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Article Info ABSTRACT

Article history: The Rivest-Shamir-Adleman (RSA) algorithm relies on the presumed dithculty
of integer factorization, making it vulnerable to certain attacks, particularly in the
quantum era. One proposed variant, dual modulus RSA, is claimed to enhance
resilience against specific cryptanalytic techniques. This study evaluates its
security by applying an e/ th-root attack using an advanced fraction method. The
results demonstrate that the plaintext can be recovered without the private key,
Keywords: confirming that dual modulus RSA, like standard RSA, remains susceptible
under particular conditions. Although dual modulus RSA incurs higher
computational cost, the attack remains effective. These findings suggest that
structural changes alone do not guarantee improved security and emphasize the
need for rigorous cryptanalysis of RSA variants against established mathematical
attacks.
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1. INTRODUCTION

The general idea of information security 1s to ensure the confidentiality of said information from unauthorized
parties. Further, the security goals stretch to integrity and availability as well [1]. These goals can be achieved using
cryptography, which ensures secure communication through the internet. Based on the keys used, cryptography is
broadly categorized into two categories: symmetric cryptography and asymmetric cryptography. Symmetric
cryptography uses one shared key between interacting parties, the sender and recipient, whereas in asymmetric
cryptography, interacting parties need to use both public and private keys.

The RSA algorithm is one of the public-key algorithms that utilizes two different keys [2]. It has several
modifications (called variants) to increase security. Some examples are RSA with multiple primes, the rebalanced
RSA, and the RSA-CRT [3]. This paper examines an attack on the dual modulus RSA variant. This variant modifies
the key generation, encryption, and decryption processes. The dual modulus RSA has three different types, namely
Dual-RSA Small-e, Dual-RSA Small-d, and Dual Generalized RSA Rebalanced [4]. Several studies have examined
the dual modulus RSA and the attacks carried out against it [5], [6], [7], [8], [9], [10].
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The dual modulus RSA variant offers theoretically superior security compared to standard RSA due to its
use of two separate moduli and the application of double encryption. This design expands the effective key space
and increases the computational difficulty for an attacker. Since the ciphertext is encrypted twice with distinct public
keys and moduli, any attempt to recover the original message must either break both moduli or find a way to ivert
both encryptions simultaneously. This complicates factorization-based attacks, as an adversary would need to solve
two distinct hard problems instead of one. Additionally, the redundancy introduced by the two encryptions
mitigates vulnerabilities arising from low-exponent attacks or partial message exposure, making the dual modulus
RSA more resilient to a range of cryptanalytic techniques.

The security of RSA is tested against several types of attacks, including those based on integer factorization,
the use of quantum computers, attacks on the RSA function, and attacks on the RSA implementation [11], [12],
[13], [14]. These attack techniques, originally designed for public key algorithms in general, have proven effective
against RSA. Attacks can also be carried out directly by extracting keys and messages from the algorithm’s trapdoors
or even without trapdoors (for example, see [15], [16], [17], [18], [19]).

The et root attack is one of the methods used to penetrate the RSA algorithm by exploiting vulnerabilities
related to small public exponents. This attack allows recovery of the original message without factoring the public
modulus 7, targeting instead the mathematical properties of exponentiation [12]. Several instances of the e** root
attacks have been demonstrated by researchers [20], [21]. This type of attack can also be used to assess the security
of the dual modulus RSA algorithm. In this variant, the message is encrypted twice with different public keys, and
the attack aims to recover the original message M using known parameters and ciphertexts. The presence of two
encryption layers, each with potentially distinct exponents and moduli, increases the challenge.

In this study, the modified RSA with dual modulus and double encryption will be evaluated under the e‘"
root attack model. This attack was selected because it has not yet been applied to this variant in existing literature.
Therefore, the process and modeling of the e*® root attack will be adapted to the dual modulus RSA structure.
Moreover, the study includes a comparative analysis of the time and effort required to perform the attack on both
standard RSA and dual modulus RSA. This comparison 1s essential to assess whether the added complexity of
double encryption truly enhances resistance against such cryptanalytic attacks.

1.1 Standard RSA Algorithm

The RSA algorithm was founded by R. Rivest, A. Shamir, and L. Adleman. It is an asymmetric key
algorithm that utilizes two keys, namely public and private keys [22], [23], [24]. In RSA, both the plaintext and
ciphertext are integers between 0 and n — 1. The recommended value of n 1s 1024 bits, or 309 decimal digits.
This means that n is less than 21924, The algorithm can be used to provide secrecy and further developed into a
digital signature scheme. The security of the RSA algorithm is based on the intractability of the integer
factorization problem.

The RSA algorithm consists of key generation, encryption, and decryption. The steps in the key generation,
encryption, and decryption processes are detailed in Algorithms 1, 2, and 3, respectively.

Algorithm 1. Key Generation for RSA Public-Key Encryption [22]

Input: Two distinct large primes, p and g

Output: Public key (n, e), private key d

Summary: Fach entity creates an RSA public key and a corresponding private key. Each entity A should do the
following:

1. Generate two large random (and distinct) primes p and g, each is roughly the same size.

2. Compute n = pq and p(n) = (p — 1)(q — 1).

3. Select a random integer e, 1 < e < @(n), such that gcd(e, p(n)) = 1.

4. Use the extended Fuclidean algorithm to compute the unique integer d, 1 < d < ¢(n), such that ed =
1 (mod n).

5. A’s public key 1s (n, e); A’s private key 1s d.

Algorithm 2. Encryption in RSA [22]
Input: Message m; A’s public key (n, )
Output: Ciphertext ¢
Summary: B encrypts a message m for A and does the following:
1. Obtain A’s authentic public key (n, e).
2. Represent the message as an integer m in the interval [0,n — 1].
3. Compute ¢ = m® mod n.
4. Send the ciphertext to A.

Algorithm 3. Decryption in RSA [22]

Input: Ciphertext c; private key d

Output: Message m

Summary: To recover the plaintext m from ¢, A should do the following:
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1. Use the private key d to recover m = ¢% mod n.
1.2 Modified RSA with Dual Modulus RSA
The modified RSA algorithm used in this paper is the dual modulus and double encryption methods, where
there are changes in the key generation, encryption, and decryption processes from the original RSA algorithm.
The dual modulus algorithm used 1s based on the DMRJT (Dual Modulus RSA based on Jordan Totient Function)
created by Balram ef al. in 2015 [25]. The key generation, encryption, and decryption processes of the modified
RSA with a dual modulus algorithm are specified in Algorithms 4, 5, and 6, respectively.
Algorithm 4. Key Generation in Modified RSA with a Dual Modulus
Input: Four distinct large primes, p, q,7 and s
Output: Public keys (14, n,, €4, €5), private key (dy,d,, p,q,7, 5, 1 (n), p,(n))
Summary: Each entity creates public keys and corresponding private keys. Fach entity A should do the following:
1. Generate 4 primes p, q, 1, s with roughly the same size.
2. Compute the values of n; =p X qandn, =r X s.
3. Compute the values of o;(n) = (p — 1)(q — 1) and p,(n) = (r — 1)(s — 1).
4. Choose two random integers e; and e, with gcd(el, N (n)) = 1and gcd(ez, ©, (n)) =1.
5. Compute the value of private keys d; and d, such that e;d; =1 mod(go1 (n)) and e,d, =

1 mod((p 2 (n))

6. A’s public keys are (ny,n,, 4, e,); A’s private keys are (dy,d,,p,q,7,5, ¢, (n), 9, (n)).
Algorithm 5. Encryption in Modified RSA with a Dual Modulus
Input: Message m; A’s public key (ny,n,, €4, €;)

Output: Ciphertext ¢
Summary: B encrypts a message m for A and does the following:

1. Obtain A’s authentic public key (ny,n,, €4, €,).

2. Represent the message as an integer m such that1 <m<n; —1,n, — 1.

3. Compute ¢ = ((m® mod n,)®2 mod n,).

4. Send the ciphertext to A.

Algorithm 6. Decryption in Modified RSA with a Dual Modulus

Input: Ciphertext c¢; private key (dy,d,,p,q,7,5)

Output: Message m

Summary: To recover the plaintext m from ¢, A should do the following:

1. Use the private keys to recover m = ((c%2 mod n,)* mod n,).

The dual modulus RSA modified algorithm was built to improve the security of RSA using the concept of
double encryption. However, the dual modulus algorithm requires a longer execution time compared to the
original RSA because it uses two pairs of public and private keys. An example of the usage of the algorithm with
relatively small parameters is as follows.

Key generation

1. Choose 4 primesp =7,q = 11,r = 23,and s = 31.

2. Compute the values of ny =pxq=77andn, =r xs =713.

3. Compute the values of ¢;(n) = (p —1)(q — 1) = 60 and ¢,(n) = (r — 1)(s — 1) = 660.

4. Choose e; = 53 and e, = 37.

5. Compute the value of the private keys d; and d, such that e;d; = 1 mod((p1 (n)) =17 and e,d, =
1 mod(<p2(n)) = 553.

6. The public keys are (77,713, 53, 37) and the private keys are (17,553, 7,11, 23,31, 60, 660).

Encryption

1. The public keys of A = (77,713, 53, 37).

2. Choose a message m = 36.

3. Compute the ciphertext ¢ = ((m®° mod n,)¢2 mod n,) = 568.

Decryption

1. The private keys are (17,553,7,11, 23,31, 60, 660).

2. Calculate the message m = ((¢%2 mod n,)% mod n;) = 36

Based on the example above, one ciphertext is produced from one encryption process per message.

1.3 et" Root Attack

et™ root attack is an indirect algorithmic attack that focuses on retrieving messages without the knowledge of

the key [12]. The attack is generally formulated using Equation (1) and the formula below:

m = Yc (mod n) (1)

Equation (1) is used to perform an attack on the e" root of the ciphertext modulo n. Therefore, to recover
the message m, the Root Finding Problem (RFP) is used by utilizing the value of the ciphertext ¢. The RSA
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algorithm can be attacked by exploiting information on the values of ¢, n, and e, by targeting a message m until the
original message is found. Theoretically, it is possible to try every possible element from the multiplicative group
Z;, where n is an integer, but this will be infeasible once the value of n is too large. The attack also exploits the
value of @(n) to compute the e" root from ¢ modulo n, so that if the value of ¢(n) is known, it will be easier to
recover the message m in polynomial time, as stated in Theorem 1.

Theorem 1 [12]

o(n) > RFP(C) @

Based on Theorem 1, it can be proven that RFP is possible if the value of ¢(n) is known. The congruence
ed =1 (mod @(n)) will reveal the values of d dan k using the following equation:

ed—ko(n)=1keZ 8)

Equation (3) can be solved by performing the extended Euclid algorithm, which operates in polynomial time.
In addition, the linear Diophantine equation consists of d and k can be solved using the finite continued fraction
method. Once the value of d 1s known, m can be recovered using Equation (2), which meets the value to finish the
e root in V¢ (mod n), with its explanation as follows:

m¢ = (c*)® (mod n)
= ¢ (mod n)
= ¢k (mod n)
=c-c?™ (mod n)
mé = ¢ (mod n) (4)

The following explanation is the mathematical derivation to solve the RFP:
Finite Continued Fraction

An expansion of continued fractions from & € R with Pn / q, cn be written with the following equation [25]:

E=ag+ ——=[aya4,a3 ., a,] )

The equation can be written as § = [ay, a4, @y, ..., Ay ]- If € is a rational number, then an expansion of
continued fractions is denoted as P / qn = [ag, ay, ay, ..., a,] will be acquired. Theorem 2 is used to calculate the
desired continued fraction as follows.

Theorem 2 [12]
If &€ > 0 with ged(p,, ) = 1 and

1

Pn N
|€ B ;| < 2qn? ©)
then Pr / qnis a convergent of the continued fraction expansion of §.
Euclid’s Algorithm
This algorithm is performed by computing the greatest common divisor of @ and b [12]. It is used to
compute the linear congruence:
ax =1 (mod n) or ax = b (mod n) (7)

which then completes the linear Diophantine equation of the form ax + by = c.

2. RESEARCH METHOD

In this study, we utilized a combination of literature review and experimental methods. The literature review
was conducted to collect relevant information regarding the e root attack and the dual modulus RSA
algorithm. Meanwhile, the experimental method was applied to evaluate the susceptibility of these algorithms
to the e root attack. The experiment was conducted in three key stages: setting up the experimental
environment, executing the e®® root attack, and analyzing the results. The experimental environment was
established using the Python programming language.

An e root attack is performed by targeting the value of the private key d to recover the message m, given
the values of the ciphertext ¢ and the public keys, n and e. For dual modulus RSA with double encryption,
the attack can be modeled as follows:
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¢ = (m®(mod n,))¢2(mod n,) 8)

m= ( 5 ’ c(mod n2)> (mod n,) )

Under the assumption of known ¢(n), the private key values d;, d,, and corresponding integers k4, k, satisfy:

1 (10)

e; di — p(nyk,
e, dy —p(ny)k, =1 (11)

This approach generalizes to an i-modulus RSA, where i represents the number of modulus-public key pairs.
The recovered message m can be expressed recursively for multiple moduli:

e1 (e'm> (mod nj,,.) (mod n,) 1

To recover the original m, we used the continued fraction method as described in Algorithm 7.
Algorithm 7. Continued Fraction Method to Recover d and k
Input: Public key e, ¢(n)
Output: Values of d and k such that ed — p(n)k = 1
1. Compute the continued fraction expansion of e/¢@(n).
2. FExtract the convergent of the continued fraction, which provides approximate values for d /k.
3. Identify d and k from the convergents using:
d= (_1)n_1('Zn—1
k= (_1)n_1qn—2
4. Verily ed — @(n)k = 1 to ensure correctness.

3
I

3. RESULT AND ANALYSIS

In the et root attack, the difficulty lies in the selection of the correct value of ¢(n) to solve the RFP. In other
words, the difficulty of the attack is to find the value of @ (n) on the modulus being used. The value ¢ (n) can be
found by searching all integers that are relatively prime to the given e.

The following example illustrates the application of the e** root attack on dual modulus RSA, a cryptographic
vulnerability that occurs when the same plaintext is encrypted with different public keys that share a common
exponent. The example walks through each step of the attack, demonstrating how the mathematical properties of
dual modulus RSA are exploited to recover the original plaintext efficiently.

For the dual modulus RSA with the given parameters: ¢ = 568, e; =53, e, = 71, n; =851, and n, =
1457, the recovered message m satisfies:

m= (53\/71\/568 (mod 1457)) (mod 851) (13)

The values of ¢,(851) = 792, ¢,(1457) = 1380 were assumed. Next, there were two trials on one
ciphertext with dual modulus. The first step was to recover the value of m’ by finding the values of d and k in the
following equation:

71d — 1380k =1 (14)

By using € /(p (n) the continued fraction was used as follows:
71 1

L= 0+ ——=10.19,2,3,2,4]

1380 19+ ;

=
2+7

2+

Next, the continued fraction resulted in a convergent:

1 2 7 16 71
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Finding the values of d and k by considering the convergent value yields:
d=(-D"1q,_, = (-1)*311 =311 (15)
k=(-1D"1q,., =(-D*16 =16 (16)

Proving with the substitution of result values d and k in Equations (15) and (16), so that it was proven to meet
Equation (3), gives us:
71(311) — 1380(16) =1
Then, we computed the message m':
m' = (m'""1)31 mod 145 = 5683!! mod 1457
m’ = 143 mod 851 (17)

Based on the result using the value of the first public key, we then performed the same method using the
second public key. To attack the dual modulus RSA with double encryption, we executed the method as many
times as the number of moduli being used to recover the real message, which in this case was two. We then used
the values of e; and @, (n) to recover m. The computation was carried out as follows.

53d — 792k =1 (18)

The value of € /(,0 (n) W found by using the continued fraction equation as follows:

22 -0+ — 1 =1014,1,16,1,2]

792 14+ T

1
16+—7

145

1+

From the result of the continued fraction, the following convergent was obtained.

1 1 17 18 53

14’15’ 254’269’ 792
Next, the values of d and k are found by using the convergent results.
d=(-D)"1g,_, = (—1)*269 = 269 (19)
k=(C-D"1q,_, = (-1)*18 =18 (20)

‘We then substituted the values of d and k in Equations (19) and (20) to validate our results by using Equation
(5), as follows:
53(269) —792(18) =1

‘We then computed the message m:

m = (m>%)?%° mod 851 = 143%%° mod 851
m = 89 mod 851 21)
To assess performance, the attack was executed across several modulus sizes by varying the number of digits
in 2. The execution time for both standard RSA and dual modulus RSA was measured and compared. The results,
lustrated in Figure 1, indicate that although dual modulus RSA tends to take slightly more time on average, the
overall difference is minimal. Thus, the modulus size has a limited impact on attack execution time.

Comparison of Attack Time of e*th root

0,5

0 L *

3 5 7 9

RSA Standard  e=@==Dual Modulus RSA

Figure 1. The time needed to perform the et" root attack
The message being used for the encryption and description processes 1s 90, and all the values of n, ¢, and e
along with the assumed value of @(n) successfully recovered the original message m. Figure 1 displays that despite
the difference in size of the modulus, the execution time was similar for both the original RSA and the dual modulus
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RSA. On average, the time needed to perform the et root attack on the dual modulus RSA is longer, but it can
be inferred that the size of the modulus does not significantly affect the execution time.

The e‘" root attack on the dual modulus RSA would be successful if executed on the algorithm with the value
of the public key n, greater than n;. If the value of n; is greater than n,, then several public keys cannot be
decrypted. Therefore, to make this attack successful, the value of the public key used should be n, > ny, since
there will be ambiguity when a decryption process is carried out on the ciphertext, only several values can be
decrypted. This requirement also applies to the public exponent, i.c., e, > e;.

In the e*" root attack, the number of prime factors used in the construction of the modulus 7 can influence
the attack feasibility, particularly when the resulting modulus is small. This type of attack does not aim to recover
the private key, but instead directly computes the plaintext message m from the ciphertext ¢ when mé < n,
allowing the attacker to extract the et® root of ¢ without modular reduction.

In the case of dual modulus RSA, where encryption may involve multiple moduli (e.g., ny, n,), the risk can
be greater if the same plaintext is encrypted using the same small exponent e across different moduli. This creates
the conditions for a CRT-based e® root attack (e.g., Hastad’s attack), where the attacker reconstructs me over the
integers and then takes the e®® root to recover m without factoring any modulus.

Therefore, while the et*root attack does not rely on the factorization of the modulus; it is affected by the size
and number of moduli used, particularly when small exponents and repeated messages are involved. The modified
RSA scheme must ensure that encryption is properly padded and that the modulus size is large enough to avoid
conditions that enable this class of attack.

4. CONCLUSION

The et root attack, which falls under the category of Root Finding Problem attacks, typically
exploits knowledge of ¢ (n) and applies linear Diophantine approximation techniques to recover the
original message from the ciphertext. Our experiments show that even when the dual modulus RSA
variant 1s used—where the message 1s encrypted twice with different moduli but the same public
exponent—an attacker can still retrieve the original message using this attack. Although our analysis found
that dual modulus RSA requires more computational time to break compared to standard RSA, this
increase in effort does not fundamentally eliminate the vulnerability.

These findings have important implications for the practical security of RSA-based systems. The
fact that the et root attack remains effective, even with dual modulus encryption, underscores the risks
of encrypting the same message with the same exponent across multiple moduli. While dual modulus
RSA may slow down an attacker, it does not provide robust protection against root-finding attacks,
especially when small public exponents are used or when proper padding is not implemented.

To address these weaknesses, it 1s essential to adopt stronger countermeasures. Using randomized
padding schemes, such as Optimal Asymmetric Encryption Padding (OAEP), can ensure that identical
messages generate different ciphertexts, thereby disrupting the conditions needed for the e root attack.
Additionally, selecting larger public exponents and enforcing strict key management policies can further
reduce the risk of such attacks.

Looking ahead, future research should focus on developing advanced message randomization and
padding techniques, as well as exploring the integration of dual modulus RSA with other cryptographic
primitives to enhance security. Formal security analyses of these variants under various attack scenarios
will also be valuable in understanding their practical strengths and limitations.

In summary, while dual modulus RSA presents some improvement over standard RSA in terms of
resistance to the e root attack, it is not a comprehensive solution. A combination of robust
cryptographic practices and continued research is necessary to ensure the security of RSA
mmplementations in real-world applications.
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