Therapeutic Effect of Curcumin on Hepatic iNOS Expression in a Rat (Rattus norvegicus) Preeclampsia Model
Abstract
Preeclampsia is a pregnancy-specific disorder characterized by hypertension after 20 weeks of gestation and multisystem involvement, including hepatic dysfunction. Amplified oxidative stress and systemic inflammation contribute to liver damage, partly through the stimulation of inducible nitric oxide synthase (iNOS). Curcumin, a polyphenol derived from Curcuma longa, possesses strong antioxidant and anti-inflammatory properties and has been reported to inhibit iNOS expression in various disease models. The objective of this study was to evaluate the effect of curcumin on hepatic iNOS protein expression in a rat model of preeclampsia. A true experimental post-test-only control group design was employed. Twenty-five pregnant Wistar rats were randomly assigned to five groups: negative control, positive control (L-NAME–induced preeclampsia), and three treatment groups receiving curcumin at 30, 50, or 100 mg/kg body weight alongside L-NAME. Preeclampsia was induced by intraperitoneal administration of L-NAME (125 mg/kg body weight) from gestational day 13 to 19, during which curcumin was administered orally. Liver tissues were collected and subjected to immunohistochemical analysis to quantify iNOS expression. One-way ANOVA with post hoc testing (p < 0.05) revealed significant differences among groups. Quantitative ImageJ analysis iNOS expression (% positive area) showed: 5.06 (negative control), 77.00 (positive control), 64.34 (P1), 33.67 (P2), and 19.78 (P3), indicating a dose-dependent reduction in iNOS expression. Curcumin at 100 mg/kg body weight produced the most pronounced decrease in hepatic iNOS expression in preeclampsia-induced rats. These findings demonstrate that curcumin exerts hepatoprotective effects through the downregulation of iNOS in preeclamptic liver tissue and suggest its potential as an adjunctive therapeutic or preventive strategy for mitigating hepatic inflammation in preeclampsia. Further investigation in advanced preclinical and clinical studies is warranted.
Keywords: Curcumin, iNOS, Oxidative stress, Hepatic Inflammation, Preeclampsia.
Full Text:
PDFReferences
Alese, M. O., Moodley, J., & Naicker, T. (2021). Preeclampsia and HELLP syndrome, the role of the liver. Journal of Maternal-Fetal and Neonatal Medicine, 34(1), 117–123. https://doi.org/10.1080/14767058.2019.1572737
Aouache, R., Biquard, L., Vaiman, D., & Miralles, F. (2018). Oxidative stress in preeclampsia and placental diseases. International Journal of Molecular Sciences, 19(5). https://doi.org/10.3390/ijms19051496
Banerjee, P., Gaddam, N., Chandler, V., & Chakraborty, S. (2023). Oxidative Stress–Induced Liver Damage and Remodeling of the Liver Vasculature. American Journal of Pathology, 193(10), 1400–1414. https://doi.org/10.1016/j.ajpath.2023.06.002
Burton, G. J., Redman, C. W., Roberts, J. M., & Moffett, A. (2019). Pre-eclampsia : pathophysiology and clinical implications. 1–15. https://doi.org/10.1136/bmj.l2381
Chiang, Y. T., Seow, K. M., & Chen, K. H. (2024). The Pathophysiological, Genetic, and Hormonal Changes in Preeclampsia: A Systematic Review of the Molecular Mechanisms. International Journal of Molecular Sciences, 25(8). https://doi.org/10.3390/ijms25084532
Deng, Y., Yu, L., Lai, W., Xiao, S., & Zhang, W. (2024). Knocking down macrophages Caspase-6 through HMGB1 coordinates macrophage trophoblast crosstalk to suppress ferroptosis and alleviate preeclampsia. International Immunopharmacology, 140(July), 112859. https://doi.org/10.1016/j.intimp.2024.112859
Farzaei, M. H., Zobeiri, M., Parvizi, F., El-Senduny, F. F., Marmouzi, I., Coy-Barrera, E., Naseri, R., Nabavi, S. M., Rahimi, R., & Abdollahi, M. (2018). Curcumin in liver diseases: A systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients, 10(7). https://doi.org/10.3390/nu10070855
Grafeneder, J., Derhaschnig, U., Eskandary, F., Buchtele, N., Sus, N., Frank, J., Jilma, B., & Schoergenhofer, C. (2022). Micellar Curcumin: Pharmacokinetics and Effects on Inflammation Markers and PCSK-9 Concentrations in Healthy Subjects in a Double-Blind, Randomized, Active-Controlled, Crossover Trial. Molecular Nutrition and Food Research, 66(22), 1–9. https://doi.org/10.1002/mnfr.202200139
Hidayati, A. K., Rijal, S., Wello, E. A., Sommeng, F., Sri Julyani, & Andi Irwansyah Ahmad. (2022). Pengaruh Kunyit Kuning (Curcuma longa) terhadap Gambaran Mikroskopik Hati Tikus (Rattus norvegicus) yang Diinduksi Etanol Absolut. Fakumi Medical Journal: Jurnal Mahasiswa Kedokteran, 2(6), 353–362. https://doi.org/10.33096/fmj.v2i6.12
Ives, C. W., Sinkey, R., Rajapreyar, I., Tita, A. T. N., & Oparil, S. (2020). Preeclampsia—Pathophysiology and Clinical Presentations: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 76(14), 1690–1702. https://doi.org/10.1016/j.jacc.2020.08.014
Kementerian Kesehatan RI. (2024). Profil Kesehatan Indonesia 2023 (F. Sibuea & B. Hardhana (eds.)). Kementerian Kesehatan Republik Indonesia.
Khudair, D. H., & Al-Gareeb, A. I. (2024). Evaluation of the hepatoprotective effect of curcumin alone or in combination with vitamin C in methotrexate-induced hepatotoxicity in mice. Journal of the Pakistan Medical Association, 74(10), S442–S446. https://doi.org/10.47391/JPMA-BAGH-16-99
Kunnumakkara, A. B., Hegde, M., Parama, D., Girisa, S., Kumar, A., Daimary, U. D., Garodia, P., Yenisetti, S. C., Oommen, O. V., & Aggarwal, B. B. (2023). Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacology and Translational Science, 6(4), 447–518. https://doi.org/10.1021/acsptsci.2c00012
Lee, M., Wang, C., Jin, S. W., Labrecque, M. P., Beischlag, T. V, Brockman, M. A., & Choy, J. C. (2019). Free Radical Biology and Medicine Expression of human inducible nitric oxide synthase in response to cytokines is regulated by hypoxia-inducible factor-1. Free Radical Biology and Medicine, 130(September 2018), 278–287. https://doi.org/10.1016/j.freeradbiomed.2018.10.441
Martins, S. D. P., Amylly, Alves, de C., Marla, Roberto Pimentel De Araújo, O., Oliveira Dos Santos Camatari, F., Oliveira Fonseca Goulart, M., & Andréa Moura, F. (2023). Curcumin in inflammatory bowel diseases: Cellular targets and molecular mechanisms. Biocell, 47(11), 2547–2566. https://doi.org/10.32604/biocell.2023.043253
Naemi, M., Farahani, Z., Norooznezhad, A. H., Khodarahmi, R., Hantoushzadeh, S., Ahangari, R., & Shariat, M. (2021). Possible potentials of curcumin for pregnancies complicated by intra-uterine growth restriction: role of inflammation, angiogenesis, and oxidative stress. Heliyon, 7(9). https://doi.org/10.1016/j.heliyon.2021.e08034
Raguema, N., Moustadraf, S., & Bertagnolli, M. (2020). Immune and Apoptosis Mechanisms Regulating Placental Development and Vascularization in Preeclampsia. Inflammation and Apoptosis in Preeclampsia, 11(February), 1–8. https://doi.org/10.3389/fphys.2020.00098
Rahardjo, B., Dewi, K. T., Rahmawati, A. D., Jannah, F. W., Nooryanto, M., & Indriani, A. (2022). Effect of Pravastatin on eNOS and PECAM-1 Expression in the Placenta of Pre-Eclampsia Rat (Rattus norvegicus) Model. Asian Journal of Health Research, 1(2), 12–18. https://doi.org/10.55561/ajhr.v1i2.44
Rahardjo, B., Dewi, R. F., Wiyasa, I. W. A., & Handayani, P. (2024). Effect of Curcumin on Nitric Oxide and Endothelin-1 Levels in L-NAME-Induced Preeclamptic Wistar Rat. 56(4), 263–271.
San Juan-Reyes, S., Gómez-Oliván, L. M., Islas-Flores, H., & Dublán-García, O. (2020). Oxidative stress in pregnancy complicated by preeclampsia. Archives of Biochemistry and Biophysics, 681(January). https://doi.org/10.1016/j.abb.2020.108255
Subandi, Sahara, A. I., & Nurdiana. (2024). Nano-curcumin in the decrease of proteinuria in white rats (Rattus norvegicus) with preeclampsia. Majalah Obstetri & Ginekologi, 32(1), 8–13. https://doi.org/10.20473/mog.v32i12024.8-13
Subandi, Sari, L. I., & Nurdiana. (2025). Majalah Kesehatan Indonesia The Effect of Nanocurcumin Administration on Plasma Malondialdehyde ( MDA ) Levels in Pregnant Wistar Rats ( Rattus norvegicus ) as a Preeclampsia Model. Majalah Kesehatan Indonesia, 6(1), 35–42. https://doi.org/10.47679/makein.2025226
Tossetta, G., Fantone, S., Giannubilo, S. R., & Marzioni, D. (2021). The multifaced actions of curcumin in pregnancy outcome. Antioxidants, 10(1), 1–20. https://doi.org/10.3390/antiox10010126
Wang, Z., Wu, Y., Zhang, S., Zhao, Y., Yin, X., Wang, W., Ma, X., & Liu, H. (2019). The role of NO-cGMP pathway inhibition in vascular endothelial-dependent smooth muscle relaxation disorder of AT1-AA positive rats: protective effects of adiponectin. Nitric Oxide - Biology and Chemistry, 87(August 2018), 10–22. https://doi.org/10.1016/j.niox.2019.02.006
Yang, R. Q., Guo, P. F., Ma, Z., Chang, C., Meng, Q. N., Gao, Y., Khan, I., Wang, X. B., & Cui, Z. J. (2020). Effects of simvastatin on iNOS and caspase‑3 levels and oxidative stress following smoke inhalation injury. Molecular Medicine Reports, 22(4), 3405–3417. https://doi.org/10.3892/mmr.2020.11413
DOI: http://dx.doi.org/10.30829/contagion.v7i3.25824
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Desy Aulina Sururi, Mutiara Putri Nanda Rizki, Bambang Rahardjo, Novida Ariani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




