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 Time series data from bitcoin has nonlinear data fluctuations so that a 

model is needed that can accommodate data with these conditions. The 

method that can be used for nonlinear time series data cases such as 

bitcoin is the LSTAR-GARCH model. LSTAR-GARCH is a 

combination of the LSTAR model and the GARCH model. Bitcoin 

investment also contains an element of risk. To find out the value of 

risk, the Expected Tail Loss risk measurement tool can be used. 

Expected Tail Loss (ETL). The data used in this study are historical 

daily bitcoin price data for the period April 1, 2022 to April 1, 2023. 

The modeling results obtained based on the MAPE value show that the 

LSTAR-GARCH model is the best model with the smallest MAPE 

value of 30% compared to the AR, LSTAR, or AR-GARCH models. 
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1. INTRODUCTION 

 Cryptocurrencies garnered global attention toward the close of 2017, primarily due to Bitcoin being one 

of the digital currencies with an exchange rate exceeding 250 million Indonesia rupiahs for asingle unit. 

Bitcoin, cherished by many, stands as the foremost and most popular cryptocurrency globally, particularly 

resonating with the millennial generation. Shaid and Idris(2022) expond that Bitcoin, launched in January 

2009, operates as a decentralized digital currenxy. The focal point of their research lies in the predicament 

of price volality, which undergoes daily fluctuations. Thus, the necessity for a mathematical model to 

prognosticate the future value of the Bitcoin cryptocurrency evident.  

 As time goes by, the development of technology and science continues to advance. The same applies 

to the field of learning time series data. The most commonly used time series model is the Box-Jenkins 

method. The model generated by the Box-Jenkins method is a linear model, but not all financial time series 

are liner (Tsay, 2005). Smooth Transition Autoregressive (STAR) is an extension of the autoregressive 

model for nonlinear time series data. According to Terasvirta (1994), STAR models include exponential 

STAR (ESTAR) and logistic STAR (LSTAR) models. In this case, the LSTAR method is used. The 

Logistic Smoothing Transition Autoregressive (LSTAR) model is a time series model that can be applied 
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to data that follows a nonlinear model. Nonlinear time series models can be found in data that has 

fluctuations. The GARCH model is an improvement of the ARCH model where the volatility depends on 

yesterday's daily value along with the previous volatility value. 

Besides being able to provide benefits, bitcoin investment also contains an element of risk. To find 

out the value of risk, the Expected Tail Loss (ETL) risk measurement tool or often also called Conditional 
Value at Risk (CVaR) can be used. ETL is the average of tail losses or losses that exceed VaR at a certain 

confidence level.  

2. RESEARCH METHOD 

 This research uses the type of applied research, because it uses data based on historical data. The 

form of data used in this research is in the form of time series which is secondary data, where the author 

accesses bitcoin price data online through Yahoo Finance https://finance.yahoo.com. The data taken in this 

study is daily bitcoin price data in the period April 1, 2022 to April 1, 2023. The variables used in this study 

are bitcoin close price, bitcoin price return, and bitcoin volume. The stages in the data analysis process in 

this study include:  

1. Data description 

2. Stationary test with the results of the \unitroot test as well as the results of the ACF and PACF test 

3.  Testing the best AR model on bitcoin closing price data 

4. Modeling with LSTAR  

In this LSTAR modeling, a nonlinearity test is carried out with a white test, and a transition test is also 

carried out to determine whether the transition function is correct. 

5. Model parameter estimation  

6. Modeling with Hybrid LSTAR-GARCH 

7. Forecasting with Hybrid LSTAR-GARCH 

Forecasting bitcoin closing price data with the LSTAR-GARCH hybrid method. 

8. Calculating the MSE value using variance forecasting and actual data 

9. Estimating and calculating the Expected Taill Loss value of predicted bitcoin closing price returns 

10. Interpretation of Expected Taill Loss value 

3. RESULT AND ANALYSIS 

1. Data Description 

 A graph of daily bitcoin closing price data for the period April 2022 to April 2023 can be seen in 

Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 1 shows that the closing price of bitcoin is volatile over time. At some point, the closing price of bitcoin 

decreases and then increases again. This can be caused by price fluctuations.  

2. Stationarity Testing  
 Data stationarity was tested using the Augmented Dickey Fuller (ADF) test. 

Table 1 Uji ADF Test 

Unit Root Test t-statistic Probability 

Augmented Dickey Fuller Test -1.7794 0.67 

 From table 1, it can be seen that the ADF test statistic value is -1.7794 with a p-value of 0.67>. 𝛼 (0,05) 

which means accepting H0 that there is a unit root or the data is not stationary. Because the data is not 

Figure 1 Plot of Bitcoin Closing Price Data 
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stationary, the data needs to be converted in the form of returns. The return plot data can be seen in Figure 

3.2 below.  

 

 

 

 

 

 

 

  

 Figure 2 shows that the data is stationary in terms of mean and variance. To ensure this, the Augmented 

Dickey Fuller (ADF) test will be conducted.  

Table 2 Uji ADF Test 

Unit Root Test t-statistic Probability 

Augmented Dickey Fuller Test -7.7699 0.001 

 From table 2, it can be seen that the ADF test statistic value is -7.7699 with a p-value of 0.001 <0.001, 

which means rejecting H , namely there is no unit root or stationary data. 𝛼 (0,05)  which means rejecting 

H0 that there is no unit root or stationary data.  

3. Model Identification  
After the stationary assumption is met, a temporary model will be formed by looking at the ACF and 

PACF plots.  
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Figure 3 above shows that the ACF plot cuts off at lag 1. While in Figure 4 shows that the PACF plot 

cuts off at lags 1, 2, 3, 4, and 5. So it can be estimated that the model parameter estimates are AR (1), MA 

(1), ARMA (1,1), ARMA (2,1).  

Figure 2 Plot of Bitcoin Price Return 

Figure 3 ACF plot of differencing data (d=1) Bitcoin price 

Figure 4 PACF plot of differencing data (d=1) Bitcoin price 
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4. AR Model Parameter Estimation and Testing  
 Furthermore, the ARMA model parameters are estimated using the Least Square method. The model 

parameter estimation results can be seen in table 3 below.  

Table 3 Parameter Estimation of ARMA Model 

Model  Coefficien

t 

t-Statistic Probability Description AIC 

AR(1) 𝜙1 -0.548413 -16.86301 0.0000 Significant 16.59391 

AR(2) 𝜙2 0.039085 0.937531 0.3491 Not Significant  16.95040 

MA(1) 𝜃1 -0.983344 -66.59147 0.0000 Significant 16.23158 

ARMA 

(1,1) 
𝜙1 

𝜃1 

-0.053309 

-0.981920 

-1.299214 

-64.72936 

0.1947 

0.0000 

Not Significant 16.23401 

ARMA 

(2,1) 
𝜙2 

𝜃1 

0.052386 

-0.984589 

1.111204 

-67.04732 

0.2672 

0.0000 

Not Significant 16.23439 

 

 Based on table 3, the parameters of the AR(1), MA(1) models are significant because they have a 

probability less than that of the AR(2), ARIMA(1,1), and ARMA(2,1) models. 𝛼 = 0,05.  While AR(2), 

ARIMA(1,1), and ARMA(2,1) are not significant because they have a probability of more than 𝛼 = 0,05.   

5. Best Model Selection 

 To determine the best model, it can be seen from the significant parameters that meet the statistical 

model test and have the smallest AIC, the smaller the AIC value the better the model. Based on Table 3 the 

MA (1) model is the best model because the model parameters are significant, fulfill the diagnostic model 

test and have the smallest AIC value of 16.23158. So the MA(1) model is written as   
𝑌𝑡 = −0.983344𝑌𝑡−1 + 𝑒𝑡 

6. Statistical Test 

 Before modeling LSTAR-GARCH, it is necessary to conduct an ARCH statistical test with the null 

hypothesis stating that there is no residual autocorrelation in the model.0 is rejected if 𝑝 𝑣𝑎𝑙𝑢𝑒 <
𝑡𝑎𝑟𝑎𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑘𝑎𝑛 5% 𝑎𝑡𝑎𝑢 𝛼 = 0,05 

Table 4 Breusch-Godfrey Statistical Test 

Breusch-Godfrey Autocorrelation Test 

F-statistic 0.831799 Prob.(1,362) 0.3624 

Obs*R-squared 0.846098 Prob. Chi Square 0.3577 

    

 Based on the results of the Breusch-Godfrey statistical test, the result with a p value of 0.3577 is greater 

than the significant level of 𝛼 = 0.05. This means 𝐻0 accepted.  

7. Linearity Test  

 To prove statistically, nonlinearity testing is carried out with the White Test method to see how the 

time series data pattern is formed 

Table 5 White Test 

White Test 

F-statistic 

3.517018 Prob. F(7, 357) 0.0012 

Obs*R-squared 

23.54699 Prob. Chi-Square(7) 0.0014 

SESS 

74.71257 Prob. Chi-Square(7) 0.0000 

 Based on the results obtained, the p-value is 0.0014 which means less than 𝛼 = 0,05 so that bitcoin 

price data has a nonlinear pattern. 
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8. Selection of Transition Variables and Transition Functions of STAR Model 

 After proving nonlinear, the next step is the selection of the form of the transition function. The 

selection of the transition function is done by testing the hypothesized sequence of parameters 𝛽 as follows.  

H03  : 𝛽3 = 0 

H02  : 𝛽2 = 0|𝛽3 = 0  

H01  : 𝛽1 = 0|𝛽3 = 𝛽2 = 0   

with conditions: 

1. If 𝛽2 ≠ 0 then the model used is the LSTAR model 

2. If 𝛽3 = 0 but 𝛽2 ≠ 0 then the ESTAR model 

3. If 𝛽3 = 0 and  𝛽2 = 0 but : 𝛽1 ≠ 0 then the model is LSTAR and if 𝛽1 = 0 then the model is ESTAR.  

Table 6 Regression of Transition Variables 𝑌𝑡−1 

Parameters Estimate P-value 

𝛽1 0.0755496 0.009119 

𝛽2 0.9862862 <2.2e-16 

𝛽3 -0.0037543 0.942472 

 Table 6 shows that the parameters 𝛽2 is not significantly not equal to zero because it has a p-value 

(<2.2e-16). So the transition function that should be chosen is the LSTAR function.  

9. LSTAR Model 

 The estimation results of the LSTAR(1,1) model using the Nonlinear Least Square (NLS) method 

are approximated by the Gauss-Newton iteration as follows.  

Table 7 LSTAR(1,1) Model Estimation Result 

 Estimate Std.Error t Value Pr(>|z|) 

Const. L 0.066762 0.054405 1.2271 0.21977 

phiL.1 1.045669 0.058970 17.7231 <2e-16 

phiL.2 -0.061077 0.059354 -1.0290 0.30346 

Const.H -0.167696 0.194759 -0.8610 0.38921 

phiH.1 -0.385095 0.169660 -2.2698 0.02322 

phiH.2 0.421138 0.182329 2.3098 0.02090 

gamma 100 90.47 1.1053 0.26905 

Th 4.477584 0.012315 363.5811 <.2e-16 

 Based on table 7 the LSTAR (1,1) model formed is:  

𝑌𝑡 = 𝑌𝑡−1 + (0.066762 + 1.045669 − 0.061077𝑋𝑡−1) (1 − (
1

1 + exp (−(𝑌𝑡−1 − 4.477584
))

+ (−0.167696 − 0.385095 + 0.421138𝑋𝑡−1) (1 − (
1

1 + exp (−𝑌𝑡−1 − 4.477584
))

+ 𝑎1  

 Furthermore, the Residual Autocorrelation and Heteroscedasticity tests of the LSTAR model are 

conducted.   

Table 8 Breusch-Godfrey Test 

Breusch-Godfrey Test 

F-statistics 0.831799 Prob.(1,358) 0.3624 

Obs*R-squared 0.846098 Prob. Chi Square 0.3577 
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 The test criterion is to reject H0  if the p-value is smaller than 𝛼 = 0,05.  Table 8 shows that the p-

value of 0.3577 > 𝛼 (0,05) so that H0 is accepted or it can be said that there is no autocorrelation in the 

residual model.  

Table 9 ARCH-LM Test 

ARCH-LM Test 

F-statistics 9.223651 Prob.(1,362) 0.0026 

Obs*R-squared 9.044167 Prob. Chi Square(1) 0.0026 

 The test criterion is to reject H0  if the p-value <0.05. 𝛼 (0,05). In Table 9, the chi-square p-value is 

0.0026 < . 𝛼 (0,05) so 𝐻0 is rejected or it can be said that there is a heteroscedasticity effect in the LSTAR 

model.  

10. Modeling with LSTAR-GARCH 

 The identification of the LSTAR-GARCH model is done by looking at the ACF and PACF 

correlograms of the squared residuals of the LSTAR model. The ACF and PACF correlogram results are 

seen in Figure 3.5 below.  

 

 

 

 

 

 

 

 

 

 

  
 
 
 

  
 The ACF correlogram of squared residuals shows that the cut off is at lag 1. Similarly, the PACF 

correlogram of squared residuals cuts off at lag 1. So the temporary conjecture based on the results of the 

ACF and PACF correlograms is the GARCH (0,1), GARCH (1,0), GARCH (1,1) model. In general, the 

LSTAR-GARCH model is in the form:  

𝑌𝑡 = 𝑋𝑡
′𝑏 + 𝜀𝑡  

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2 + ∑ 𝛽𝑗𝜎𝑡−𝑗
2𝑞

𝑗=1
𝑝
𝑖=1   

with 𝑋𝑡
′𝑏 is the LSTAR model 

a. GARCH (0,1) Model Estimation:  

Table 10 Parameter Estimation of GARCH(0,1) Model Estimates 

Parameters Coefficient Std.Error z-Statistics Prob. 

𝜔 977882.8 1982466 0.493266 0.6218 

𝛽1 -0.569888 3.181222 -0.179141 0.8578 

The LSTAR-GARCH model obtained is: 

𝑌𝑡 = 𝑋𝑡
′𝑏 + 𝜀𝑡 

𝜎𝑡
2 = 97788. −0.569888𝜎𝑡−1

2  

with 𝑋𝑡
′𝑏 as the LSTAR model 

The p-value  𝜔 = 0.6218 and 𝛽1 = 0.8578 > 𝛼 = 0,05 so it can be said that the model parameters are not 

significant. 

b. GARCH (1,0) Model Estimation  

Table 11 Parameter Estimation of GARCH (1,0) Model Estimates 

Parameters Coefficient Std. Error z-Statistics Prob. 

Date: 08/13/23   Time: 10:08

Sample (adjusted): 4/02/2022 4/01/2023

Included observations: 365 after adjustments

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.158 0.158 9.1372 0.003

2 0.013 -0.012 9.1987 0.010

3 0.103 0.106 13.152 0.004

4 0.084 0.053 15.751 0.003

5 0.104 0.088 19.797 0.001

6 0.068 0.032 21.529 0.001

7 0.084 0.063 24.191 0.001

8 0.020 -0.023 24.336 0.002

9 0.012 -0.005 24.387 0.004

10 0.038 0.010 24.933 0.005

11 -0.017 -0.043 25.047 0.009

12 0.016 0.011 25.139 0.014

13 0.042 0.028 25.806 0.018

14 0.133 0.129 32.525 0.003

15 0.003 -0.037 32.529 0.005

16 -0.007 0.002 32.548 0.008

17 -0.001 -0.032 32.548 0.013

18 -0.020 -0.030 32.707 0.018

19 -0.038 -0.060 33.262 0.022

20 0.009 0.013 33.290 0.031

21 0.099 0.095 37.117 0.016

22 0.012 0.002 37.171 0.023

23 0.023 0.043 37.376 0.030

24 0.022 0.003 37.566 0.038

Figure 5 Correlogram of ACF and PACF 
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𝜔 343903.5 23347.07 214.3505 0.0000 

𝛼1 0.650699 0.101036 1.615504 0.0000 

The LSTAR-GARCH model obtained is:  

𝑌𝑡 = 𝑋𝑡
′𝑏 + 𝜀𝑡 

𝜎𝑡
2 = 343903.5 + 0.650699𝜀𝑡−1

2  

with 𝑋𝑡
′𝑏 as the LSTAR model.  

The p-value of each parameter = 0.0000 <0.0000. 𝛼 = 0,05 so it can be said that the model is significant.  

c. GARCH (1,1) model estimation 

Table 12 Parameter Estimation of GARCH (1,1) Model Estimates 

Parameters Coefficient Std.Error z-Statistics Prob. 

𝜔 29612.84 9167.844 3.230077 0.0012 

𝛼1 0.224412 0.043173 5.197972 0.0000 

𝛽1 0.762287 0.042087 18.11204 0.0000 

The LSTAR model obtained is:  

𝑌𝑡 = 𝑋𝑡
′𝑏 + 𝜀𝑡 

𝜎𝑡
2 = 29612.84 + 0.224412𝜀𝑡−1

2 + 0.762287𝜎𝑡−1
2  

with 𝑋𝑡
′𝑏 as the LSTAR model 

The p-value of each parameter = 0.0000 <0.0000. 𝛼 = 0,05 so it can be said that the model is significant.  

 Next, the overfitting stage is carried out to compare several parameters that have been estimated by 

paying attention to significant parameter values and having the smallest AIC and SIC values.  

Table 13 GARCH Model Overfitting Results 

Model Description AIC SC 

GARCH(0,1) Not Significant 16.20378 16.24652 

GARCH(4,0) Significant 16.07404 16.11677 

GARCH(1,1) Significant 16.00905 16.06247 

 Table 3.12 shows that the GARCH (1,1) model is the best model with the smallest AIC value of 

16.0095 and SC of 16.06247. The best LSTAR model obtained is:  

𝑌𝑡 = 𝑌𝑡−1 + (0.066762 + 1.045669 − 0.061077𝑋𝑡−1) (1 − (
1

1 + exp (−(𝑌𝑡−1 − 4.477584
))

+ (−0.167696 − 0.385095 + 0.421138𝑋𝑡−1) (1 − (
1

1 + exp (−𝑌𝑡−1 − 4.477584
))

+  𝑎1  

 

𝜎𝑡
2 = 29612.84 + 0.224412𝜀𝑡−1

2 + 0.762287𝜎𝑡−1
2        

 

11. Diagnostic Check of LSTAR-GARCH Model 

 Diagnostic checks to determine the presence or absence of heteroscedasticity effects are carried out 

by looking at the squared residual pattern from the correlogram. The correlogram value of the squared 

residuals of the LSTAR-GARCH Model can be seen in the appendix. The correlogram is detected until the 

35th lag. The ACF and PACF p-values of the squared residuals of the LSTAR-GARCH model until the 

35th lag are in the interval 0.677 to 0.241. This shows that all the ACF and PACF p-values of the squared 

residuals of the LSTAR-GARCH model > 0.677 to 0.241. 𝛼 (0,05) so it can be concluded that the model 

no longer contains the effect of heteroscedasticity. 

 

 

 

 

12. Forecasting the LSTAR-GARCH model 

 The LSTAR-GARCH model obtained is:  

𝑌𝑡 = 𝑌𝑡−1 + (0.066762 + 1.045669 − 0.061077𝑋𝑡−1) (1 − (
1

1 + exp (−(𝑌𝑡−1 − 4.477584
))

+ (−0.167696 − 0.385095 + 0.421138𝑋𝑡−1) (1 − (
1

1 + exp (−𝑌𝑡−1 − 4.477584
))

+  𝑎1  

 



                                                                                                     E-ISSN: 2580-5754; P-ISSN : 2580-569X 

 

Zero: Journal of Science, Mathematics and Applied 

40 

𝜎𝑡
2 = 29612.84 + 0.224412𝜀𝑡−1

2 + 0.762287𝜎𝑡−1
2        

The next period forecast calculation, which is the forecast for the next 15 days, is presented in the following 

table. 

Table 14 Forecasting results of the LSTAR-GARCH model for the period April 2-16, 2023 

Date Forecasting Average point spread 

02-04-2023 44.509.55 38,177 

03-04-2023 44.484.70 38,512 

04-04-2023 44.461.26 38,520 

05-04-2023 44.439.05 38,528 

06-04-2023 44.417.87 38,536 

07-04-2023 44.397.56 38,543 

08-04-2023 44.378.01 38,553 

09-04-2023 44.359.11 38,552 

10-04-2023 44.340.79 38,559 

11-04-2023 44.323.00 38,567 

12-04-2023 44.305.68 38,576 

13-04-2023 44.288.80 38,584 

14-04-2023 44.272.32 38,592 

15-04-2023 44.256.21 38,600 

16-04-2023 44.225.03 38,616 

 The measure of the accuracy of the forecasting value is seen from the Mean Absolute Percentage 
Error (MAPE). MAPE describes the average residual of the forecasting results with the actual value. The 

smaller the MAPE value, the better the model obtained. The MAPE value for each model is presented in 

table 13 below. 

Table 15 Mean Absolute Percentage Error of each model 

Model  MAPE 

AR 57% 

LSTAR 40% 

AR-GARCH 72% 

LSTAR-GARCH 30% 

13.  Interpretation of Expected Taill Loss (ETL) Value 
 In the calculation of ETL, Cornish-Fisher expansion is used. The level of confidence used to calculate 

ETL is 99% with a return of 366 transaction days. The calculation results can be seen in the following table. 

Table 16 ETL Calculation Result 

Expected Return  0,000373108 

Standard Deviation  0,033019304 

Average -0,06784 

CVaR1% -0,06784 

CVaR5% -0,0998 

 From table 16 above, the Expected Taill Loss (CVaR) value is -0.06784, which means that if an 

investment of Rp. 100,000,000 is made with a 95% confidence level, the maximum loss that can occur borne 

by investors is Rp. 99,999.99 in a predicted time of one day. 

 

4. CONCLUSIOON 

From this research, the following conclusions were drawn: 

1. The most appropriate LSTAR model to model the price of bitcoin against the rupiah is:  

𝑌𝑡 = 𝑌𝑡−1 + (0.066762 + 1.045669 − 0.061077𝑋𝑡−1) (1 − (
1

1 + exp (−(𝑌𝑡−1 − 4.477584
))

+ (−0.167696 − 0.385095 + 0.421138𝑋𝑡−1) (1

− (
1

1 + exp (−𝑌𝑡−1 − 4.477584
)) +  𝑎1  

http://issn.pdii.lipi.go.id/issn.cgi?daftar&1496817420&1&&


Zero: Journal of Science, Mathematics and Applied   

 

Application of Hybrid LSTAR-GARCH Model with Expected Tail Loss in Predicting the Price Movemennt of Bitcoin Cryptocurrency Against Rupiah Currency (Yanna Rezki Fadillah)  

41 

2. The most appropriate GARCH model to model the price of bitcoin against the rupiah is:  

𝜎𝑡
2 = 29612.84 + 0.224412𝜀𝑡−1

2 + 0.762287𝜎𝑡−1
2  

3. Forecasting based on the LSTAR-GARCH model shows that the price of bitcoin has increased. The 

MAPE value of the LSTAR-GARCH model has a small value which indicates that this model is the 

best model to use compared to the AR, LSTAR, or AR-GARCH models. 

4. Based on the application of Expected Taill Loss in the LSTAR-GARCH model to determine the level 

of risk using bitcoin closing return data. It can be concluded that bitcoin has a high expected loss of 7%.  
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