robust to outliers compared to ordinary linear regression. 
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Figure 1. Boxplot visualization for outlier detection 

 
Figure 1 presents the results of data visualization using boxplots. Variables x2, x3, and x4 display wider 

interquartile ranges compared to the other variables, and they also contain visible outliers. This indicates disparities 
in distribution across regions, such as unequal access to clean water and sanitation. Variable x4, which represents 
the use of earthen floors, is highly skewed to the lower end, with numerous extreme values, suggesting that only a 
small proportion of regions still have households with earthen flooring. Meanwhile, other variables such as x5 to 
x9, which cover socio-economic indicators, healthcare facilities, and environmental conditions, exhibit relatively 
more stable distributions but still show the presence of outliers. These findings highlight the significant presence of 
outliers in the dataset, thereby reinforcing the appropriateness of using quantile regression to model DHF cases in 
Indonesia. 
Multicollinearity Testing 

In regression modeling, particularly when involving multiple predictor variables, it is essential to ensure that 
there is no high degree of linear correlation among the variables, a condition known as multicollinearity [27]. High 
multicollinearity can lead to unstable parameter estimates, increased variance, and reduced accuracy in model 
interpretation [28]. Therefore, prior to model development, multicollinearity testing should be conducted using 
the Variance Inflation Factor (VIF) as an indicator. A high VIF value indicates a significant multicollinearity issue 
that must be addressed before proceeding with the modeling process. 

 
Table 1. Multicollinearity testing 

Variable VIF Value Result 
Population Density (x1) 4.1896 Not Multicollinearity 
Percentage of Households with Access to Clean 
Water (x2) 4.7320 

Not Multicollinearity 

Percentage of Households with Proper Sanitation (x3) 5.4236 Not Multicollinearity 
Percentage of Households Using Earthen Floors (x4) 3.9382 Not Multicollinearity 
Percentage of Population Living in Poverty (x5) 3.5413 Not Multicollinearity 
Urban/Rural Area Size (x6) 1.4377 Not Multicollinearity 
Number of Healthcare Facilities (x7) 43.4265 Multicollinearity 
Number of Healthcare Workers (x8) 48.3952 Multicollinearity 
Rainfall and Average Monthly Temperature (x9) 1.7161 Not Multicollinearity 

 
The results of the multicollinearity test presented in Table 1 indicate that most variables have VIF values 

below the threshold of 10, suggesting no significant multicollinearity among these predictors. The highest VIF 
values were observed in the variables Number of Healthcare Facilities (x7) and Number of Healthcare Workers 
(x8), at 43.43 and 48.40, respectively, indicating very strong multicollinearity. This can be logically explained by the 
fact that regions with a higher number of healthcare facilities typically also have more healthcare personnel, leading 
to a strong correlation between the two. 

The presence of multicollinearity in these two variables warrants careful consideration during the modeling 
process, as it may affect the stability of coefficient estimates. In this study, the use of the LASSO method is highly 
appropriate, as LASSO not only performs regularization to prevent overfitting but also enables automatic variable 
selection, addressing multicollinearity by retaining the more statistically dominant variable and eliminating the 
redundant one. Therefore, despite the existence of multicollinearity in some predictors, the adoption of a penalized 
regression approach provides a strategic solution to develop a more stable and accurate predictive model. 
Estimation of the LASSO Quantile Regression Model 

Quantile regression with a LASSO penalty function was employed in this study as a predictive approach 
capable of estimating not only the median quantile (τ = 0.50), but also the lower (τ = 0.25) and upper (τ = 0.75) 
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quantiles of DHF case counts in Indonesia. The main advantage of this method lies in its ability to handle data 
heterogeneity and to perform automatic variable selection through penalization, which is particularly beneficial 
when dealing with potential multicollinearity or a large number of predictor variables. The model estimation results 
are presented in Table 1 and are further supported visually by coefficient plots for each quantile, as shown in Figure 
2. This comparison allows researchers to assess the differential effects of each predictor variable across various 
quantile levels of dengue incidence. 

 
Table 2. Estimation of the LASSO quantile regression model 

Variable 
Quantile 

𝝉 = 𝟎. 𝟐𝟓 𝝉 = 𝟎. 𝟓𝟎 𝝉 = 𝟎. 𝟕𝟓 
(Intercept) 0.1315 0 -0.2809 

x1 0 0 0 
x2 0 0 0 
x3 0 0 0 
x4 0 0 0 
x5 -0.1050 -0.0915 0 
x6 0.2532 0.2205 0.0726 
x7 -0.0887 -0.0580 0 
x8 0 0 0 
x9 0 0 0 

 
Based on the estimation results of the LASSO Quantile Regression model presented in Table 1, only three 

predictor variables percentage of poor population (x5), area size (x6), and number of health facilities (x7) were 
retained with non-zero coefficients at one or more quantiles. The remaining variables (x1, x2, x3, x4, x8, and x9) 
were automatically shrunk to zero by the LASSO penalty function across all quantiles. This indicates that these 
variables do not contribute significantly to the predictive power of the model in explaining DHF incidence and are 
therefore excluded to reduce complexity and prevent overfitting. 

Setting the coefficients of these variables to zero reflects their lack of statistical contribution in the presence 
of stronger, more relevant predictors. In other words, the model treats these variables as irrelevant or redundant 
for the purpose of predicting DHF case counts across the distribution. This variable elimination is a central strength 
of the LASSO approach, ensuring that only meaningful predictors are retained, which improves model 
interpretability and robustness. The predictive models of DHF cases in Indonesia for each quantile are formulated 
as follows: 

𝑦(0.25) = 0.1315 − 0.1050x5 + 0.2532x6 − 0.0887x7 
𝑦(0.50) = −0.0915x5 + 0.2205x6 − 0.0580x7 

𝑦(0.75) = −0.2809 + 0.0726x6 
At quantile τ = 0.25, the percentage of poor population (x5) and the number of health facilities (x7) exhibit 

negative effects, indicating that regions with more health facilities and higher poverty levels tend to have lower DHF 
incidence. This can be interpreted as an indication that in areas with low DHF case counts, poverty does not 
necessarily correlate with increased risk possibly due to other factors such as vector distribution or preventive 
behaviors. Conversely, the area size (x6) variable shows a positive coefficient, suggesting that larger regions tend to 
report more DHF cases even in the lower quantile, which may result from spatial population dispersion or 
challenges in vector control. 

At the median quantile τ = 0.50, a similar pattern is observed: x5 and x7 still show negative coefficients, and 
x6 remains dominantly positive. However, in the upper quantile (τ = 0.75), only x6 retains a non-zero coefficient, 
while all other variables are eliminated by the LASSO penalty function. This indicates that when DHF case counts 
are very high, area size becomes the only consistently influential predictor. The negative intercept coefficient at τ 
= 0.75 also suggests that the baseline prediction tends to be lower when other predictors are inactive. 

 

 
Figure 2. Plot of estimated coefficients across quantiles 
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The coefficient plot results in Figure 2 show that variable x6 consistently appears across all quantiles with a 
positive direction, although its magnitude tends to decrease as the quantile increases. This consistent significance 
of x6 may be attributed to population effects, as larger administrative areas are likely to encompass more people, 
thereby increasing the likelihood of reported dengue cases. On the other hand, variables x5 and x7 are only present 
in the lower and median quantiles but are eliminated in the upper quantile. This visualization highlights how the 
quantile regression approach enables the identification of variable contributions that are not homogeneous across 
the entire distribution, which is particularly important in the epidemiological context of DHF, where risk patterns 
may vary between regions with low and high incidence. 

Overall, the results confirm that the LASSO quantile regression method not only enhances predictive 
accuracy but also assists in identifying which predictors matter most at specific points in the DHF incidence 
distribution. The elimination of irrelevant variables improves interpretability and provides a clearer picture of the 
key factors driving DHF in different regional and epidemiological contexts. 
Evaluation of LASSO Quantile Regression Prediction Model 

The predictive performance of the LASSO Quantile Regression model in this study is evaluated using R² 
pseudo values, which serve as measures of goodness-of-fit to indicate how well the model explains the variability of 
the data at each quantile level, as shown in Table 3. 

 
Table 3. Model evaluation of LASSO quantile regression 

Quantile 𝑹𝟐pseudo 

𝜏 = 0.25 0.2838 
𝜏 = 0.50 0.0477 
𝜏 = 0.75 0.1887 

 
The highest R² pseudo is observed at the lower quantile τ = 0.25, with a value of 0.2838. This indicates that 

the model performs better in explaining the variation in dengue fever cases in regions with low incidence. This 
likely reflects more consistent and predictable relationships between predictor variables and DHF incidence at this 
level. In contrast, the R² pseudo values for the median τ = 0.50 and upper quantile τ = 0.75 are relatively low at 
0.0477 and 0.1887, respectively suggesting that the model has limited explanatory power for regions with medium 
to high incidence rates. This may be due to the complex dynamics of DHF in these areas, where risk factors are 
likely influenced by unmeasured variables such as public behavior, population mobility, or the effectiveness of 
prevention programs. 

Overall, these results confirm that the LASSO Quantile Regression model is more effective at the lower 
quantile than modeling the middle and upper quantiles. Therefore, further model development or the inclusion 
of more representative predictors may be necessary to enhance predictive performance for areas with higher case 
distributions. 
 
4. CONCLUSION 

This study demonstrates that the LASSO Quantile Regression model provides strong predictive performance 
for DHF cases in Indonesia, particularly in regions with low incidence (τ = 0.25), as indicated by a high R² pseudo 
value of 0.2838. The area size variable consistently emerged as the primary predictor across all quantiles, while 
variables such as poverty rate and number of healthcare facilities only showed significance at the lower and middle 
quantiles. The LASSO approach proved effective in selecting relevant variables and addressing multicollinearity. 
However, the model's predictive accuracy declined at the median and upper quantiles, highlighting the need for 
further model refinement or additional variables to improve predictions in areas with moderate to high DHF 
incidence.This study is expected to provide strategic input for the government, both at the central and regional 
levels, in designing more data-driven and locally risk-based DHF prevention and control policies. In low-incidence 
areas, the model can serve as an early warning tool and a basis for more efficient resource allocation, such as 
deploying healthcare personnel, distributing larvicides, or conducting educational campaigns. Furthermore, since 
socio-economic variables like poverty and access to healthcare facilities have a significant influence on the lower 
and middle quantiles, policies to improve basic services and reduce poverty remain key components of long-term 
strategies. Conversely, in high-incidence areas, a more comprehensive policy approach is needed, incorporating 
climate data, population mobility, and clean and healthy living behaviors. Given its flexibility and adaptability, the 
model is recommended for implementation in real-time surveillance systems, enabling continuous monitoring and 
rapid response to emerging DHF trends at the local level. 

Future studies are encouraged to expand this modeling approach by integrating spatial-temporal features, 
testing alternative regularization methods, and validating performance using real-time or panel datasets. This study 
confirms that statistical tools such as LASSO Quantile Regression are not only academically rigorous but also 
practically relevant in supporting evidence-based decision-making in public health, especially in the control of 
infectious diseases like DHF. 
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